Metamath Proof Explorer


Theorem fourierdlem74

Description: Given a piecewise smooth function F , the derived function H has a limit at the upper bound of each interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem74.xre φX
fourierdlem74.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem74.f φF:
fourierdlem74.x φXranV
fourierdlem74.y φY
fourierdlem74.w φWF−∞XlimX
fourierdlem74.h H=sππifs=00FX+sif0<sYWs
fourierdlem74.m φM
fourierdlem74.v φVPM
fourierdlem74.r φi0..^MRFViVi+1limVi+1
fourierdlem74.q Q=i0MViX
fourierdlem74.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem74.g G=DF
fourierdlem74.gcn φi0..^MGViVi+1:ViVi+1
fourierdlem74.e φEG−∞XlimX
fourierdlem74.a A=ifVi+1=XERifVi+1<XWYQi+1
Assertion fourierdlem74 φi0..^MAHQiQi+1limQi+1

Proof

Step Hyp Ref Expression
1 fourierdlem74.xre φX
2 fourierdlem74.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
3 fourierdlem74.f φF:
4 fourierdlem74.x φXranV
5 fourierdlem74.y φY
6 fourierdlem74.w φWF−∞XlimX
7 fourierdlem74.h H=sππifs=00FX+sif0<sYWs
8 fourierdlem74.m φM
9 fourierdlem74.v φVPM
10 fourierdlem74.r φi0..^MRFViVi+1limVi+1
11 fourierdlem74.q Q=i0MViX
12 fourierdlem74.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
13 fourierdlem74.g G=DF
14 fourierdlem74.gcn φi0..^MGViVi+1:ViVi+1
15 fourierdlem74.e φEG−∞XlimX
16 fourierdlem74.a A=ifVi+1=XERifVi+1<XWYQi+1
17 elfzofz i0..^Mi0M
18 pire π
19 18 renegcli π
20 19 a1i φπ
21 20 1 readdcld φ-π+X
22 18 a1i φπ
23 22 1 readdcld φπ+X
24 21 23 iccssred φ-π+Xπ+X
25 24 adantr φi0M-π+Xπ+X
26 2 8 9 fourierdlem15 φV:0M-π+Xπ+X
27 26 ffvelcdmda φi0MVi-π+Xπ+X
28 25 27 sseldd φi0MVi
29 17 28 sylan2 φi0..^MVi
30 29 adantr φi0..^MVi+1=XVi
31 1 ad2antrr φi0..^MVi+1=XX
32 2 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
33 8 32 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
34 9 33 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
35 34 simprrd φi0..^MVi<Vi+1
36 35 r19.21bi φi0..^MVi<Vi+1
37 36 adantr φi0..^MVi+1=XVi<Vi+1
38 eqcom Vi+1=XX=Vi+1
39 38 biimpi Vi+1=XX=Vi+1
40 39 adantl φi0..^MVi+1=XX=Vi+1
41 37 40 breqtrrd φi0..^MVi+1=XVi<X
42 ioossre ViX
43 42 a1i φViX
44 3 43 fssresd φFViX:ViX
45 44 ad2antrr φi0..^MVi+1=XFViX:ViX
46 limcresi F−∞XlimXF−∞XViXlimX
47 46 6 sselid φWF−∞XViXlimX
48 47 adantr φi0..^MWF−∞XViXlimX
49 mnfxr −∞*
50 49 a1i φi0..^M−∞*
51 29 rexrd φi0..^MVi*
52 29 mnfltd φi0..^M−∞<Vi
53 50 51 52 xrltled φi0..^M−∞Vi
54 iooss1 −∞*−∞ViViX−∞X
55 50 53 54 syl2anc φi0..^MViX−∞X
56 55 resabs1d φi0..^MF−∞XViX=FViX
57 56 oveq1d φi0..^MF−∞XViXlimX=FViXlimX
58 48 57 eleqtrd φi0..^MWFViXlimX
59 58 adantr φi0..^MVi+1=XWFViXlimX
60 eqid DFViX=DFViX
61 ax-resscn
62 61 a1i φ
63 3 62 fssd φF:
64 ssid
65 64 a1i φ
66 eqid TopOpenfld=TopOpenfld
67 66 tgioo2 topGenran.=TopOpenfld𝑡
68 66 67 dvres F:ViXDFViX=FinttopGenran.ViX
69 62 63 65 43 68 syl22anc φDFViX=FinttopGenran.ViX
70 13 eqcomi DF=G
71 ioontr inttopGenran.ViX=ViX
72 70 71 reseq12i FinttopGenran.ViX=GViX
73 72 a1i φFinttopGenran.ViX=GViX
74 69 73 eqtrd φDFViX=GViX
75 74 dmeqd φdomFViX=domGViX
76 75 ad2antrr φi0..^MVi+1=XdomFViX=domGViX
77 14 adantr φi0..^MVi+1=XGViVi+1:ViVi+1
78 oveq2 Vi+1=XViVi+1=ViX
79 78 reseq2d Vi+1=XGViVi+1=GViX
80 79 78 feq12d Vi+1=XGViVi+1:ViVi+1GViX:ViX
81 80 adantl φi0..^MVi+1=XGViVi+1:ViVi+1GViX:ViX
82 77 81 mpbid φi0..^MVi+1=XGViX:ViX
83 fdm GViX:ViXdomGViX=ViX
84 82 83 syl φi0..^MVi+1=XdomGViX=ViX
85 76 84 eqtrd φi0..^MVi+1=XdomFViX=ViX
86 limcresi G−∞XlimXG−∞XViXlimX
87 55 resabs1d φi0..^MG−∞XViX=GViX
88 87 oveq1d φi0..^MG−∞XViXlimX=GViXlimX
89 86 88 sseqtrid φi0..^MG−∞XlimXGViXlimX
90 15 adantr φi0..^MEG−∞XlimX
91 89 90 sseldd φi0..^MEGViXlimX
92 69 73 eqtr2d φGViX=DFViX
93 92 oveq1d φGViXlimX=FViXlimX
94 93 adantr φi0..^MGViXlimX=FViXlimX
95 91 94 eleqtrd φi0..^MEFViXlimX
96 95 adantr φi0..^MVi+1=XEFViXlimX
97 eqid sViX0FViXX+sWs=sViX0FViXX+sWs
98 oveq2 x=sX+x=X+s
99 98 fveq2d x=sFViXX+x=FViXX+s
100 99 oveq1d x=sFViXX+xW=FViXX+sW
101 100 cbvmptv xViX0FViXX+xW=sViX0FViXX+sW
102 id x=sx=s
103 102 cbvmptv xViX0x=sViX0s
104 30 31 41 45 59 60 85 96 97 101 103 fourierdlem60 φi0..^MVi+1=XEsViX0FViXX+sWslim0
105 iftrue Vi+1=XifVi+1=XERifVi+1<XWYQi+1=E
106 16 105 eqtrid Vi+1=XA=E
107 106 adantl φi0..^MVi+1=XA=E
108 7 reseq1i HQiQi+1=sππifs=00FX+sif0<sYWsQiQi+1
109 108 a1i φi0..^MVi+1=XHQiQi+1=sππifs=00FX+sif0<sYWsQiQi+1
110 ioossicc QiQi+1QiQi+1
111 19 rexri π*
112 111 a1i φi0..^Mπ*
113 18 rexri π*
114 113 a1i φi0..^Mπ*
115 19 a1i φi0Mπ
116 18 a1i φi0Mπ
117 1 adantr φi0MX
118 28 117 resubcld φi0MViX
119 20 recnd φπ
120 1 recnd φX
121 119 120 pncand φπ+X-X=π
122 121 eqcomd φπ=π+X-X
123 122 adantr φi0Mπ=π+X-X
124 21 adantr φi0M-π+X
125 23 adantr φi0Mπ+X
126 elicc2 -π+Xπ+XVi-π+Xπ+XVi-π+XViViπ+X
127 124 125 126 syl2anc φi0MVi-π+Xπ+XVi-π+XViViπ+X
128 27 127 mpbid φi0MVi-π+XViViπ+X
129 128 simp2d φi0M-π+XVi
130 124 28 117 129 lesub1dd φi0Mπ+X-XViX
131 123 130 eqbrtrd φi0MπViX
132 128 simp3d φi0MViπ+X
133 28 125 117 132 lesub1dd φi0MViXπ+X-X
134 116 recnd φi0Mπ
135 120 adantr φi0MX
136 134 135 pncand φi0Mπ+X-X=π
137 133 136 breqtrd φi0MViXπ
138 115 116 118 131 137 eliccd φi0MViXππ
139 138 11 fmptd φQ:0Mππ
140 139 adantr φi0..^MQ:0Mππ
141 simpr φi0..^Mi0..^M
142 112 114 140 141 fourierdlem8 φi0..^MQiQi+1ππ
143 110 142 sstrid φi0..^MQiQi+1ππ
144 143 resmptd φi0..^Msππifs=00FX+sif0<sYWsQiQi+1=sQiQi+1ifs=00FX+sif0<sYWs
145 144 adantr φi0..^MVi+1=Xsππifs=00FX+sif0<sYWsQiQi+1=sQiQi+1ifs=00FX+sif0<sYWs
146 17 adantl φi0..^Mi0M
147 17 118 sylan2 φi0..^MViX
148 11 fvmpt2 i0MViXQi=ViX
149 146 147 148 syl2anc φi0..^MQi=ViX
150 149 adantr φi0..^MVi+1=XQi=ViX
151 fveq2 i=jVi=Vj
152 151 oveq1d i=jViX=VjX
153 152 cbvmptv i0MViX=j0MVjX
154 11 153 eqtri Q=j0MVjX
155 154 a1i φi0..^MQ=j0MVjX
156 fveq2 j=i+1Vj=Vi+1
157 156 oveq1d j=i+1VjX=Vi+1X
158 157 adantl φi0..^Mj=i+1VjX=Vi+1X
159 fzofzp1 i0..^Mi+10M
160 159 adantl φi0..^Mi+10M
161 34 simpld φV0M
162 elmapi V0MV:0M
163 161 162 syl φV:0M
164 163 adantr φi0..^MV:0M
165 164 160 ffvelcdmd φi0..^MVi+1
166 1 adantr φi0..^MX
167 165 166 resubcld φi0..^MVi+1X
168 155 158 160 167 fvmptd φi0..^MQi+1=Vi+1X
169 168 adantr φi0..^MVi+1=XQi+1=Vi+1X
170 oveq1 Vi+1=XVi+1X=XX
171 170 adantl φi0..^MVi+1=XVi+1X=XX
172 120 ad2antrr φi0MVi+1=XX
173 172 subidd φi0MVi+1=XXX=0
174 17 173 sylanl2 φi0..^MVi+1=XXX=0
175 169 171 174 3eqtrd φi0..^MVi+1=XQi+1=0
176 150 175 oveq12d φi0..^MVi+1=XQiQi+1=ViX0
177 simplr φi0..^MsQiQi+1s=0sQiQi+1
178 8 adantr φs=0M
179 20 22 1 2 12 8 9 11 fourierdlem14 φQOM
180 179 adantr φs=0QOM
181 simpr φs=0s=0
182 ffn V:0M-π+Xπ+XVFn0M
183 fvelrnb VFn0MXranVi0MVi=X
184 26 182 183 3syl φXranVi0MVi=X
185 4 184 mpbid φi0MVi=X
186 simpr φi0Mi0M
187 11 fvmpt2 i0MViXππQi=ViX
188 186 138 187 syl2anc φi0MQi=ViX
189 188 adantr φi0MVi=XQi=ViX
190 oveq1 Vi=XViX=XX
191 190 adantl φi0MVi=XViX=XX
192 120 subidd φXX=0
193 192 ad2antrr φi0MVi=XXX=0
194 189 191 193 3eqtrd φi0MVi=XQi=0
195 194 ex φi0MVi=XQi=0
196 195 reximdva φi0MVi=Xi0MQi=0
197 185 196 mpd φi0MQi=0
198 118 11 fmptd φQ:0M
199 ffn Q:0MQFn0M
200 fvelrnb QFn0M0ranQi0MQi=0
201 198 199 200 3syl φ0ranQi0MQi=0
202 197 201 mpbird φ0ranQ
203 202 adantr φs=00ranQ
204 181 203 eqeltrd φs=0sranQ
205 12 178 180 204 fourierdlem12 φs=0i0..^M¬sQiQi+1
206 205 an32s φi0..^Ms=0¬sQiQi+1
207 206 adantlr φi0..^MsQiQi+1s=0¬sQiQi+1
208 177 207 pm2.65da φi0..^MsQiQi+1¬s=0
209 208 adantlr φi0..^MVi+1=XsQiQi+1¬s=0
210 209 iffalsed φi0..^MVi+1=XsQiQi+1ifs=00FX+sif0<sYWs=FX+sif0<sYWs
211 elioore sQiQi+1s
212 211 adantl φi0..^MVi+1=XsQiQi+1s
213 0red φi0..^MVi+1=XsQiQi+10
214 elioo3g sQiQi+1Qi*Qi+1*s*Qi<ss<Qi+1
215 214 biimpi sQiQi+1Qi*Qi+1*s*Qi<ss<Qi+1
216 215 simprrd sQiQi+1s<Qi+1
217 216 adantl φi0..^MVi+1=XsQiQi+1s<Qi+1
218 175 adantr φi0..^MVi+1=XsQiQi+1Qi+1=0
219 217 218 breqtrd φi0..^MVi+1=XsQiQi+1s<0
220 212 213 219 ltnsymd φi0..^MVi+1=XsQiQi+1¬0<s
221 220 iffalsed φi0..^MVi+1=XsQiQi+1if0<sYW=W
222 221 oveq2d φi0..^MVi+1=XsQiQi+1FX+sif0<sYW=FX+sW
223 222 oveq1d φi0..^MVi+1=XsQiQi+1FX+sif0<sYWs=FX+sWs
224 51 ad2antrr φi0..^MVi+1=XsQiQi+1Vi*
225 1 rexrd φX*
226 225 ad3antrrr φi0..^MVi+1=XsQiQi+1X*
227 166 ad2antrr φi0..^MVi+1=XsQiQi+1X
228 227 212 readdcld φi0..^MVi+1=XsQiQi+1X+s
229 120 adantr φi0..^MX
230 iccssre ππππ
231 19 18 230 mp2an ππ
232 231 61 sstri ππ
233 188 138 eqeltrd φi0MQiππ
234 17 233 sylan2 φi0..^MQiππ
235 232 234 sselid φi0..^MQi
236 229 235 addcomd φi0..^MX+Qi=Qi+X
237 149 oveq1d φi0..^MQi+X=Vi-X+X
238 29 recnd φi0..^MVi
239 238 229 npcand φi0..^MVi-X+X=Vi
240 236 237 239 3eqtrrd φi0..^MVi=X+Qi
241 240 adantr φi0..^MsQiQi+1Vi=X+Qi
242 149 147 eqeltrd φi0..^MQi
243 242 adantr φi0..^MsQiQi+1Qi
244 211 adantl φi0..^MsQiQi+1s
245 1 ad2antrr φi0..^MsQiQi+1X
246 215 simprld sQiQi+1Qi<s
247 246 adantl φi0..^MsQiQi+1Qi<s
248 243 244 245 247 ltadd2dd φi0..^MsQiQi+1X+Qi<X+s
249 241 248 eqbrtrd φi0..^MsQiQi+1Vi<X+s
250 249 adantlr φi0..^MVi+1=XsQiQi+1Vi<X+s
251 ltaddneg sXs<0X+s<X
252 212 227 251 syl2anc φi0..^MVi+1=XsQiQi+1s<0X+s<X
253 219 252 mpbid φi0..^MVi+1=XsQiQi+1X+s<X
254 224 226 228 250 253 eliood φi0..^MVi+1=XsQiQi+1X+sViX
255 fvres X+sViXFViXX+s=FX+s
256 255 eqcomd X+sViXFX+s=FViXX+s
257 254 256 syl φi0..^MVi+1=XsQiQi+1FX+s=FViXX+s
258 257 oveq1d φi0..^MVi+1=XsQiQi+1FX+sW=FViXX+sW
259 258 oveq1d φi0..^MVi+1=XsQiQi+1FX+sWs=FViXX+sWs
260 210 223 259 3eqtrd φi0..^MVi+1=XsQiQi+1ifs=00FX+sif0<sYWs=FViXX+sWs
261 176 260 mpteq12dva φi0..^MVi+1=XsQiQi+1ifs=00FX+sif0<sYWs=sViX0FViXX+sWs
262 109 145 261 3eqtrd φi0..^MVi+1=XHQiQi+1=sViX0FViXX+sWs
263 262 175 oveq12d φi0..^MVi+1=XHQiQi+1limQi+1=sViX0FViXX+sWslim0
264 104 107 263 3eltr4d φi0..^MVi+1=XAHQiQi+1limQi+1
265 eqid sQiQi+1FX+sif0<sYW=sQiQi+1FX+sif0<sYW
266 eqid sQiQi+1s=sQiQi+1s
267 eqid sQiQi+1FX+sif0<sYWs=sQiQi+1FX+sif0<sYWs
268 3 adantr φsQiQi+1F:
269 1 adantr φsQiQi+1X
270 211 adantl φsQiQi+1s
271 269 270 readdcld φsQiQi+1X+s
272 268 271 ffvelcdmd φsQiQi+1FX+s
273 272 recnd φsQiQi+1FX+s
274 273 adantlr φi0..^MsQiQi+1FX+s
275 274 3adantl3 φi0..^M¬Vi+1=XsQiQi+1FX+s
276 5 recnd φY
277 limccl F−∞XlimX
278 277 6 sselid φW
279 276 278 ifcld φif0<sYW
280 279 adantr φsQiQi+1if0<sYW
281 280 3ad2antl1 φi0..^M¬Vi+1=XsQiQi+1if0<sYW
282 275 281 subcld φi0..^M¬Vi+1=XsQiQi+1FX+sif0<sYW
283 211 recnd sQiQi+1s
284 283 adantl φi0..^M¬Vi+1=XsQiQi+1s
285 velsn s0s=0
286 208 285 sylnibr φi0..^MsQiQi+1¬s0
287 286 3adantl3 φi0..^M¬Vi+1=XsQiQi+1¬s0
288 284 287 eldifd φi0..^M¬Vi+1=XsQiQi+1s0
289 eqid sQiQi+1FX+s=sQiQi+1FX+s
290 eqid sQiQi+1W=sQiQi+1W
291 eqid sQiQi+1FX+sW=sQiQi+1FX+sW
292 278 ad2antrr φi0..^MsQiQi+1W
293 3 adantr φi0..^MF:
294 ioossre QiQi+1
295 294 a1i φi0..^MQiQi+1
296 51 adantr φi0..^MsQiQi+1Vi*
297 165 rexrd φi0..^MVi+1*
298 297 adantr φi0..^MsQiQi+1Vi+1*
299 271 adantlr φi0..^MsQiQi+1X+s
300 198 adantr φi0..^MQ:0M
301 300 160 ffvelcdmd φi0..^MQi+1
302 301 adantr φi0..^MsQiQi+1Qi+1
303 216 adantl φi0..^MsQiQi+1s<Qi+1
304 244 302 245 303 ltadd2dd φi0..^MsQiQi+1X+s<X+Qi+1
305 168 oveq2d φi0..^MX+Qi+1=X+Vi+1-X
306 165 recnd φi0..^MVi+1
307 229 306 pncan3d φi0..^MX+Vi+1-X=Vi+1
308 305 307 eqtrd φi0..^MX+Qi+1=Vi+1
309 308 adantr φi0..^MsQiQi+1X+Qi+1=Vi+1
310 304 309 breqtrd φi0..^MsQiQi+1X+s<Vi+1
311 296 298 299 249 310 eliood φi0..^MsQiQi+1X+sViVi+1
312 ioossre ViVi+1
313 312 a1i φi0..^MViVi+1
314 244 303 ltned φi0..^MsQiQi+1sQi+1
315 308 eqcomd φi0..^MVi+1=X+Qi+1
316 315 oveq2d φi0..^MFViVi+1limVi+1=FViVi+1limX+Qi+1
317 10 316 eleqtrd φi0..^MRFViVi+1limX+Qi+1
318 301 recnd φi0..^MQi+1
319 293 166 295 289 311 313 314 317 318 fourierdlem53 φi0..^MRsQiQi+1FX+slimQi+1
320 ioosscn QiQi+1
321 320 a1i φi0..^MQiQi+1
322 278 adantr φi0..^MW
323 290 321 322 318 constlimc φi0..^MWsQiQi+1WlimQi+1
324 289 290 291 274 292 319 323 sublimc φi0..^MRWsQiQi+1FX+sWlimQi+1
325 324 adantr φi0..^MVi+1<XRWsQiQi+1FX+sWlimQi+1
326 iftrue Vi+1<XifVi+1<XWY=W
327 326 oveq2d Vi+1<XRifVi+1<XWY=RW
328 327 adantl φi0..^MVi+1<XRifVi+1<XWY=RW
329 211 adantl φi0..^MVi+1<XsQiQi+1s
330 0red φi0..^MVi+1<XsQiQi+10
331 301 ad2antrr φi0..^MVi+1<XsQiQi+1Qi+1
332 216 adantl φi0..^MVi+1<XsQiQi+1s<Qi+1
333 168 adantr φi0..^MVi+1<XQi+1=Vi+1X
334 165 adantr φi0..^MVi+1<XVi+1
335 1 ad2antrr φi0..^MVi+1<XX
336 simpr φi0..^MVi+1<XVi+1<X
337 334 335 336 ltled φi0..^MVi+1<XVi+1X
338 334 335 suble0d φi0..^MVi+1<XVi+1X0Vi+1X
339 337 338 mpbird φi0..^MVi+1<XVi+1X0
340 333 339 eqbrtrd φi0..^MVi+1<XQi+10
341 340 adantr φi0..^MVi+1<XsQiQi+1Qi+10
342 329 331 330 332 341 ltletrd φi0..^MVi+1<XsQiQi+1s<0
343 329 330 342 ltnsymd φi0..^MVi+1<XsQiQi+1¬0<s
344 343 iffalsed φi0..^MVi+1<XsQiQi+1if0<sYW=W
345 344 oveq2d φi0..^MVi+1<XsQiQi+1FX+sif0<sYW=FX+sW
346 345 mpteq2dva φi0..^MVi+1<XsQiQi+1FX+sif0<sYW=sQiQi+1FX+sW
347 346 oveq1d φi0..^MVi+1<XsQiQi+1FX+sif0<sYWlimQi+1=sQiQi+1FX+sWlimQi+1
348 325 328 347 3eltr4d φi0..^MVi+1<XRifVi+1<XWYsQiQi+1FX+sif0<sYWlimQi+1
349 348 3adantl3 φi0..^M¬Vi+1=XVi+1<XRifVi+1<XWYsQiQi+1FX+sif0<sYWlimQi+1
350 simpl1 φi0..^M¬Vi+1=X¬Vi+1<Xφ
351 simpl2 φi0..^M¬Vi+1=X¬Vi+1<Xi0..^M
352 1 ad2antrr φi0..^M¬Vi+1<XX
353 352 3adantl3 φi0..^M¬Vi+1=X¬Vi+1<XX
354 165 adantr φi0..^M¬Vi+1<XVi+1
355 354 3adantl3 φi0..^M¬Vi+1=X¬Vi+1<XVi+1
356 neqne ¬Vi+1=XVi+1X
357 356 necomd ¬Vi+1=XXVi+1
358 357 adantr ¬Vi+1=X¬Vi+1<XXVi+1
359 358 3ad2antl3 φi0..^M¬Vi+1=X¬Vi+1<XXVi+1
360 simpr φi0..^M¬Vi+1=X¬Vi+1<X¬Vi+1<X
361 353 355 359 360 lttri5d φi0..^M¬Vi+1=X¬Vi+1<XX<Vi+1
362 eqid sQiQi+1if0<sYW=sQiQi+1if0<sYW
363 274 adantlr φi0..^MX<Vi+1sQiQi+1FX+s
364 279 ad3antrrr φi0..^MX<Vi+1sQiQi+1if0<sYW
365 319 adantr φi0..^MX<Vi+1RsQiQi+1FX+slimQi+1
366 eqid sQiQi+1Y=sQiQi+1Y
367 276 adantr φi0..^MY
368 366 321 367 318 constlimc φi0..^MYsQiQi+1YlimQi+1
369 368 adantr φi0..^MX<Vi+1YsQiQi+1YlimQi+1
370 1 ad2antrr φi0..^MX<Vi+1X
371 165 adantr φi0..^MX<Vi+1Vi+1
372 simpr φi0..^MX<Vi+1X<Vi+1
373 370 371 372 ltnsymd φi0..^MX<Vi+1¬Vi+1<X
374 373 iffalsed φi0..^MX<Vi+1ifVi+1<XWY=Y
375 0red φi0..^MX<Vi+1sQiQi+10
376 242 ad2antrr φi0..^MX<Vi+1sQiQi+1Qi
377 211 adantl φi0..^MX<Vi+1sQiQi+1s
378 192 eqcomd φ0=XX
379 378 ad2antrr φi0..^MX<Vi+10=XX
380 29 adantr φi0..^MX<Vi+1Vi
381 51 ad2antrr φi0..^MX<Vi+1¬XViVi*
382 297 ad2antrr φi0..^MX<Vi+1¬XViVi+1*
383 166 ad2antrr φi0..^MX<Vi+1¬XViX
384 simpr φi0..^M¬XVi¬XVi
385 29 adantr φi0..^M¬XViVi
386 1 ad2antrr φi0..^M¬XViX
387 385 386 ltnled φi0..^M¬XViVi<X¬XVi
388 384 387 mpbird φi0..^M¬XViVi<X
389 388 adantlr φi0..^MX<Vi+1¬XViVi<X
390 simplr φi0..^MX<Vi+1¬XViX<Vi+1
391 381 382 383 389 390 eliood φi0..^MX<Vi+1¬XViXViVi+1
392 2 8 9 4 fourierdlem12 φi0..^M¬XViVi+1
393 392 ad2antrr φi0..^MX<Vi+1¬XVi¬XViVi+1
394 391 393 condan φi0..^MX<Vi+1XVi
395 370 380 370 394 lesub1dd φi0..^MX<Vi+1XXViX
396 379 395 eqbrtrd φi0..^MX<Vi+10ViX
397 149 eqcomd φi0..^MViX=Qi
398 397 adantr φi0..^MX<Vi+1ViX=Qi
399 396 398 breqtrd φi0..^MX<Vi+10Qi
400 399 adantr φi0..^MX<Vi+1sQiQi+10Qi
401 246 adantl φi0..^MX<Vi+1sQiQi+1Qi<s
402 375 376 377 400 401 lelttrd φi0..^MX<Vi+1sQiQi+10<s
403 402 iftrued φi0..^MX<Vi+1sQiQi+1if0<sYW=Y
404 403 mpteq2dva φi0..^MX<Vi+1sQiQi+1if0<sYW=sQiQi+1Y
405 404 oveq1d φi0..^MX<Vi+1sQiQi+1if0<sYWlimQi+1=sQiQi+1YlimQi+1
406 369 374 405 3eltr4d φi0..^MX<Vi+1ifVi+1<XWYsQiQi+1if0<sYWlimQi+1
407 289 362 265 363 364 365 406 sublimc φi0..^MX<Vi+1RifVi+1<XWYsQiQi+1FX+sif0<sYWlimQi+1
408 350 351 361 407 syl21anc φi0..^M¬Vi+1=X¬Vi+1<XRifVi+1<XWYsQiQi+1FX+sif0<sYWlimQi+1
409 349 408 pm2.61dan φi0..^M¬Vi+1=XRifVi+1<XWYsQiQi+1FX+sif0<sYWlimQi+1
410 321 266 318 idlimc φi0..^MQi+1sQiQi+1slimQi+1
411 410 3adant3 φi0..^M¬Vi+1=XQi+1sQiQi+1slimQi+1
412 168 3adant3 φi0..^M¬Vi+1=XQi+1=Vi+1X
413 306 3adant3 φi0..^M¬Vi+1=XVi+1
414 229 3adant3 φi0..^M¬Vi+1=XX
415 356 3ad2ant3 φi0..^M¬Vi+1=XVi+1X
416 413 414 415 subne0d φi0..^M¬Vi+1=XVi+1X0
417 412 416 eqnetrd φi0..^M¬Vi+1=XQi+10
418 208 3adantl3 φi0..^M¬Vi+1=XsQiQi+1¬s=0
419 418 neqned φi0..^M¬Vi+1=XsQiQi+1s0
420 265 266 267 282 288 409 411 417 419 divlimc φi0..^M¬Vi+1=XRifVi+1<XWYQi+1sQiQi+1FX+sif0<sYWslimQi+1
421 iffalse ¬Vi+1=XifVi+1=XERifVi+1<XWYQi+1=RifVi+1<XWYQi+1
422 16 421 eqtrid ¬Vi+1=XA=RifVi+1<XWYQi+1
423 422 3ad2ant3 φi0..^M¬Vi+1=XA=RifVi+1<XWYQi+1
424 ioossre −∞X
425 424 a1i φ−∞X
426 3 425 fssresd φF−∞X:−∞X
427 424 62 sstrid φ−∞X
428 49 a1i φ−∞*
429 1 mnfltd φ−∞<X
430 66 428 1 429 lptioo2cn φXlimPtTopOpenfld−∞X
431 426 427 430 6 limcrecl φW
432 3 1 5 431 7 fourierdlem9 φH:ππ
433 432 adantr φi0..^MH:ππ
434 433 143 feqresmpt φi0..^MHQiQi+1=sQiQi+1Hs
435 143 sselda φi0..^MsQiQi+1sππ
436 0cnd φi0..^MsQiQi+10
437 279 ad2antrr φi0..^MsQiQi+1if0<sYW
438 274 437 subcld φi0..^MsQiQi+1FX+sif0<sYW
439 283 adantl φi0..^MsQiQi+1s
440 208 neqned φi0..^MsQiQi+1s0
441 438 439 440 divcld φi0..^MsQiQi+1FX+sif0<sYWs
442 436 441 ifcld φi0..^MsQiQi+1ifs=00FX+sif0<sYWs
443 7 fvmpt2 sππifs=00FX+sif0<sYWsHs=ifs=00FX+sif0<sYWs
444 435 442 443 syl2anc φi0..^MsQiQi+1Hs=ifs=00FX+sif0<sYWs
445 208 iffalsed φi0..^MsQiQi+1ifs=00FX+sif0<sYWs=FX+sif0<sYWs
446 444 445 eqtrd φi0..^MsQiQi+1Hs=FX+sif0<sYWs
447 446 mpteq2dva φi0..^MsQiQi+1Hs=sQiQi+1FX+sif0<sYWs
448 434 447 eqtrd φi0..^MHQiQi+1=sQiQi+1FX+sif0<sYWs
449 448 3adant3 φi0..^M¬Vi+1=XHQiQi+1=sQiQi+1FX+sif0<sYWs
450 449 oveq1d φi0..^M¬Vi+1=XHQiQi+1limQi+1=sQiQi+1FX+sif0<sYWslimQi+1
451 420 423 450 3eltr4d φi0..^M¬Vi+1=XAHQiQi+1limQi+1
452 451 3expa φi0..^M¬Vi+1=XAHQiQi+1limQi+1
453 264 452 pm2.61dan φi0..^MAHQiQi+1limQi+1