Metamath Proof Explorer


Theorem ftalem5

Description: Lemma for fta : Main proof. We have already shifted the minimum found in ftalem3 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let K be the lowest term in the polynomial that is nonzero, and let T be a K -th root of -u F ( 0 ) / A ( K ) . Then an evaluation of F ( T X ) where X is a sufficiently small positive number yields F ( 0 ) for the first term and -u F ( 0 ) x. X ^ K for the K -th term, and all higher terms are bounded because X is small. Thus, abs ( F ( T X ) ) <_ abs ( F ( 0 ) ) ( 1 - X ^ K ) < abs ( F ( 0 ) ) , in contradiction to our choice of F ( 0 ) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses ftalem.1 A=coeffF
ftalem.2 N=degF
ftalem.3 φFPolyS
ftalem.4 φN
ftalem4.5 φF00
ftalem4.6 K=supn|An0<
ftalem4.7 T=F0AK1K
ftalem4.8 U=F0k=K+1NAkTk+1
ftalem4.9 X=if1U1U
Assertion ftalem5 φxFx<F0

Proof

Step Hyp Ref Expression
1 ftalem.1 A=coeffF
2 ftalem.2 N=degF
3 ftalem.3 φFPolyS
4 ftalem.4 φN
5 ftalem4.5 φF00
6 ftalem4.6 K=supn|An0<
7 ftalem4.7 T=F0AK1K
8 ftalem4.8 U=F0k=K+1NAkTk+1
9 ftalem4.9 X=if1U1U
10 1 2 3 4 5 6 7 8 9 ftalem4 φKAK0TU+X+
11 10 simprd φTU+X+
12 11 simp1d φT
13 11 simp3d φX+
14 13 rpred φX
15 14 recnd φX
16 12 15 mulcld φTX
17 plyf FPolySF:
18 3 17 syl φF:
19 18 16 ffvelcdmd φFTX
20 19 abscld φFTX
21 0cn 0
22 ffvelcdm F:0F0
23 18 21 22 sylancl φF0
24 23 abscld φF0
25 10 simpld φKAK0
26 25 simpld φK
27 26 nnnn0d φK0
28 14 27 reexpcld φXK
29 24 28 remulcld φF0XK
30 24 29 resubcld φF0F0XK
31 fzfid φK+1NFin
32 1 coef3 FPolySA:0
33 3 32 syl φA:0
34 peano2nn0 K0K+10
35 27 34 syl φK+10
36 elfzuz kK+1NkK+1
37 eluznn0 K+10kK+1k0
38 35 36 37 syl2an φkK+1Nk0
39 ffvelcdm A:0k0Ak
40 33 38 39 syl2an2r φkK+1NAk
41 16 adantr φkK+1NTX
42 41 38 expcld φkK+1NTXk
43 40 42 mulcld φkK+1NAkTXk
44 31 43 fsumcl φk=K+1NAkTXk
45 44 abscld φk=K+1NAkTXk
46 30 45 readdcld φF0-F0XK+k=K+1NAkTXk
47 fzfid φ0KFin
48 elfznn0 k0Kk0
49 33 48 39 syl2an φk0KAk
50 expcl TXk0TXk
51 16 48 50 syl2an φk0KTXk
52 49 51 mulcld φk0KAkTXk
53 47 52 fsumcl φk=0KAkTXk
54 53 44 abstrid φk=0KAkTXk+k=K+1NAkTXkk=0KAkTXk+k=K+1NAkTXk
55 1 2 coeid2 FPolySTXFTX=k=0NAkTXk
56 3 16 55 syl2anc φFTX=k=0NAkTXk
57 26 nnred φK
58 57 ltp1d φK<K+1
59 fzdisj K<K+10KK+1N=
60 58 59 syl φ0KK+1N=
61 ssrab2 n|An0
62 nnuz =1
63 61 62 sseqtri n|An01
64 fveq2 n=NAn=AN
65 64 neeq1d n=NAn0AN0
66 4 nnne0d φN0
67 2 1 dgreq0 FPolySF=0𝑝AN=0
68 3 67 syl φF=0𝑝AN=0
69 fveq2 F=0𝑝degF=deg0𝑝
70 dgr0 deg0𝑝=0
71 69 70 eqtrdi F=0𝑝degF=0
72 2 71 eqtrid F=0𝑝N=0
73 68 72 syl6bir φAN=0N=0
74 73 necon3d φN0AN0
75 66 74 mpd φAN0
76 65 4 75 elrabd φNn|An0
77 infssuzle n|An01Nn|An0supn|An0<N
78 63 76 77 sylancr φsupn|An0<N
79 6 78 eqbrtrid φKN
80 nn0uz 0=0
81 27 80 eleqtrdi φK0
82 4 nnzd φN
83 elfz5 K0NK0NKN
84 81 82 83 syl2anc φK0NKN
85 79 84 mpbird φK0N
86 fzsplit K0N0N=0KK+1N
87 85 86 syl φ0N=0KK+1N
88 fzfid φ0NFin
89 elfznn0 k0Nk0
90 33 89 39 syl2an φk0NAk
91 16 89 50 syl2an φk0NTXk
92 90 91 mulcld φk0NAkTXk
93 60 87 88 92 fsumsplit φk=0NAkTXk=k=0KAkTXk+k=K+1NAkTXk
94 56 93 eqtrd φFTX=k=0KAkTXk+k=K+1NAkTXk
95 94 fveq2d φFTX=k=0KAkTXk+k=K+1NAkTXk
96 1 coefv0 FPolySF0=A0
97 3 96 syl φF0=A0
98 97 eqcomd φA0=F0
99 16 exp0d φTX0=1
100 98 99 oveq12d φA0TX0=F01
101 23 mulridd φF01=F0
102 100 101 eqtrd φA0TX0=F0
103 1e0p1 1=0+1
104 103 oveq1i 1K=0+1K
105 104 sumeq1i k=1KAkTXk=k=0+1KAkTXk
106 26 62 eleqtrdi φK1
107 elfznn k1Kk
108 107 nnnn0d k1Kk0
109 33 108 39 syl2an φk1KAk
110 16 108 50 syl2an φk1KTXk
111 109 110 mulcld φk1KAkTXk
112 fveq2 k=KAk=AK
113 oveq2 k=KTXk=TXK
114 112 113 oveq12d k=KAkTXk=AKTXK
115 106 111 114 fsumm1 φk=1KAkTXk=k=1K1AkTXk+AKTXK
116 105 115 eqtr3id φk=0+1KAkTXk=k=1K1AkTXk+AKTXK
117 elfznn k1K1k
118 117 adantl φk1K1k
119 118 nnred φk1K1k
120 57 adantr φk1K1K
121 peano2rem KK1
122 120 121 syl φk1K1K1
123 elfzle2 k1K1kK1
124 123 adantl φk1K1kK1
125 120 ltm1d φk1K1K1<K
126 119 122 120 124 125 lelttrd φk1K1k<K
127 119 120 ltnled φk1K1k<K¬Kk
128 126 127 mpbid φk1K1¬Kk
129 infssuzle n|An01kn|An0supn|An0<k
130 6 129 eqbrtrid n|An01kn|An0Kk
131 63 130 mpan kn|An0Kk
132 128 131 nsyl φk1K1¬kn|An0
133 fveq2 n=kAn=Ak
134 133 neeq1d n=kAn0Ak0
135 134 elrab3 kkn|An0Ak0
136 118 135 syl φk1K1kn|An0Ak0
137 136 necon2bbid φk1K1Ak=0¬kn|An0
138 132 137 mpbird φk1K1Ak=0
139 138 oveq1d φk1K1AkTXk=0TXk
140 117 nnnn0d k1K1k0
141 16 140 50 syl2an φk1K1TXk
142 141 mul02d φk1K10TXk=0
143 139 142 eqtrd φk1K1AkTXk=0
144 143 sumeq2dv φk=1K1AkTXk=k=1K10
145 fzfi 1K1Fin
146 145 olci 1K111K1Fin
147 sumz 1K111K1Fink=1K10=0
148 146 147 ax-mp k=1K10=0
149 144 148 eqtrdi φk=1K1AkTXk=0
150 12 15 27 mulexpd φTXK=TKXK
151 150 oveq2d φAKTXK=AKTKXK
152 33 27 ffvelcdmd φAK
153 12 27 expcld φTK
154 28 recnd φXK
155 152 153 154 mulassd φAKTKXK=AKTKXK
156 151 155 eqtr4d φAKTXK=AKTKXK
157 7 oveq1i TK=F0AK1KK
158 57 recnd φK
159 26 nnne0d φK0
160 158 159 recid2d φ1KK=1
161 160 oveq2d φF0AK1KK=F0AK1
162 25 simprd φAK0
163 23 152 162 divcld φF0AK
164 163 negcld φF0AK
165 26 nnrecred φ1K
166 165 recnd φ1K
167 164 166 27 cxpmul2d φF0AK1KK=F0AK1KK
168 164 cxp1d φF0AK1=F0AK
169 161 167 168 3eqtr3d φF0AK1KK=F0AK
170 157 169 eqtrid φTK=F0AK
171 170 oveq2d φAKTK=AKF0AK
172 152 163 mulneg2d φAKF0AK=AKF0AK
173 23 152 162 divcan2d φAKF0AK=F0
174 173 negeqd φAKF0AK=F0
175 171 172 174 3eqtrd φAKTK=F0
176 175 oveq1d φAKTKXK=F0XK
177 23 154 mulneg1d φF0XK=F0XK
178 156 176 177 3eqtrd φAKTXK=F0XK
179 149 178 oveq12d φk=1K1AkTXk+AKTXK=0+F0XK
180 23 154 mulcld φF0XK
181 180 negcld φF0XK
182 181 addlidd φ0+F0XK=F0XK
183 116 179 182 3eqtrd φk=0+1KAkTXk=F0XK
184 102 183 oveq12d φA0TX0+k=0+1KAkTXk=F0+F0XK
185 fveq2 k=0Ak=A0
186 oveq2 k=0TXk=TX0
187 185 186 oveq12d k=0AkTXk=A0TX0
188 81 52 187 fsum1p φk=0KAkTXk=A0TX0+k=0+1KAkTXk
189 101 oveq1d φF01F0XK=F0F0XK
190 1cnd φ1
191 23 190 154 subdid φF01XK=F01F0XK
192 23 180 negsubd φF0+F0XK=F0F0XK
193 189 191 192 3eqtr4d φF01XK=F0+F0XK
194 184 188 193 3eqtr4d φk=0KAkTXk=F01XK
195 194 fveq2d φk=0KAkTXk=F01XK
196 1re 1
197 resubcl 1XK1XK
198 196 28 197 sylancr φ1XK
199 198 recnd φ1XK
200 23 199 absmuld φF01XK=F01XK
201 13 rpge0d φ0X
202 11 simp2d φU+
203 202 rpred φU
204 min1 1Uif1U1U1
205 196 203 204 sylancr φif1U1U1
206 9 205 eqbrtrid φX1
207 exple1 X0XX1K0XK1
208 14 201 206 27 207 syl31anc φXK1
209 subge0 1XK01XKXK1
210 196 28 209 sylancr φ01XKXK1
211 208 210 mpbird φ01XK
212 198 211 absidd φ1XK=1XK
213 212 oveq2d φF01XK=F01XK
214 24 recnd φF0
215 214 190 154 subdid φF01XK=F01F0XK
216 214 mulridd φF01=F0
217 216 oveq1d φF01F0XK=F0F0XK
218 213 215 217 3eqtrd φF01XK=F0F0XK
219 195 200 218 3eqtrrd φF0F0XK=k=0KAkTXk
220 219 oveq1d φF0-F0XK+k=K+1NAkTXk=k=0KAkTXk+k=K+1NAkTXk
221 54 95 220 3brtr4d φFTXF0-F0XK+k=K+1NAkTXk
222 43 abscld φkK+1NAkTXk
223 31 222 fsumrecl φk=K+1NAkTXk
224 31 43 fsumabs φk=K+1NAkTXkk=K+1NAkTXk
225 expcl Tk0Tk
226 12 38 225 syl2an2r φkK+1NTk
227 40 226 mulcld φkK+1NAkTk
228 227 abscld φkK+1NAkTk
229 31 228 fsumrecl φk=K+1NAkTk
230 14 35 reexpcld φXK+1
231 229 230 remulcld φk=K+1NAkTkXK+1
232 230 adantr φkK+1NXK+1
233 228 232 remulcld φkK+1NAkTkXK+1
234 12 adantr φkK+1NT
235 15 adantr φkK+1NX
236 234 235 38 mulexpd φkK+1NTXk=TkXk
237 236 oveq2d φkK+1NAkTXk=AkTkXk
238 14 adantr φkK+1NX
239 238 38 reexpcld φkK+1NXk
240 239 recnd φkK+1NXk
241 40 226 240 mulassd φkK+1NAkTkXk=AkTkXk
242 237 241 eqtr4d φkK+1NAkTXk=AkTkXk
243 242 fveq2d φkK+1NAkTXk=AkTkXk
244 227 240 absmuld φkK+1NAkTkXk=AkTkXk
245 elfzelz kK+1Nk
246 rpexpcl X+kXk+
247 13 245 246 syl2an φkK+1NXk+
248 247 rpge0d φkK+1N0Xk
249 239 248 absidd φkK+1NXk=Xk
250 249 oveq2d φkK+1NAkTkXk=AkTkXk
251 243 244 250 3eqtrd φkK+1NAkTXk=AkTkXk
252 227 absge0d φkK+1N0AkTk
253 35 adantr φkK+1NK+10
254 36 adantl φkK+1NkK+1
255 201 adantr φkK+1N0X
256 206 adantr φkK+1NX1
257 238 253 254 255 256 leexp2rd φkK+1NXkXK+1
258 239 232 228 252 257 lemul2ad φkK+1NAkTkXkAkTkXK+1
259 251 258 eqbrtrd φkK+1NAkTXkAkTkXK+1
260 31 222 233 259 fsumle φk=K+1NAkTXkk=K+1NAkTkXK+1
261 230 recnd φXK+1
262 228 recnd φkK+1NAkTk
263 31 261 262 fsummulc1 φk=K+1NAkTkXK+1=k=K+1NAkTkXK+1
264 260 263 breqtrrd φk=K+1NAkTXkk=K+1NAkTkXK+1
265 15 27 expp1d φXK+1=XKX
266 154 15 mulcomd φXKX=XXK
267 265 266 eqtrd φXK+1=XXK
268 267 oveq2d φk=K+1NAkTkXK+1=k=K+1NAkTkXXK
269 229 recnd φk=K+1NAkTk
270 269 15 154 mulassd φk=K+1NAkTkXXK=k=K+1NAkTkXXK
271 268 270 eqtr4d φk=K+1NAkTkXK+1=k=K+1NAkTkXXK
272 229 14 remulcld φk=K+1NAkTkX
273 nnssz
274 61 273 sstri n|An0
275 76 ne0d φn|An0
276 infssuzcl n|An01n|An0supn|An0<n|An0
277 63 275 276 sylancr φsupn|An0<n|An0
278 6 277 eqeltrid φKn|An0
279 274 278 sselid φK
280 13 279 rpexpcld φXK+
281 peano2re k=K+1NAkTkk=K+1NAkTk+1
282 229 281 syl φk=K+1NAkTk+1
283 282 14 remulcld φk=K+1NAkTk+1X
284 229 ltp1d φk=K+1NAkTk<k=K+1NAkTk+1
285 229 282 13 284 ltmul1dd φk=K+1NAkTkX<k=K+1NAkTk+1X
286 min2 1Uif1U1UU
287 196 203 286 sylancr φif1U1UU
288 9 287 eqbrtrid φXU
289 288 8 breqtrdi φXF0k=K+1NAkTk+1
290 0red φ0
291 31 228 252 fsumge0 φ0k=K+1NAkTk
292 290 229 282 291 284 lelttrd φ0<k=K+1NAkTk+1
293 lemuldiv2 XF0k=K+1NAkTk+10<k=K+1NAkTk+1k=K+1NAkTk+1XF0XF0k=K+1NAkTk+1
294 14 24 282 292 293 syl112anc φk=K+1NAkTk+1XF0XF0k=K+1NAkTk+1
295 289 294 mpbird φk=K+1NAkTk+1XF0
296 272 283 24 285 295 ltletrd φk=K+1NAkTkX<F0
297 272 24 280 296 ltmul1dd φk=K+1NAkTkXXK<F0XK
298 271 297 eqbrtrd φk=K+1NAkTkXK+1<F0XK
299 223 231 29 264 298 lelttrd φk=K+1NAkTXk<F0XK
300 45 223 29 224 299 lelttrd φk=K+1NAkTXk<F0XK
301 45 29 24 300 ltsub2dd φF0F0XK<F0k=K+1NAkTXk
302 30 45 24 ltaddsubd φF0-F0XK+k=K+1NAkTXk<F0F0F0XK<F0k=K+1NAkTXk
303 301 302 mpbird φF0-F0XK+k=K+1NAkTXk<F0
304 20 46 24 221 303 lelttrd φFTX<F0
305 2fveq3 x=TXFx=FTX
306 305 breq1d x=TXFx<F0FTX<F0
307 306 rspcev TXFTX<F0xFx<F0
308 16 304 307 syl2anc φxFx<F0