| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftalem.1 |
|
| 2 |
|
ftalem.2 |
|
| 3 |
|
ftalem.3 |
|
| 4 |
|
ftalem.4 |
|
| 5 |
|
ftalem4.5 |
|
| 6 |
|
ftalem4.6 |
|
| 7 |
|
ftalem4.7 |
|
| 8 |
|
ftalem4.8 |
|
| 9 |
|
ftalem4.9 |
|
| 10 |
1 2 3 4 5 6 7 8 9
|
ftalem4 |
|
| 11 |
10
|
simprd |
|
| 12 |
11
|
simp1d |
|
| 13 |
11
|
simp3d |
|
| 14 |
13
|
rpred |
|
| 15 |
14
|
recnd |
|
| 16 |
12 15
|
mulcld |
|
| 17 |
|
plyf |
|
| 18 |
3 17
|
syl |
|
| 19 |
18 16
|
ffvelcdmd |
|
| 20 |
19
|
abscld |
|
| 21 |
|
0cn |
|
| 22 |
|
ffvelcdm |
|
| 23 |
18 21 22
|
sylancl |
|
| 24 |
23
|
abscld |
|
| 25 |
10
|
simpld |
|
| 26 |
25
|
simpld |
|
| 27 |
26
|
nnnn0d |
|
| 28 |
14 27
|
reexpcld |
|
| 29 |
24 28
|
remulcld |
|
| 30 |
24 29
|
resubcld |
|
| 31 |
|
fzfid |
|
| 32 |
1
|
coef3 |
|
| 33 |
3 32
|
syl |
|
| 34 |
|
peano2nn0 |
|
| 35 |
27 34
|
syl |
|
| 36 |
|
elfzuz |
|
| 37 |
|
eluznn0 |
|
| 38 |
35 36 37
|
syl2an |
|
| 39 |
|
ffvelcdm |
|
| 40 |
33 38 39
|
syl2an2r |
|
| 41 |
16
|
adantr |
|
| 42 |
41 38
|
expcld |
|
| 43 |
40 42
|
mulcld |
|
| 44 |
31 43
|
fsumcl |
|
| 45 |
44
|
abscld |
|
| 46 |
30 45
|
readdcld |
|
| 47 |
|
fzfid |
|
| 48 |
|
elfznn0 |
|
| 49 |
33 48 39
|
syl2an |
|
| 50 |
|
expcl |
|
| 51 |
16 48 50
|
syl2an |
|
| 52 |
49 51
|
mulcld |
|
| 53 |
47 52
|
fsumcl |
|
| 54 |
53 44
|
abstrid |
|
| 55 |
1 2
|
coeid2 |
|
| 56 |
3 16 55
|
syl2anc |
|
| 57 |
26
|
nnred |
|
| 58 |
57
|
ltp1d |
|
| 59 |
|
fzdisj |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
ssrab2 |
|
| 62 |
|
nnuz |
|
| 63 |
61 62
|
sseqtri |
|
| 64 |
|
fveq2 |
|
| 65 |
64
|
neeq1d |
|
| 66 |
4
|
nnne0d |
|
| 67 |
2 1
|
dgreq0 |
|
| 68 |
3 67
|
syl |
|
| 69 |
|
fveq2 |
|
| 70 |
|
dgr0 |
|
| 71 |
69 70
|
eqtrdi |
|
| 72 |
2 71
|
eqtrid |
|
| 73 |
68 72
|
biimtrrdi |
|
| 74 |
73
|
necon3d |
|
| 75 |
66 74
|
mpd |
|
| 76 |
65 4 75
|
elrabd |
|
| 77 |
|
infssuzle |
|
| 78 |
63 76 77
|
sylancr |
|
| 79 |
6 78
|
eqbrtrid |
|
| 80 |
|
nn0uz |
|
| 81 |
27 80
|
eleqtrdi |
|
| 82 |
4
|
nnzd |
|
| 83 |
|
elfz5 |
|
| 84 |
81 82 83
|
syl2anc |
|
| 85 |
79 84
|
mpbird |
|
| 86 |
|
fzsplit |
|
| 87 |
85 86
|
syl |
|
| 88 |
|
fzfid |
|
| 89 |
|
elfznn0 |
|
| 90 |
33 89 39
|
syl2an |
|
| 91 |
16 89 50
|
syl2an |
|
| 92 |
90 91
|
mulcld |
|
| 93 |
60 87 88 92
|
fsumsplit |
|
| 94 |
56 93
|
eqtrd |
|
| 95 |
94
|
fveq2d |
|
| 96 |
1
|
coefv0 |
|
| 97 |
3 96
|
syl |
|
| 98 |
97
|
eqcomd |
|
| 99 |
16
|
exp0d |
|
| 100 |
98 99
|
oveq12d |
|
| 101 |
23
|
mulridd |
|
| 102 |
100 101
|
eqtrd |
|
| 103 |
|
1e0p1 |
|
| 104 |
103
|
oveq1i |
|
| 105 |
104
|
sumeq1i |
|
| 106 |
26 62
|
eleqtrdi |
|
| 107 |
|
elfznn |
|
| 108 |
107
|
nnnn0d |
|
| 109 |
33 108 39
|
syl2an |
|
| 110 |
16 108 50
|
syl2an |
|
| 111 |
109 110
|
mulcld |
|
| 112 |
|
fveq2 |
|
| 113 |
|
oveq2 |
|
| 114 |
112 113
|
oveq12d |
|
| 115 |
106 111 114
|
fsumm1 |
|
| 116 |
105 115
|
eqtr3id |
|
| 117 |
|
elfznn |
|
| 118 |
117
|
adantl |
|
| 119 |
118
|
nnred |
|
| 120 |
57
|
adantr |
|
| 121 |
|
peano2rem |
|
| 122 |
120 121
|
syl |
|
| 123 |
|
elfzle2 |
|
| 124 |
123
|
adantl |
|
| 125 |
120
|
ltm1d |
|
| 126 |
119 122 120 124 125
|
lelttrd |
|
| 127 |
119 120
|
ltnled |
|
| 128 |
126 127
|
mpbid |
|
| 129 |
|
infssuzle |
|
| 130 |
6 129
|
eqbrtrid |
|
| 131 |
63 130
|
mpan |
|
| 132 |
128 131
|
nsyl |
|
| 133 |
|
fveq2 |
|
| 134 |
133
|
neeq1d |
|
| 135 |
134
|
elrab3 |
|
| 136 |
118 135
|
syl |
|
| 137 |
136
|
necon2bbid |
|
| 138 |
132 137
|
mpbird |
|
| 139 |
138
|
oveq1d |
|
| 140 |
117
|
nnnn0d |
|
| 141 |
16 140 50
|
syl2an |
|
| 142 |
141
|
mul02d |
|
| 143 |
139 142
|
eqtrd |
|
| 144 |
143
|
sumeq2dv |
|
| 145 |
|
fzfi |
|
| 146 |
145
|
olci |
|
| 147 |
|
sumz |
|
| 148 |
146 147
|
ax-mp |
|
| 149 |
144 148
|
eqtrdi |
|
| 150 |
12 15 27
|
mulexpd |
|
| 151 |
150
|
oveq2d |
|
| 152 |
33 27
|
ffvelcdmd |
|
| 153 |
12 27
|
expcld |
|
| 154 |
28
|
recnd |
|
| 155 |
152 153 154
|
mulassd |
|
| 156 |
151 155
|
eqtr4d |
|
| 157 |
7
|
oveq1i |
|
| 158 |
57
|
recnd |
|
| 159 |
26
|
nnne0d |
|
| 160 |
158 159
|
recid2d |
|
| 161 |
160
|
oveq2d |
|
| 162 |
25
|
simprd |
|
| 163 |
23 152 162
|
divcld |
|
| 164 |
163
|
negcld |
|
| 165 |
26
|
nnrecred |
|
| 166 |
165
|
recnd |
|
| 167 |
164 166 27
|
cxpmul2d |
|
| 168 |
164
|
cxp1d |
|
| 169 |
161 167 168
|
3eqtr3d |
|
| 170 |
157 169
|
eqtrid |
|
| 171 |
170
|
oveq2d |
|
| 172 |
152 163
|
mulneg2d |
|
| 173 |
23 152 162
|
divcan2d |
|
| 174 |
173
|
negeqd |
|
| 175 |
171 172 174
|
3eqtrd |
|
| 176 |
175
|
oveq1d |
|
| 177 |
23 154
|
mulneg1d |
|
| 178 |
156 176 177
|
3eqtrd |
|
| 179 |
149 178
|
oveq12d |
|
| 180 |
23 154
|
mulcld |
|
| 181 |
180
|
negcld |
|
| 182 |
181
|
addlidd |
|
| 183 |
116 179 182
|
3eqtrd |
|
| 184 |
102 183
|
oveq12d |
|
| 185 |
|
fveq2 |
|
| 186 |
|
oveq2 |
|
| 187 |
185 186
|
oveq12d |
|
| 188 |
81 52 187
|
fsum1p |
|
| 189 |
101
|
oveq1d |
|
| 190 |
|
1cnd |
|
| 191 |
23 190 154
|
subdid |
|
| 192 |
23 180
|
negsubd |
|
| 193 |
189 191 192
|
3eqtr4d |
|
| 194 |
184 188 193
|
3eqtr4d |
|
| 195 |
194
|
fveq2d |
|
| 196 |
|
1re |
|
| 197 |
|
resubcl |
|
| 198 |
196 28 197
|
sylancr |
|
| 199 |
198
|
recnd |
|
| 200 |
23 199
|
absmuld |
|
| 201 |
13
|
rpge0d |
|
| 202 |
11
|
simp2d |
|
| 203 |
202
|
rpred |
|
| 204 |
|
min1 |
|
| 205 |
196 203 204
|
sylancr |
|
| 206 |
9 205
|
eqbrtrid |
|
| 207 |
|
exple1 |
|
| 208 |
14 201 206 27 207
|
syl31anc |
|
| 209 |
|
subge0 |
|
| 210 |
196 28 209
|
sylancr |
|
| 211 |
208 210
|
mpbird |
|
| 212 |
198 211
|
absidd |
|
| 213 |
212
|
oveq2d |
|
| 214 |
24
|
recnd |
|
| 215 |
214 190 154
|
subdid |
|
| 216 |
214
|
mulridd |
|
| 217 |
216
|
oveq1d |
|
| 218 |
213 215 217
|
3eqtrd |
|
| 219 |
195 200 218
|
3eqtrrd |
|
| 220 |
219
|
oveq1d |
|
| 221 |
54 95 220
|
3brtr4d |
|
| 222 |
43
|
abscld |
|
| 223 |
31 222
|
fsumrecl |
|
| 224 |
31 43
|
fsumabs |
|
| 225 |
|
expcl |
|
| 226 |
12 38 225
|
syl2an2r |
|
| 227 |
40 226
|
mulcld |
|
| 228 |
227
|
abscld |
|
| 229 |
31 228
|
fsumrecl |
|
| 230 |
14 35
|
reexpcld |
|
| 231 |
229 230
|
remulcld |
|
| 232 |
230
|
adantr |
|
| 233 |
228 232
|
remulcld |
|
| 234 |
12
|
adantr |
|
| 235 |
15
|
adantr |
|
| 236 |
234 235 38
|
mulexpd |
|
| 237 |
236
|
oveq2d |
|
| 238 |
14
|
adantr |
|
| 239 |
238 38
|
reexpcld |
|
| 240 |
239
|
recnd |
|
| 241 |
40 226 240
|
mulassd |
|
| 242 |
237 241
|
eqtr4d |
|
| 243 |
242
|
fveq2d |
|
| 244 |
227 240
|
absmuld |
|
| 245 |
|
elfzelz |
|
| 246 |
|
rpexpcl |
|
| 247 |
13 245 246
|
syl2an |
|
| 248 |
247
|
rpge0d |
|
| 249 |
239 248
|
absidd |
|
| 250 |
249
|
oveq2d |
|
| 251 |
243 244 250
|
3eqtrd |
|
| 252 |
227
|
absge0d |
|
| 253 |
35
|
adantr |
|
| 254 |
36
|
adantl |
|
| 255 |
201
|
adantr |
|
| 256 |
206
|
adantr |
|
| 257 |
238 253 254 255 256
|
leexp2rd |
|
| 258 |
239 232 228 252 257
|
lemul2ad |
|
| 259 |
251 258
|
eqbrtrd |
|
| 260 |
31 222 233 259
|
fsumle |
|
| 261 |
230
|
recnd |
|
| 262 |
228
|
recnd |
|
| 263 |
31 261 262
|
fsummulc1 |
|
| 264 |
260 263
|
breqtrrd |
|
| 265 |
15 27
|
expp1d |
|
| 266 |
154 15
|
mulcomd |
|
| 267 |
265 266
|
eqtrd |
|
| 268 |
267
|
oveq2d |
|
| 269 |
229
|
recnd |
|
| 270 |
269 15 154
|
mulassd |
|
| 271 |
268 270
|
eqtr4d |
|
| 272 |
229 14
|
remulcld |
|
| 273 |
|
nnssz |
|
| 274 |
61 273
|
sstri |
|
| 275 |
76
|
ne0d |
|
| 276 |
|
infssuzcl |
|
| 277 |
63 275 276
|
sylancr |
|
| 278 |
6 277
|
eqeltrid |
|
| 279 |
274 278
|
sselid |
|
| 280 |
13 279
|
rpexpcld |
|
| 281 |
|
peano2re |
|
| 282 |
229 281
|
syl |
|
| 283 |
282 14
|
remulcld |
|
| 284 |
229
|
ltp1d |
|
| 285 |
229 282 13 284
|
ltmul1dd |
|
| 286 |
|
min2 |
|
| 287 |
196 203 286
|
sylancr |
|
| 288 |
9 287
|
eqbrtrid |
|
| 289 |
288 8
|
breqtrdi |
|
| 290 |
|
0red |
|
| 291 |
31 228 252
|
fsumge0 |
|
| 292 |
290 229 282 291 284
|
lelttrd |
|
| 293 |
|
lemuldiv2 |
|
| 294 |
14 24 282 292 293
|
syl112anc |
|
| 295 |
289 294
|
mpbird |
|
| 296 |
272 283 24 285 295
|
ltletrd |
|
| 297 |
272 24 280 296
|
ltmul1dd |
|
| 298 |
271 297
|
eqbrtrd |
|
| 299 |
223 231 29 264 298
|
lelttrd |
|
| 300 |
45 223 29 224 299
|
lelttrd |
|
| 301 |
45 29 24 300
|
ltsub2dd |
|
| 302 |
30 45 24
|
ltaddsubd |
|
| 303 |
301 302
|
mpbird |
|
| 304 |
20 46 24 221 303
|
lelttrd |
|
| 305 |
|
2fveq3 |
|
| 306 |
305
|
breq1d |
|
| 307 |
306
|
rspcev |
|
| 308 |
16 304 307
|
syl2anc |
|