Metamath Proof Explorer


Theorem ioodvbdlimc1lem2

Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc1lem2.a φA
ioodvbdlimc1lem2.b φB
ioodvbdlimc1lem2.altb φA<B
ioodvbdlimc1lem2.f φF:AB
ioodvbdlimc1lem2.dmdv φdomF=AB
ioodvbdlimc1lem2.dvbd φyxABFxy
ioodvbdlimc1lem2.y Y=supranxABFx<
ioodvbdlimc1lem2.m M=1BA+1
ioodvbdlimc1lem2.s S=jMFA+1j
ioodvbdlimc1lem2.r R=jMA+1j
ioodvbdlimc1lem2.n N=ifMYx2+1Yx2+1M
ioodvbdlimc1lem2.ch χφx+jNSjlim supS<x2zABzA<1j
Assertion ioodvbdlimc1lem2 φlim supSFlimA

Proof

Step Hyp Ref Expression
1 ioodvbdlimc1lem2.a φA
2 ioodvbdlimc1lem2.b φB
3 ioodvbdlimc1lem2.altb φA<B
4 ioodvbdlimc1lem2.f φF:AB
5 ioodvbdlimc1lem2.dmdv φdomF=AB
6 ioodvbdlimc1lem2.dvbd φyxABFxy
7 ioodvbdlimc1lem2.y Y=supranxABFx<
8 ioodvbdlimc1lem2.m M=1BA+1
9 ioodvbdlimc1lem2.s S=jMFA+1j
10 ioodvbdlimc1lem2.r R=jMA+1j
11 ioodvbdlimc1lem2.n N=ifMYx2+1Yx2+1M
12 ioodvbdlimc1lem2.ch χφx+jNSjlim supS<x2zABzA<1j
13 uzssz M
14 zssre
15 13 14 sstri M
16 15 a1i φM
17 2 1 resubcld φBA
18 1 2 posdifd φA<B0<BA
19 3 18 mpbid φ0<BA
20 19 gt0ne0d φBA0
21 17 20 rereccld φ1BA
22 0red φ0
23 17 19 recgt0d φ0<1BA
24 22 21 23 ltled φ01BA
25 flge0nn0 1BA01BA1BA0
26 21 24 25 syl2anc φ1BA0
27 peano2nn0 1BA01BA+10
28 26 27 syl φ1BA+10
29 8 28 eqeltrid φM0
30 29 nn0zd φM
31 eqid M=M
32 31 uzsup MsupM*<=+∞
33 30 32 syl φsupM*<=+∞
34 4 adantr φjMF:AB
35 1 rexrd φA*
36 35 adantr φjMA*
37 2 rexrd φB*
38 37 adantr φjMB*
39 1 adantr φjMA
40 eluzelre jMj
41 40 adantl φjMj
42 0red φjM0
43 0red jM0
44 1red jM1
45 43 44 readdcld jM0+1
46 45 adantl φjM0+1
47 43 ltp1d jM0<0+1
48 47 adantl φjM0<0+1
49 eluzel2 jMM
50 49 zred jMM
51 50 adantl φjMM
52 21 flcld φ1BA
53 52 zred φ1BA
54 1red φ1
55 26 nn0ge0d φ01BA
56 22 53 54 55 leadd1dd φ0+11BA+1
57 56 8 breqtrrdi φ0+1M
58 57 adantr φjM0+1M
59 eluzle jMMj
60 59 adantl φjMMj
61 46 51 41 58 60 letrd φjM0+1j
62 42 46 41 48 61 ltletrd φjM0<j
63 62 gt0ne0d φjMj0
64 41 63 rereccld φjM1j
65 39 64 readdcld φjMA+1j
66 41 62 elrpd φjMj+
67 66 rpreccld φjM1j+
68 39 67 ltaddrpd φjMA<A+1j
69 29 nn0red φM
70 22 54 readdcld φ0+1
71 53 54 readdcld φ1BA+1
72 22 ltp1d φ0<0+1
73 22 70 71 72 56 ltletrd φ0<1BA+1
74 73 8 breqtrrdi φ0<M
75 74 gt0ne0d φM0
76 69 75 rereccld φ1M
77 76 adantr φjM1M
78 39 77 readdcld φjMA+1M
79 2 adantr φjMB
80 69 74 elrpd φM+
81 80 adantr φjMM+
82 1red φjM1
83 0le1 01
84 83 a1i φjM01
85 81 66 82 84 60 lediv2ad φjM1j1M
86 64 77 39 85 leadd2dd φjMA+1jA+1M
87 8 eqcomi 1BA+1=M
88 87 oveq2i 11BA+1=1M
89 88 76 eqeltrid φ11BA+1
90 21 23 elrpd φ1BA+
91 71 73 elrpd φ1BA+1+
92 1rp 1+
93 92 a1i φ1+
94 fllelt 1BA1BA1BA1BA<1BA+1
95 21 94 syl φ1BA1BA1BA<1BA+1
96 95 simprd φ1BA<1BA+1
97 90 91 93 96 ltdiv2dd φ11BA+1<11BA
98 17 recnd φBA
99 98 20 recrecd φ11BA=BA
100 97 99 breqtrd φ11BA+1<BA
101 89 17 1 100 ltadd2dd φA+11BA+1<A+B-A
102 8 oveq2i 1M=11BA+1
103 102 oveq2i A+1M=A+11BA+1
104 103 a1i φA+1M=A+11BA+1
105 1 recnd φA
106 2 recnd φB
107 105 106 pncan3d φA+B-A=B
108 107 eqcomd φB=A+B-A
109 101 104 108 3brtr4d φA+1M<B
110 109 adantr φjMA+1M<B
111 65 78 79 86 110 lelttrd φjMA+1j<B
112 36 38 65 68 111 eliood φjMA+1jAB
113 34 112 ffvelcdmd φjMFA+1j
114 113 9 fmptd φS:M
115 1 2 3 4 5 6 dvbdfbdioo φbxABFxb
116 69 adantr φxABFxbM
117 simpr φjMjM
118 9 fvmpt2 jMFA+1jSj=FA+1j
119 117 113 118 syl2anc φjMSj=FA+1j
120 119 fveq2d φjMSj=FA+1j
121 120 adantlr φxABFxbjMSj=FA+1j
122 simplr φxABFxbjMxABFxb
123 112 adantlr φxABFxbjMA+1jAB
124 2fveq3 x=A+1jFx=FA+1j
125 124 breq1d x=A+1jFxbFA+1jb
126 125 rspccva xABFxbA+1jABFA+1jb
127 122 123 126 syl2anc φxABFxbjMFA+1jb
128 121 127 eqbrtrd φxABFxbjMSjb
129 128 a1d φxABFxbjMMjSjb
130 129 ralrimiva φxABFxbjMMjSjb
131 breq1 k=MkjMj
132 131 imbi1d k=MkjSjbMjSjb
133 132 ralbidv k=MjMkjSjbjMMjSjb
134 133 rspcev MjMMjSjbkjMkjSjb
135 116 130 134 syl2anc φxABFxbkjMkjSjb
136 135 ex φxABFxbkjMkjSjb
137 136 reximdv φbxABFxbbkjMkjSjb
138 115 137 mpd φbkjMkjSjb
139 16 33 114 138 limsupre φlim supS
140 139 recnd φlim supS
141 eluzelre jNj
142 141 adantl φx+jNj
143 0red φx+jN0
144 52 peano2zd φ1BA+1
145 8 144 eqeltrid φM
146 145 adantr φx+M
147 146 zred φx+M
148 147 adantr φx+jNM
149 74 ad2antrr φx+jN0<M
150 ioomidp ABA<BA+B2AB
151 1 2 3 150 syl3anc φA+B2AB
152 ne0i A+B2ABAB
153 151 152 syl φAB
154 ioossre AB
155 154 a1i φAB
156 dvfre F:ABABF:domF
157 4 155 156 syl2anc φF:domF
158 5 feq2d φF:domFF:AB
159 157 158 mpbid φF:AB
160 159 ffvelcdmda φxABFx
161 160 recnd φxABFx
162 161 abscld φxABFx
163 eqid xABFx=xABFx
164 eqid supranxABFx<=supranxABFx<
165 153 162 6 163 164 suprnmpt φsupranxABFx<xABFxsupranxABFx<
166 165 simpld φsupranxABFx<
167 7 166 eqeltrid φY
168 167 adantr φx+Y
169 rpre x+x
170 169 rehalfcld x+x2
171 170 adantl φx+x2
172 169 recnd x+x
173 172 adantl φx+x
174 2cnd φx+2
175 rpne0 x+x0
176 175 adantl φx+x0
177 2ne0 20
178 177 a1i φx+20
179 173 174 176 178 divne0d φx+x20
180 168 171 179 redivcld φx+Yx2
181 180 flcld φx+Yx2
182 181 peano2zd φx+Yx2+1
183 182 146 ifcld φx+ifMYx2+1Yx2+1M
184 11 183 eqeltrid φx+N
185 184 zred φx+N
186 185 adantr φx+jNN
187 182 zred φx+Yx2+1
188 max1 MYx2+1MifMYx2+1Yx2+1M
189 147 187 188 syl2anc φx+MifMYx2+1Yx2+1M
190 189 11 breqtrrdi φx+MN
191 190 adantr φx+jNMN
192 eluzle jNNj
193 192 adantl φx+jNNj
194 148 186 142 191 193 letrd φx+jNMj
195 143 148 142 149 194 ltletrd φx+jN0<j
196 195 gt0ne0d φx+jNj0
197 142 196 rereccld φx+jN1j
198 142 195 recgt0d φx+jN0<1j
199 197 198 elrpd φx+jN1j+
200 199 adantr φx+jNSjlim supS<x21j+
201 12 biimpi χφx+jNSjlim supS<x2zABzA<1j
202 simp-5l φx+jNSjlim supS<x2zABzA<1jφ
203 201 202 syl χφ
204 203 4 syl χF:AB
205 201 simplrd χzAB
206 204 205 ffvelcdmd χFz
207 206 recnd χFz
208 203 114 syl χS:M
209 simp-5r φx+jNSjlim supS<x2zABzA<1jx+
210 201 209 syl χx+
211 eluz2 NMMNMN
212 146 184 190 211 syl3anbrc φx+NM
213 203 210 212 syl2anc χNM
214 uzss NMNM
215 213 214 syl χNM
216 simp-4r φx+jNSjlim supS<x2zABzA<1jjN
217 201 216 syl χjN
218 215 217 sseldd χjM
219 208 218 ffvelcdmd χSj
220 219 recnd χSj
221 203 140 syl χlim supS
222 207 220 221 npncand χFzSj+Sj-lim supS=Fzlim supS
223 222 eqcomd χFzlim supS=FzSj+Sj-lim supS
224 223 fveq2d χFzlim supS=FzSj+Sj-lim supS
225 206 219 resubcld χFzSj
226 203 139 syl χlim supS
227 219 226 resubcld χSjlim supS
228 225 227 readdcld χFzSj+Sj-lim supS
229 228 recnd χFzSj+Sj-lim supS
230 229 abscld χFzSj+Sj-lim supS
231 225 recnd χFzSj
232 231 abscld χFzSj
233 227 recnd χSjlim supS
234 233 abscld χSjlim supS
235 232 234 readdcld χFzSj+Sjlim supS
236 210 rpred χx
237 231 233 abstrid χFzSj+Sj-lim supSFzSj+Sjlim supS
238 236 rehalfcld χx2
239 207 220 abssubd χFzSj=SjFz
240 203 218 119 syl2anc χSj=FA+1j
241 240 fvoveq1d χSjFz=FA+1jFz
242 203 218 113 syl2anc χFA+1j
243 242 206 resubcld χFA+1jFz
244 243 recnd χFA+1jFz
245 244 abscld χFA+1jFz
246 203 167 syl χY
247 203 218 65 syl2anc χA+1j
248 154 205 sselid χz
249 247 248 resubcld χA+1j-z
250 246 249 remulcld χYA+1j-z
251 203 1 syl χA
252 203 2 syl χB
253 203 5 syl χdomF=AB
254 165 simprd φxABFxsupranxABFx<
255 7 breq2i FxYFxsupranxABFx<
256 255 ralbii xABFxYxABFxsupranxABFx<
257 254 256 sylibr φxABFxY
258 203 257 syl χxABFxY
259 2fveq3 w=xFw=Fx
260 259 breq1d w=xFwYFxY
261 260 cbvralvw wABFwYxABFxY
262 258 261 sylibr χwABFwY
263 248 rexrd χz*
264 203 37 syl χB*
265 248 251 resubcld χzA
266 265 recnd χzA
267 266 abscld χzA
268 15 218 sselid χj
269 203 218 63 syl2anc χj0
270 268 269 rereccld χ1j
271 265 leabsd χzAzA
272 201 simprd χzA<1j
273 265 267 270 271 272 lelttrd χzA<1j
274 248 251 270 ltsubadd2d χzA<1jz<A+1j
275 273 274 mpbid χz<A+1j
276 203 218 111 syl2anc χA+1j<B
277 263 264 247 275 276 eliood χA+1jzB
278 251 252 204 253 246 262 205 277 dvbdfbdioolem1 χFA+1jFzYA+1j-zFA+1jFzYBA
279 278 simpld χFA+1jFzYA+1j-z
280 203 218 64 syl2anc χ1j
281 246 280 remulcld χY1j
282 159 151 ffvelcdmd φFA+B2
283 282 recnd φFA+B2
284 283 abscld φFA+B2
285 283 absge0d φ0FA+B2
286 2fveq3 x=A+B2Fx=FA+B2
287 7 eqcomi supranxABFx<=Y
288 287 a1i x=A+B2supranxABFx<=Y
289 286 288 breq12d x=A+B2FxsupranxABFx<FA+B2Y
290 289 rspcva A+B2ABxABFxsupranxABFx<FA+B2Y
291 151 254 290 syl2anc φFA+B2Y
292 22 284 167 285 291 letrd φ0Y
293 203 292 syl χ0Y
294 203 35 syl χA*
295 ioogtlb A*B*zABA<z
296 294 264 205 295 syl3anc χA<z
297 251 248 247 296 ltsub2dd χA+1j-z<A+1j-A
298 203 105 syl χA
299 280 recnd χ1j
300 298 299 pncan2d χA+1j-A=1j
301 297 300 breqtrd χA+1j-z<1j
302 249 270 301 ltled χA+1j-z1j
303 249 270 246 293 302 lemul2ad χYA+1j-zY1j
304 281 adantr χY=0Y1j
305 238 adantr χY=0x2
306 oveq1 Y=0Y1j=01j
307 299 mul02d χ01j=0
308 306 307 sylan9eqr χY=0Y1j=0
309 210 rphalfcld χx2+
310 309 rpgt0d χ0<x2
311 310 adantr χY=00<x2
312 308 311 eqbrtrd χY=0Y1j<x2
313 304 305 312 ltled χY=0Y1jx2
314 246 adantr χ¬Y=0Y
315 293 adantr χ¬Y=00Y
316 neqne ¬Y=0Y0
317 316 adantl χ¬Y=0Y0
318 314 315 317 ne0gt0d χ¬Y=00<Y
319 281 adantr χ0<YY1j
320 15 213 sselid χN
321 0red χ0
322 203 210 147 syl2anc χM
323 203 74 syl χ0<M
324 203 210 190 syl2anc χMN
325 321 322 320 323 324 ltletrd χ0<N
326 325 gt0ne0d χN0
327 320 326 rereccld χ1N
328 246 327 remulcld χY1N
329 328 adantr χ0<YY1N
330 238 adantr χ0<Yx2
331 280 adantr χ0<Y1j
332 327 adantr χ0<Y1N
333 246 adantr χ0<YY
334 293 adantr χ0<Y0Y
335 320 325 elrpd χN+
336 203 218 66 syl2anc χj+
337 1red χ1
338 83 a1i χ01
339 217 192 syl χNj
340 335 336 337 338 339 lediv2ad χ1j1N
341 340 adantr χ0<Y1j1N
342 331 332 333 334 341 lemul2ad χ0<YY1jY1N
343 236 recnd χx
344 2cnd χ2
345 210 rpne0d χx0
346 177 a1i χ20
347 343 344 345 346 divne0d χx20
348 246 238 347 redivcld χYx2
349 348 adantr χ0<YYx2
350 simpr χ0<Y0<Y
351 310 adantr χ0<Y0<x2
352 333 330 350 351 divgt0d χ0<Y0<Yx2
353 349 352 elrpd χ0<YYx2+
354 353 rprecred χ0<Y1Yx2
355 335 adantr χ0<YN+
356 1red χ0<Y1
357 83 a1i χ0<Y01
358 348 flcld χYx2
359 358 peano2zd χYx2+1
360 359 zred χYx2+1
361 203 145 syl χM
362 359 361 ifcld χifMYx2+1Yx2+1M
363 11 362 eqeltrid χN
364 363 zred χN
365 flltp1 Yx2Yx2<Yx2+1
366 348 365 syl χYx2<Yx2+1
367 203 69 syl χM
368 max2 MYx2+1Yx2+1ifMYx2+1Yx2+1M
369 367 360 368 syl2anc χYx2+1ifMYx2+1Yx2+1M
370 369 11 breqtrrdi χYx2+1N
371 348 360 364 366 370 ltletrd χYx2<N
372 348 320 371 ltled χYx2N
373 372 adantr χ0<YYx2N
374 353 355 356 357 373 lediv2ad χ0<Y1N1Yx2
375 332 354 333 334 374 lemul2ad χ0<YY1NY1Yx2
376 333 recnd χ0<YY
377 349 recnd χ0<YYx2
378 352 gt0ne0d χ0<YYx20
379 376 377 378 divrecd χ0<YYYx2=Y1Yx2
380 330 recnd χ0<Yx2
381 350 gt0ne0d χ0<YY0
382 347 adantr χ0<Yx20
383 376 380 381 382 ddcand χ0<YYYx2=x2
384 379 383 eqtr3d χ0<YY1Yx2=x2
385 375 384 breqtrd χ0<YY1Nx2
386 319 329 330 342 385 letrd χ0<YY1jx2
387 318 386 syldan χ¬Y=0Y1jx2
388 313 387 pm2.61dan χY1jx2
389 250 281 238 303 388 letrd χYA+1j-zx2
390 245 250 238 279 389 letrd χFA+1jFzx2
391 241 390 eqbrtrd χSjFzx2
392 239 391 eqbrtrd χFzSjx2
393 simpllr φx+jNSjlim supS<x2zABzA<1jSjlim supS<x2
394 201 393 syl χSjlim supS<x2
395 232 234 238 238 392 394 leltaddd χFzSj+Sjlim supS<x2+x2
396 343 2halvesd χx2+x2=x
397 395 396 breqtrd χFzSj+Sjlim supS<x
398 230 235 236 237 397 lelttrd χFzSj+Sj-lim supS<x
399 224 398 eqbrtrd χFzlim supS<x
400 12 399 sylbir φx+jNSjlim supS<x2zABzA<1jFzlim supS<x
401 400 adantrl φx+jNSjlim supS<x2zABzAzA<1jFzlim supS<x
402 401 ex φx+jNSjlim supS<x2zABzAzA<1jFzlim supS<x
403 402 ralrimiva φx+jNSjlim supS<x2zABzAzA<1jFzlim supS<x
404 brimralrspcev 1j+zABzAzA<1jFzlim supS<xy+zABzAzA<yFzlim supS<x
405 200 403 404 syl2anc φx+jNSjlim supS<x2y+zABzAzA<yFzlim supS<x
406 simpr φx+bNbN
407 406 iftrued φx+bNifbNNb=N
408 uzid NNN
409 184 408 syl φx+NN
410 409 adantr φx+bNNN
411 407 410 eqeltrd φx+bNifbNNbN
412 411 adantlr φx+bbNifbNNbN
413 iffalse ¬bNifbNNb=b
414 413 adantl φx+b¬bNifbNNb=b
415 184 ad2antrr φx+b¬bNN
416 simplr φx+b¬bNb
417 415 zred φx+b¬bNN
418 416 zred φx+b¬bNb
419 simpr φx+b¬bN¬bN
420 417 418 ltnled φx+b¬bNN<b¬bN
421 419 420 mpbird φx+b¬bNN<b
422 417 418 421 ltled φx+b¬bNNb
423 eluz2 bNNbNb
424 415 416 422 423 syl3anbrc φx+b¬bNbN
425 414 424 eqeltrd φx+b¬bNifbNNbN
426 412 425 pm2.61dan φx+bifbNNbN
427 426 adantr φx+bcbScSclim supS<x2ifbNNbN
428 simpr φx+bcbScSclim supS<x2cbScSclim supS<x2
429 simpr φx+bb
430 184 adantr φx+bN
431 430 429 ifcld φx+bifbNNb
432 429 zred φx+bb
433 430 zred φx+bN
434 max1 bNbifbNNb
435 432 433 434 syl2anc φx+bbifbNNb
436 eluz2 ifbNNbbbifbNNbbifbNNb
437 429 431 435 436 syl3anbrc φx+bifbNNbb
438 437 adantr φx+bcbScSclim supS<x2ifbNNbb
439 fveq2 c=ifbNNbSc=SifbNNb
440 439 eleq1d c=ifbNNbScSifbNNb
441 439 fvoveq1d c=ifbNNbSclim supS=SifbNNblim supS
442 441 breq1d c=ifbNNbSclim supS<x2SifbNNblim supS<x2
443 440 442 anbi12d c=ifbNNbScSclim supS<x2SifbNNbSifbNNblim supS<x2
444 443 rspccva cbScSclim supS<x2ifbNNbbSifbNNbSifbNNblim supS<x2
445 428 438 444 syl2anc φx+bcbScSclim supS<x2SifbNNbSifbNNblim supS<x2
446 445 simprd φx+bcbScSclim supS<x2SifbNNblim supS<x2
447 fveq2 j=ifbNNbSj=SifbNNb
448 447 fvoveq1d j=ifbNNbSjlim supS=SifbNNblim supS
449 448 breq1d j=ifbNNbSjlim supS<x2SifbNNblim supS<x2
450 449 rspcev ifbNNbNSifbNNblim supS<x2jNSjlim supS<x2
451 427 446 450 syl2anc φx+bcbScSclim supS<x2jNSjlim supS<x2
452 ax-resscn
453 452 a1i φ
454 4 453 fssd φF:AB
455 dvcn F:ABABdomF=ABF:ABcn
456 453 454 155 5 455 syl31anc φF:ABcn
457 cncfcdm F:ABcnF:ABcnF:AB
458 453 456 457 syl2anc φF:ABcnF:AB
459 4 458 mpbird φF:ABcn
460 112 10 fmptd φR:MAB
461 eqid jMFRj=jMFRj
462 climrel Rel
463 462 a1i φRel
464 fvex MV
465 464 mptex jMAV
466 465 a1i φjMAV
467 eqidd φmMjMA=jMA
468 eqidd φmMj=mA=A
469 simpr φmMmM
470 1 adantr φmMA
471 467 468 469 470 fvmptd φmMjMAm=A
472 31 145 466 105 471 climconst φjMAA
473 464 mptex jMA+1jV
474 10 473 eqeltri RV
475 474 a1i φRV
476 1cnd φ1
477 elnnnn0b MM00<M
478 29 74 477 sylanbrc φM
479 divcnvg 1MjM1j0
480 476 478 479 syl2anc φjM1j0
481 eqidd φiMjMA=jMA
482 eqidd φiMj=iA=A
483 simpr φiMiM
484 1 adantr φiMA
485 481 482 483 484 fvmptd φiMjMAi=A
486 105 adantr φiMA
487 485 486 eqeltrd φiMjMAi
488 eqidd φiMjM1j=jM1j
489 oveq2 j=i1j=1i
490 489 adantl φiMj=i1j=1i
491 15 483 sselid φiMi
492 0red φiM0
493 69 adantr φiMM
494 74 adantr φiM0<M
495 eluzle iMMi
496 495 adantl φiMMi
497 492 493 491 494 496 ltletrd φiM0<i
498 497 gt0ne0d φiMi0
499 491 498 rereccld φiM1i
500 488 490 483 499 fvmptd φiMjM1ji=1i
501 491 recnd φiMi
502 501 498 reccld φiM1i
503 500 502 eqeltrd φiMjM1ji
504 489 oveq2d j=iA+1j=A+1i
505 484 499 readdcld φiMA+1i
506 10 504 483 505 fvmptd3 φiMRi=A+1i
507 485 500 oveq12d φiMjMAi+jM1ji=A+1i
508 506 507 eqtr4d φiMRi=jMAi+jM1ji
509 31 145 472 475 480 487 503 508 climadd φRA+0
510 105 addridd φA+0=A
511 509 510 breqtrd φRA
512 releldm RelRARdom
513 463 511 512 syl2anc φRdom
514 fveq2 l=kl=k
515 fveq2 l=kRl=Rk
516 515 oveq2d l=kRhRl=RhRk
517 516 fveq2d l=kRhRl=RhRk
518 517 breq1d l=kRhRl<xsupranzABFz<+1RhRk<xsupranzABFz<+1
519 514 518 raleqbidv l=khlRhRl<xsupranzABFz<+1hkRhRk<xsupranzABFz<+1
520 519 cbvrabv lM|hlRhRl<xsupranzABFz<+1=kM|hkRhRk<xsupranzABFz<+1
521 fveq2 h=iRh=Ri
522 521 fvoveq1d h=iRhRk=RiRk
523 522 breq1d h=iRhRk<xsupranzABFz<+1RiRk<xsupranzABFz<+1
524 523 cbvralvw hkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1
525 524 rgenw kMhkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1
526 rabbi kMhkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1kM|hkRhRk<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
527 525 526 mpbi kM|hkRhRk<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
528 520 527 eqtri lM|hlRhRl<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
529 528 infeq1i suplM|hlRhRl<xsupranzABFz<+1<=supkM|ikRiRk<xsupranzABFz<+1<
530 1 2 3 459 5 6 30 460 461 513 529 ioodvbdlimc1lem1 φjMFRjlim supjMFRj
531 10 fvmpt2 jMA+1jRj=A+1j
532 117 65 531 syl2anc φjMRj=A+1j
533 532 eqcomd φjMA+1j=Rj
534 533 fveq2d φjMFA+1j=FRj
535 534 mpteq2dva φjMFA+1j=jMFRj
536 9 535 eqtrid φS=jMFRj
537 536 fveq2d φlim supS=lim supjMFRj
538 530 536 537 3brtr4d φSlim supS
539 464 mptex jMFA+1jV
540 9 539 eqeltri SV
541 540 a1i φSV
542 eqidd φcSc=Sc
543 541 542 clim φSlim supSlim supSa+bcbScSclim supS<a
544 538 543 mpbid φlim supSa+bcbScSclim supS<a
545 544 simprd φa+bcbScSclim supS<a
546 545 adantr φx+a+bcbScSclim supS<a
547 simpr φx+x+
548 547 rphalfcld φx+x2+
549 breq2 a=x2Sclim supS<aSclim supS<x2
550 549 anbi2d a=x2ScSclim supS<aScSclim supS<x2
551 550 rexralbidv a=x2bcbScSclim supS<abcbScSclim supS<x2
552 551 rspccva a+bcbScSclim supS<ax2+bcbScSclim supS<x2
553 546 548 552 syl2anc φx+bcbScSclim supS<x2
554 451 553 r19.29a φx+jNSjlim supS<x2
555 405 554 r19.29a φx+y+zABzAzA<yFzlim supS<x
556 555 ralrimiva φx+y+zABzAzA<yFzlim supS<x
557 ioosscn AB
558 557 a1i φAB
559 454 558 105 ellimc3 φlim supSFlimAlim supSx+y+zABzAzA<yFzlim supS<x
560 140 556 559 mpbir2and φlim supSFlimA