Metamath Proof Explorer


Theorem ioodvbdlimc1lem2

Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc1lem2.a φ A
ioodvbdlimc1lem2.b φ B
ioodvbdlimc1lem2.altb φ A < B
ioodvbdlimc1lem2.f φ F : A B
ioodvbdlimc1lem2.dmdv φ dom F = A B
ioodvbdlimc1lem2.dvbd φ y x A B F x y
ioodvbdlimc1lem2.y Y = sup ran x A B F x <
ioodvbdlimc1lem2.m M = 1 B A + 1
ioodvbdlimc1lem2.s S = j M F A + 1 j
ioodvbdlimc1lem2.r R = j M A + 1 j
ioodvbdlimc1lem2.n N = if M Y x 2 + 1 Y x 2 + 1 M
ioodvbdlimc1lem2.ch χ φ x + j N S j lim sup S < x 2 z A B z A < 1 j
Assertion ioodvbdlimc1lem2 φ lim sup S F lim A

Proof

Step Hyp Ref Expression
1 ioodvbdlimc1lem2.a φ A
2 ioodvbdlimc1lem2.b φ B
3 ioodvbdlimc1lem2.altb φ A < B
4 ioodvbdlimc1lem2.f φ F : A B
5 ioodvbdlimc1lem2.dmdv φ dom F = A B
6 ioodvbdlimc1lem2.dvbd φ y x A B F x y
7 ioodvbdlimc1lem2.y Y = sup ran x A B F x <
8 ioodvbdlimc1lem2.m M = 1 B A + 1
9 ioodvbdlimc1lem2.s S = j M F A + 1 j
10 ioodvbdlimc1lem2.r R = j M A + 1 j
11 ioodvbdlimc1lem2.n N = if M Y x 2 + 1 Y x 2 + 1 M
12 ioodvbdlimc1lem2.ch χ φ x + j N S j lim sup S < x 2 z A B z A < 1 j
13 uzssz M
14 zssre
15 13 14 sstri M
16 15 a1i φ M
17 2 1 resubcld φ B A
18 1 2 posdifd φ A < B 0 < B A
19 3 18 mpbid φ 0 < B A
20 19 gt0ne0d φ B A 0
21 17 20 rereccld φ 1 B A
22 0red φ 0
23 17 19 recgt0d φ 0 < 1 B A
24 22 21 23 ltled φ 0 1 B A
25 flge0nn0 1 B A 0 1 B A 1 B A 0
26 21 24 25 syl2anc φ 1 B A 0
27 peano2nn0 1 B A 0 1 B A + 1 0
28 26 27 syl φ 1 B A + 1 0
29 8 28 eqeltrid φ M 0
30 29 nn0zd φ M
31 eqid M = M
32 31 uzsup M sup M * < = +∞
33 30 32 syl φ sup M * < = +∞
34 4 adantr φ j M F : A B
35 1 rexrd φ A *
36 35 adantr φ j M A *
37 2 rexrd φ B *
38 37 adantr φ j M B *
39 1 adantr φ j M A
40 eluzelre j M j
41 40 adantl φ j M j
42 0red φ j M 0
43 0red j M 0
44 1red j M 1
45 43 44 readdcld j M 0 + 1
46 45 adantl φ j M 0 + 1
47 43 ltp1d j M 0 < 0 + 1
48 47 adantl φ j M 0 < 0 + 1
49 eluzel2 j M M
50 49 zred j M M
51 50 adantl φ j M M
52 21 flcld φ 1 B A
53 52 zred φ 1 B A
54 1red φ 1
55 26 nn0ge0d φ 0 1 B A
56 22 53 54 55 leadd1dd φ 0 + 1 1 B A + 1
57 56 8 breqtrrdi φ 0 + 1 M
58 57 adantr φ j M 0 + 1 M
59 eluzle j M M j
60 59 adantl φ j M M j
61 46 51 41 58 60 letrd φ j M 0 + 1 j
62 42 46 41 48 61 ltletrd φ j M 0 < j
63 62 gt0ne0d φ j M j 0
64 41 63 rereccld φ j M 1 j
65 39 64 readdcld φ j M A + 1 j
66 41 62 elrpd φ j M j +
67 66 rpreccld φ j M 1 j +
68 39 67 ltaddrpd φ j M A < A + 1 j
69 29 nn0red φ M
70 22 54 readdcld φ 0 + 1
71 53 54 readdcld φ 1 B A + 1
72 22 ltp1d φ 0 < 0 + 1
73 22 70 71 72 56 ltletrd φ 0 < 1 B A + 1
74 73 8 breqtrrdi φ 0 < M
75 74 gt0ne0d φ M 0
76 69 75 rereccld φ 1 M
77 76 adantr φ j M 1 M
78 39 77 readdcld φ j M A + 1 M
79 2 adantr φ j M B
80 69 74 elrpd φ M +
81 80 adantr φ j M M +
82 1red φ j M 1
83 0le1 0 1
84 83 a1i φ j M 0 1
85 81 66 82 84 60 lediv2ad φ j M 1 j 1 M
86 64 77 39 85 leadd2dd φ j M A + 1 j A + 1 M
87 8 eqcomi 1 B A + 1 = M
88 87 oveq2i 1 1 B A + 1 = 1 M
89 88 76 eqeltrid φ 1 1 B A + 1
90 21 23 elrpd φ 1 B A +
91 71 73 elrpd φ 1 B A + 1 +
92 1rp 1 +
93 92 a1i φ 1 +
94 fllelt 1 B A 1 B A 1 B A 1 B A < 1 B A + 1
95 21 94 syl φ 1 B A 1 B A 1 B A < 1 B A + 1
96 95 simprd φ 1 B A < 1 B A + 1
97 90 91 93 96 ltdiv2dd φ 1 1 B A + 1 < 1 1 B A
98 17 recnd φ B A
99 98 20 recrecd φ 1 1 B A = B A
100 97 99 breqtrd φ 1 1 B A + 1 < B A
101 89 17 1 100 ltadd2dd φ A + 1 1 B A + 1 < A + B - A
102 8 oveq2i 1 M = 1 1 B A + 1
103 102 oveq2i A + 1 M = A + 1 1 B A + 1
104 103 a1i φ A + 1 M = A + 1 1 B A + 1
105 1 recnd φ A
106 2 recnd φ B
107 105 106 pncan3d φ A + B - A = B
108 107 eqcomd φ B = A + B - A
109 101 104 108 3brtr4d φ A + 1 M < B
110 109 adantr φ j M A + 1 M < B
111 65 78 79 86 110 lelttrd φ j M A + 1 j < B
112 36 38 65 68 111 eliood φ j M A + 1 j A B
113 34 112 ffvelrnd φ j M F A + 1 j
114 113 9 fmptd φ S : M
115 1 2 3 4 5 6 dvbdfbdioo φ b x A B F x b
116 69 adantr φ x A B F x b M
117 simpr φ j M j M
118 9 fvmpt2 j M F A + 1 j S j = F A + 1 j
119 117 113 118 syl2anc φ j M S j = F A + 1 j
120 119 fveq2d φ j M S j = F A + 1 j
121 120 adantlr φ x A B F x b j M S j = F A + 1 j
122 simplr φ x A B F x b j M x A B F x b
123 112 adantlr φ x A B F x b j M A + 1 j A B
124 2fveq3 x = A + 1 j F x = F A + 1 j
125 124 breq1d x = A + 1 j F x b F A + 1 j b
126 125 rspccva x A B F x b A + 1 j A B F A + 1 j b
127 122 123 126 syl2anc φ x A B F x b j M F A + 1 j b
128 121 127 eqbrtrd φ x A B F x b j M S j b
129 128 a1d φ x A B F x b j M M j S j b
130 129 ralrimiva φ x A B F x b j M M j S j b
131 breq1 k = M k j M j
132 131 imbi1d k = M k j S j b M j S j b
133 132 ralbidv k = M j M k j S j b j M M j S j b
134 133 rspcev M j M M j S j b k j M k j S j b
135 116 130 134 syl2anc φ x A B F x b k j M k j S j b
136 135 ex φ x A B F x b k j M k j S j b
137 136 reximdv φ b x A B F x b b k j M k j S j b
138 115 137 mpd φ b k j M k j S j b
139 16 33 114 138 limsupre φ lim sup S
140 139 recnd φ lim sup S
141 eluzelre j N j
142 141 adantl φ x + j N j
143 0red φ x + j N 0
144 52 peano2zd φ 1 B A + 1
145 8 144 eqeltrid φ M
146 145 adantr φ x + M
147 146 zred φ x + M
148 147 adantr φ x + j N M
149 74 ad2antrr φ x + j N 0 < M
150 ioomidp A B A < B A + B 2 A B
151 1 2 3 150 syl3anc φ A + B 2 A B
152 ne0i A + B 2 A B A B
153 151 152 syl φ A B
154 ioossre A B
155 154 a1i φ A B
156 dvfre F : A B A B F : dom F
157 4 155 156 syl2anc φ F : dom F
158 5 feq2d φ F : dom F F : A B
159 157 158 mpbid φ F : A B
160 159 ffvelrnda φ x A B F x
161 160 recnd φ x A B F x
162 161 abscld φ x A B F x
163 eqid x A B F x = x A B F x
164 eqid sup ran x A B F x < = sup ran x A B F x <
165 153 162 6 163 164 suprnmpt φ sup ran x A B F x < x A B F x sup ran x A B F x <
166 165 simpld φ sup ran x A B F x <
167 7 166 eqeltrid φ Y
168 167 adantr φ x + Y
169 rpre x + x
170 169 rehalfcld x + x 2
171 170 adantl φ x + x 2
172 169 recnd x + x
173 172 adantl φ x + x
174 2cnd φ x + 2
175 rpne0 x + x 0
176 175 adantl φ x + x 0
177 2ne0 2 0
178 177 a1i φ x + 2 0
179 173 174 176 178 divne0d φ x + x 2 0
180 168 171 179 redivcld φ x + Y x 2
181 180 flcld φ x + Y x 2
182 181 peano2zd φ x + Y x 2 + 1
183 182 146 ifcld φ x + if M Y x 2 + 1 Y x 2 + 1 M
184 11 183 eqeltrid φ x + N
185 184 zred φ x + N
186 185 adantr φ x + j N N
187 182 zred φ x + Y x 2 + 1
188 max1 M Y x 2 + 1 M if M Y x 2 + 1 Y x 2 + 1 M
189 147 187 188 syl2anc φ x + M if M Y x 2 + 1 Y x 2 + 1 M
190 189 11 breqtrrdi φ x + M N
191 190 adantr φ x + j N M N
192 eluzle j N N j
193 192 adantl φ x + j N N j
194 148 186 142 191 193 letrd φ x + j N M j
195 143 148 142 149 194 ltletrd φ x + j N 0 < j
196 195 gt0ne0d φ x + j N j 0
197 142 196 rereccld φ x + j N 1 j
198 142 195 recgt0d φ x + j N 0 < 1 j
199 197 198 elrpd φ x + j N 1 j +
200 199 adantr φ x + j N S j lim sup S < x 2 1 j +
201 12 biimpi χ φ x + j N S j lim sup S < x 2 z A B z A < 1 j
202 simp-5l φ x + j N S j lim sup S < x 2 z A B z A < 1 j φ
203 201 202 syl χ φ
204 203 4 syl χ F : A B
205 201 simplrd χ z A B
206 204 205 ffvelrnd χ F z
207 206 recnd χ F z
208 203 114 syl χ S : M
209 simp-5r φ x + j N S j lim sup S < x 2 z A B z A < 1 j x +
210 201 209 syl χ x +
211 eluz2 N M M N M N
212 146 184 190 211 syl3anbrc φ x + N M
213 203 210 212 syl2anc χ N M
214 uzss N M N M
215 213 214 syl χ N M
216 simp-4r φ x + j N S j lim sup S < x 2 z A B z A < 1 j j N
217 201 216 syl χ j N
218 215 217 sseldd χ j M
219 208 218 ffvelrnd χ S j
220 219 recnd χ S j
221 203 140 syl χ lim sup S
222 207 220 221 npncand χ F z S j + S j - lim sup S = F z lim sup S
223 222 eqcomd χ F z lim sup S = F z S j + S j - lim sup S
224 223 fveq2d χ F z lim sup S = F z S j + S j - lim sup S
225 206 219 resubcld χ F z S j
226 203 139 syl χ lim sup S
227 219 226 resubcld χ S j lim sup S
228 225 227 readdcld χ F z S j + S j - lim sup S
229 228 recnd χ F z S j + S j - lim sup S
230 229 abscld χ F z S j + S j - lim sup S
231 225 recnd χ F z S j
232 231 abscld χ F z S j
233 227 recnd χ S j lim sup S
234 233 abscld χ S j lim sup S
235 232 234 readdcld χ F z S j + S j lim sup S
236 210 rpred χ x
237 231 233 abstrid χ F z S j + S j - lim sup S F z S j + S j lim sup S
238 236 rehalfcld χ x 2
239 207 220 abssubd χ F z S j = S j F z
240 203 218 119 syl2anc χ S j = F A + 1 j
241 240 fvoveq1d χ S j F z = F A + 1 j F z
242 203 218 113 syl2anc χ F A + 1 j
243 242 206 resubcld χ F A + 1 j F z
244 243 recnd χ F A + 1 j F z
245 244 abscld χ F A + 1 j F z
246 203 167 syl χ Y
247 203 218 65 syl2anc χ A + 1 j
248 154 205 sseldi χ z
249 247 248 resubcld χ A + 1 j - z
250 246 249 remulcld χ Y A + 1 j - z
251 203 1 syl χ A
252 203 2 syl χ B
253 203 5 syl χ dom F = A B
254 165 simprd φ x A B F x sup ran x A B F x <
255 7 breq2i F x Y F x sup ran x A B F x <
256 255 ralbii x A B F x Y x A B F x sup ran x A B F x <
257 254 256 sylibr φ x A B F x Y
258 203 257 syl χ x A B F x Y
259 2fveq3 w = x F w = F x
260 259 breq1d w = x F w Y F x Y
261 260 cbvralvw w A B F w Y x A B F x Y
262 258 261 sylibr χ w A B F w Y
263 248 rexrd χ z *
264 203 37 syl χ B *
265 248 251 resubcld χ z A
266 265 recnd χ z A
267 266 abscld χ z A
268 15 218 sseldi χ j
269 203 218 63 syl2anc χ j 0
270 268 269 rereccld χ 1 j
271 265 leabsd χ z A z A
272 201 simprd χ z A < 1 j
273 265 267 270 271 272 lelttrd χ z A < 1 j
274 248 251 270 ltsubadd2d χ z A < 1 j z < A + 1 j
275 273 274 mpbid χ z < A + 1 j
276 203 218 111 syl2anc χ A + 1 j < B
277 263 264 247 275 276 eliood χ A + 1 j z B
278 251 252 204 253 246 262 205 277 dvbdfbdioolem1 χ F A + 1 j F z Y A + 1 j - z F A + 1 j F z Y B A
279 278 simpld χ F A + 1 j F z Y A + 1 j - z
280 203 218 64 syl2anc χ 1 j
281 246 280 remulcld χ Y 1 j
282 159 151 ffvelrnd φ F A + B 2
283 282 recnd φ F A + B 2
284 283 abscld φ F A + B 2
285 283 absge0d φ 0 F A + B 2
286 2fveq3 x = A + B 2 F x = F A + B 2
287 7 eqcomi sup ran x A B F x < = Y
288 287 a1i x = A + B 2 sup ran x A B F x < = Y
289 286 288 breq12d x = A + B 2 F x sup ran x A B F x < F A + B 2 Y
290 289 rspcva A + B 2 A B x A B F x sup ran x A B F x < F A + B 2 Y
291 151 254 290 syl2anc φ F A + B 2 Y
292 22 284 167 285 291 letrd φ 0 Y
293 203 292 syl χ 0 Y
294 203 35 syl χ A *
295 ioogtlb A * B * z A B A < z
296 294 264 205 295 syl3anc χ A < z
297 251 248 247 296 ltsub2dd χ A + 1 j - z < A + 1 j - A
298 203 105 syl χ A
299 280 recnd χ 1 j
300 298 299 pncan2d χ A + 1 j - A = 1 j
301 297 300 breqtrd χ A + 1 j - z < 1 j
302 249 270 301 ltled χ A + 1 j - z 1 j
303 249 270 246 293 302 lemul2ad χ Y A + 1 j - z Y 1 j
304 281 adantr χ Y = 0 Y 1 j
305 238 adantr χ Y = 0 x 2
306 oveq1 Y = 0 Y 1 j = 0 1 j
307 299 mul02d χ 0 1 j = 0
308 306 307 sylan9eqr χ Y = 0 Y 1 j = 0
309 210 rphalfcld χ x 2 +
310 309 rpgt0d χ 0 < x 2
311 310 adantr χ Y = 0 0 < x 2
312 308 311 eqbrtrd χ Y = 0 Y 1 j < x 2
313 304 305 312 ltled χ Y = 0 Y 1 j x 2
314 246 adantr χ ¬ Y = 0 Y
315 293 adantr χ ¬ Y = 0 0 Y
316 neqne ¬ Y = 0 Y 0
317 316 adantl χ ¬ Y = 0 Y 0
318 314 315 317 ne0gt0d χ ¬ Y = 0 0 < Y
319 281 adantr χ 0 < Y Y 1 j
320 15 213 sseldi χ N
321 0red χ 0
322 203 210 147 syl2anc χ M
323 203 74 syl χ 0 < M
324 203 210 190 syl2anc χ M N
325 321 322 320 323 324 ltletrd χ 0 < N
326 325 gt0ne0d χ N 0
327 320 326 rereccld χ 1 N
328 246 327 remulcld χ Y 1 N
329 328 adantr χ 0 < Y Y 1 N
330 238 adantr χ 0 < Y x 2
331 280 adantr χ 0 < Y 1 j
332 327 adantr χ 0 < Y 1 N
333 246 adantr χ 0 < Y Y
334 293 adantr χ 0 < Y 0 Y
335 320 325 elrpd χ N +
336 203 218 66 syl2anc χ j +
337 1red χ 1
338 83 a1i χ 0 1
339 217 192 syl χ N j
340 335 336 337 338 339 lediv2ad χ 1 j 1 N
341 340 adantr χ 0 < Y 1 j 1 N
342 331 332 333 334 341 lemul2ad χ 0 < Y Y 1 j Y 1 N
343 236 recnd χ x
344 2cnd χ 2
345 210 rpne0d χ x 0
346 177 a1i χ 2 0
347 343 344 345 346 divne0d χ x 2 0
348 246 238 347 redivcld χ Y x 2
349 348 adantr χ 0 < Y Y x 2
350 simpr χ 0 < Y 0 < Y
351 310 adantr χ 0 < Y 0 < x 2
352 333 330 350 351 divgt0d χ 0 < Y 0 < Y x 2
353 349 352 elrpd χ 0 < Y Y x 2 +
354 353 rprecred χ 0 < Y 1 Y x 2
355 335 adantr χ 0 < Y N +
356 1red χ 0 < Y 1
357 83 a1i χ 0 < Y 0 1
358 348 flcld χ Y x 2
359 358 peano2zd χ Y x 2 + 1
360 359 zred χ Y x 2 + 1
361 203 145 syl χ M
362 359 361 ifcld χ if M Y x 2 + 1 Y x 2 + 1 M
363 11 362 eqeltrid χ N
364 363 zred χ N
365 flltp1 Y x 2 Y x 2 < Y x 2 + 1
366 348 365 syl χ Y x 2 < Y x 2 + 1
367 203 69 syl χ M
368 max2 M Y x 2 + 1 Y x 2 + 1 if M Y x 2 + 1 Y x 2 + 1 M
369 367 360 368 syl2anc χ Y x 2 + 1 if M Y x 2 + 1 Y x 2 + 1 M
370 369 11 breqtrrdi χ Y x 2 + 1 N
371 348 360 364 366 370 ltletrd χ Y x 2 < N
372 348 320 371 ltled χ Y x 2 N
373 372 adantr χ 0 < Y Y x 2 N
374 353 355 356 357 373 lediv2ad χ 0 < Y 1 N 1 Y x 2
375 332 354 333 334 374 lemul2ad χ 0 < Y Y 1 N Y 1 Y x 2
376 333 recnd χ 0 < Y Y
377 349 recnd χ 0 < Y Y x 2
378 352 gt0ne0d χ 0 < Y Y x 2 0
379 376 377 378 divrecd χ 0 < Y Y Y x 2 = Y 1 Y x 2
380 330 recnd χ 0 < Y x 2
381 350 gt0ne0d χ 0 < Y Y 0
382 347 adantr χ 0 < Y x 2 0
383 376 380 381 382 ddcand χ 0 < Y Y Y x 2 = x 2
384 379 383 eqtr3d χ 0 < Y Y 1 Y x 2 = x 2
385 375 384 breqtrd χ 0 < Y Y 1 N x 2
386 319 329 330 342 385 letrd χ 0 < Y Y 1 j x 2
387 318 386 syldan χ ¬ Y = 0 Y 1 j x 2
388 313 387 pm2.61dan χ Y 1 j x 2
389 250 281 238 303 388 letrd χ Y A + 1 j - z x 2
390 245 250 238 279 389 letrd χ F A + 1 j F z x 2
391 241 390 eqbrtrd χ S j F z x 2
392 239 391 eqbrtrd χ F z S j x 2
393 simpllr φ x + j N S j lim sup S < x 2 z A B z A < 1 j S j lim sup S < x 2
394 201 393 syl χ S j lim sup S < x 2
395 232 234 238 238 392 394 leltaddd χ F z S j + S j lim sup S < x 2 + x 2
396 343 2halvesd χ x 2 + x 2 = x
397 395 396 breqtrd χ F z S j + S j lim sup S < x
398 230 235 236 237 397 lelttrd χ F z S j + S j - lim sup S < x
399 224 398 eqbrtrd χ F z lim sup S < x
400 12 399 sylbir φ x + j N S j lim sup S < x 2 z A B z A < 1 j F z lim sup S < x
401 400 adantrl φ x + j N S j lim sup S < x 2 z A B z A z A < 1 j F z lim sup S < x
402 401 ex φ x + j N S j lim sup S < x 2 z A B z A z A < 1 j F z lim sup S < x
403 402 ralrimiva φ x + j N S j lim sup S < x 2 z A B z A z A < 1 j F z lim sup S < x
404 brimralrspcev 1 j + z A B z A z A < 1 j F z lim sup S < x y + z A B z A z A < y F z lim sup S < x
405 200 403 404 syl2anc φ x + j N S j lim sup S < x 2 y + z A B z A z A < y F z lim sup S < x
406 simpr φ x + b N b N
407 406 iftrued φ x + b N if b N N b = N
408 uzid N N N
409 184 408 syl φ x + N N
410 409 adantr φ x + b N N N
411 407 410 eqeltrd φ x + b N if b N N b N
412 411 adantlr φ x + b b N if b N N b N
413 iffalse ¬ b N if b N N b = b
414 413 adantl φ x + b ¬ b N if b N N b = b
415 184 ad2antrr φ x + b ¬ b N N
416 simplr φ x + b ¬ b N b
417 415 zred φ x + b ¬ b N N
418 416 zred φ x + b ¬ b N b
419 simpr φ x + b ¬ b N ¬ b N
420 417 418 ltnled φ x + b ¬ b N N < b ¬ b N
421 419 420 mpbird φ x + b ¬ b N N < b
422 417 418 421 ltled φ x + b ¬ b N N b
423 eluz2 b N N b N b
424 415 416 422 423 syl3anbrc φ x + b ¬ b N b N
425 414 424 eqeltrd φ x + b ¬ b N if b N N b N
426 412 425 pm2.61dan φ x + b if b N N b N
427 426 adantr φ x + b c b S c S c lim sup S < x 2 if b N N b N
428 simpr φ x + b c b S c S c lim sup S < x 2 c b S c S c lim sup S < x 2
429 simpr φ x + b b
430 184 adantr φ x + b N
431 430 429 ifcld φ x + b if b N N b
432 429 zred φ x + b b
433 430 zred φ x + b N
434 max1 b N b if b N N b
435 432 433 434 syl2anc φ x + b b if b N N b
436 eluz2 if b N N b b b if b N N b b if b N N b
437 429 431 435 436 syl3anbrc φ x + b if b N N b b
438 437 adantr φ x + b c b S c S c lim sup S < x 2 if b N N b b
439 fveq2 c = if b N N b S c = S if b N N b
440 439 eleq1d c = if b N N b S c S if b N N b
441 439 fvoveq1d c = if b N N b S c lim sup S = S if b N N b lim sup S
442 441 breq1d c = if b N N b S c lim sup S < x 2 S if b N N b lim sup S < x 2
443 440 442 anbi12d c = if b N N b S c S c lim sup S < x 2 S if b N N b S if b N N b lim sup S < x 2
444 443 rspccva c b S c S c lim sup S < x 2 if b N N b b S if b N N b S if b N N b lim sup S < x 2
445 428 438 444 syl2anc φ x + b c b S c S c lim sup S < x 2 S if b N N b S if b N N b lim sup S < x 2
446 445 simprd φ x + b c b S c S c lim sup S < x 2 S if b N N b lim sup S < x 2
447 fveq2 j = if b N N b S j = S if b N N b
448 447 fvoveq1d j = if b N N b S j lim sup S = S if b N N b lim sup S
449 448 breq1d j = if b N N b S j lim sup S < x 2 S if b N N b lim sup S < x 2
450 449 rspcev if b N N b N S if b N N b lim sup S < x 2 j N S j lim sup S < x 2
451 427 446 450 syl2anc φ x + b c b S c S c lim sup S < x 2 j N S j lim sup S < x 2
452 ax-resscn
453 452 a1i φ
454 4 453 fssd φ F : A B
455 dvcn F : A B A B dom F = A B F : A B cn
456 453 454 155 5 455 syl31anc φ F : A B cn
457 cncffvrn F : A B cn F : A B cn F : A B
458 453 456 457 syl2anc φ F : A B cn F : A B
459 4 458 mpbird φ F : A B cn
460 112 10 fmptd φ R : M A B
461 eqid j M F R j = j M F R j
462 climrel Rel
463 462 a1i φ Rel
464 fvex M V
465 464 mptex j M A V
466 465 a1i φ j M A V
467 eqidd φ m M j M A = j M A
468 eqidd φ m M j = m A = A
469 simpr φ m M m M
470 1 adantr φ m M A
471 467 468 469 470 fvmptd φ m M j M A m = A
472 31 145 466 105 471 climconst φ j M A A
473 464 mptex j M A + 1 j V
474 10 473 eqeltri R V
475 474 a1i φ R V
476 1cnd φ 1
477 elnnnn0b M M 0 0 < M
478 29 74 477 sylanbrc φ M
479 divcnvg 1 M j M 1 j 0
480 476 478 479 syl2anc φ j M 1 j 0
481 eqidd φ i M j M A = j M A
482 eqidd φ i M j = i A = A
483 simpr φ i M i M
484 1 adantr φ i M A
485 481 482 483 484 fvmptd φ i M j M A i = A
486 105 adantr φ i M A
487 485 486 eqeltrd φ i M j M A i
488 eqidd φ i M j M 1 j = j M 1 j
489 oveq2 j = i 1 j = 1 i
490 489 adantl φ i M j = i 1 j = 1 i
491 15 483 sseldi φ i M i
492 0red φ i M 0
493 69 adantr φ i M M
494 74 adantr φ i M 0 < M
495 eluzle i M M i
496 495 adantl φ i M M i
497 492 493 491 494 496 ltletrd φ i M 0 < i
498 497 gt0ne0d φ i M i 0
499 491 498 rereccld φ i M 1 i
500 488 490 483 499 fvmptd φ i M j M 1 j i = 1 i
501 491 recnd φ i M i
502 501 498 reccld φ i M 1 i
503 500 502 eqeltrd φ i M j M 1 j i
504 489 oveq2d j = i A + 1 j = A + 1 i
505 484 499 readdcld φ i M A + 1 i
506 10 504 483 505 fvmptd3 φ i M R i = A + 1 i
507 485 500 oveq12d φ i M j M A i + j M 1 j i = A + 1 i
508 506 507 eqtr4d φ i M R i = j M A i + j M 1 j i
509 31 145 472 475 480 487 503 508 climadd φ R A + 0
510 105 addid1d φ A + 0 = A
511 509 510 breqtrd φ R A
512 releldm Rel R A R dom
513 463 511 512 syl2anc φ R dom
514 fveq2 l = k l = k
515 fveq2 l = k R l = R k
516 515 oveq2d l = k R h R l = R h R k
517 516 fveq2d l = k R h R l = R h R k
518 517 breq1d l = k R h R l < x sup ran z A B F z < + 1 R h R k < x sup ran z A B F z < + 1
519 514 518 raleqbidv l = k h l R h R l < x sup ran z A B F z < + 1 h k R h R k < x sup ran z A B F z < + 1
520 519 cbvrabv l M | h l R h R l < x sup ran z A B F z < + 1 = k M | h k R h R k < x sup ran z A B F z < + 1
521 fveq2 h = i R h = R i
522 521 fvoveq1d h = i R h R k = R i R k
523 522 breq1d h = i R h R k < x sup ran z A B F z < + 1 R i R k < x sup ran z A B F z < + 1
524 523 cbvralvw h k R h R k < x sup ran z A B F z < + 1 i k R i R k < x sup ran z A B F z < + 1
525 524 rgenw k M h k R h R k < x sup ran z A B F z < + 1 i k R i R k < x sup ran z A B F z < + 1
526 rabbi k M h k R h R k < x sup ran z A B F z < + 1 i k R i R k < x sup ran z A B F z < + 1 k M | h k R h R k < x sup ran z A B F z < + 1 = k M | i k R i R k < x sup ran z A B F z < + 1
527 525 526 mpbi k M | h k R h R k < x sup ran z A B F z < + 1 = k M | i k R i R k < x sup ran z A B F z < + 1
528 520 527 eqtri l M | h l R h R l < x sup ran z A B F z < + 1 = k M | i k R i R k < x sup ran z A B F z < + 1
529 528 infeq1i sup l M | h l R h R l < x sup ran z A B F z < + 1 < = sup k M | i k R i R k < x sup ran z A B F z < + 1 <
530 1 2 3 459 5 6 30 460 461 513 529 ioodvbdlimc1lem1 φ j M F R j lim sup j M F R j
531 10 fvmpt2 j M A + 1 j R j = A + 1 j
532 117 65 531 syl2anc φ j M R j = A + 1 j
533 532 eqcomd φ j M A + 1 j = R j
534 533 fveq2d φ j M F A + 1 j = F R j
535 534 mpteq2dva φ j M F A + 1 j = j M F R j
536 9 535 syl5eq φ S = j M F R j
537 536 fveq2d φ lim sup S = lim sup j M F R j
538 530 536 537 3brtr4d φ S lim sup S
539 464 mptex j M F A + 1 j V
540 9 539 eqeltri S V
541 540 a1i φ S V
542 eqidd φ c S c = S c
543 541 542 clim φ S lim sup S lim sup S a + b c b S c S c lim sup S < a
544 538 543 mpbid φ lim sup S a + b c b S c S c lim sup S < a
545 544 simprd φ a + b c b S c S c lim sup S < a
546 545 adantr φ x + a + b c b S c S c lim sup S < a
547 simpr φ x + x +
548 547 rphalfcld φ x + x 2 +
549 breq2 a = x 2 S c lim sup S < a S c lim sup S < x 2
550 549 anbi2d a = x 2 S c S c lim sup S < a S c S c lim sup S < x 2
551 550 rexralbidv a = x 2 b c b S c S c lim sup S < a b c b S c S c lim sup S < x 2
552 551 rspccva a + b c b S c S c lim sup S < a x 2 + b c b S c S c lim sup S < x 2
553 546 548 552 syl2anc φ x + b c b S c S c lim sup S < x 2
554 451 553 r19.29a φ x + j N S j lim sup S < x 2
555 405 554 r19.29a φ x + y + z A B z A z A < y F z lim sup S < x
556 555 ralrimiva φ x + y + z A B z A z A < y F z lim sup S < x
557 ioosscn A B
558 557 a1i φ A B
559 454 558 105 ellimc3 φ lim sup S F lim A lim sup S x + y + z A B z A z A < y F z lim sup S < x
560 140 556 559 mpbir2and φ lim sup S F lim A