Metamath Proof Explorer


Theorem stirlinglem5

Description: If T is between 0 and 1 , then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem5.1 D=j1j1Tjj
stirlinglem5.2 E=jTjj
stirlinglem5.3 F=j1j1Tjj+Tjj
stirlinglem5.4 H=j0212j+1T2j+1
stirlinglem5.5 G=j02j+1
stirlinglem5.6 φT+
stirlinglem5.7 φT<1
Assertion stirlinglem5 φseq0+Hlog1+T1T

Proof

Step Hyp Ref Expression
1 stirlinglem5.1 D=j1j1Tjj
2 stirlinglem5.2 E=jTjj
3 stirlinglem5.3 F=j1j1Tjj+Tjj
4 stirlinglem5.4 H=j0212j+1T2j+1
5 stirlinglem5.5 G=j02j+1
6 stirlinglem5.6 φT+
7 stirlinglem5.7 φT<1
8 nnuz =1
9 1zzd φ1
10 1 a1i φD=j1j1Tjj
11 1cnd φj1
12 11 negcld φj1
13 nnm1nn0 jj10
14 13 adantl φjj10
15 12 14 expcld φj1j1
16 nncn jj
17 16 adantl φjj
18 6 rpred φT
19 18 recnd φT
20 19 adantr φjT
21 nnnn0 jj0
22 21 adantl φjj0
23 20 22 expcld φjTj
24 nnne0 jj0
25 24 adantl φjj0
26 15 17 23 25 div32d φj1j1jTj=1j1Tjj
27 11 20 pncan2d φj1+T-1=T
28 27 eqcomd φjT=1+T-1
29 28 oveq1d φjTj=1+T-1j
30 29 oveq2d φj1j1jTj=1j1j1+T-1j
31 26 30 eqtr3d φj1j1Tjj=1j1j1+T-1j
32 31 mpteq2dva φj1j1Tjj=j1j1j1+T-1j
33 10 32 eqtrd φD=j1j1j1+T-1j
34 33 seqeq3d φseq1+D=seq1+j1j1j1+T-1j
35 1cnd φ1
36 35 19 addcld φ1+T
37 eqid abs=abs
38 37 cnmetdval 11+T1abs1+T=11+T
39 35 36 38 syl2anc φ1abs1+T=11+T
40 1m1e0 11=0
41 40 a1i φ11=0
42 41 oveq1d φ1-1-T=0T
43 35 35 19 subsub4d φ1-1-T=11+T
44 df-neg T=0T
45 44 eqcomi 0T=T
46 45 a1i φ0T=T
47 42 43 46 3eqtr3d φ11+T=T
48 47 fveq2d φ11+T=T
49 19 absnegd φT=T
50 49 7 eqbrtrd φT<1
51 48 50 eqbrtrd φ11+T<1
52 39 51 eqbrtrd φ1abs1+T<1
53 cnxmet abs∞Met
54 53 a1i φabs∞Met
55 1red φ1
56 55 rexrd φ1*
57 elbl2 abs∞Met1*11+T1+T1ballabs11abs1+T<1
58 54 56 35 36 57 syl22anc φ1+T1ballabs11abs1+T<1
59 52 58 mpbird φ1+T1ballabs1
60 eqid 1ballabs1=1ballabs1
61 60 logtayl2 1+T1ballabs1seq1+j1j1j1+T-1jlog1+T
62 59 61 syl φseq1+j1j1j1+T-1jlog1+T
63 34 62 eqbrtrd φseq1+Dlog1+T
64 seqex seq1+FV
65 64 a1i φseq1+FV
66 2 a1i φE=jTjj
67 66 seqeq3d φseq1+E=seq1+jTjj
68 logtayl TT<1seq1+jTjjlog1T
69 19 7 68 syl2anc φseq1+jTjjlog1T
70 67 69 eqbrtrd φseq1+Elog1T
71 simpr φkk
72 71 8 eleqtrdi φkk1
73 oveq1 j=nj1=n1
74 73 oveq2d j=n1j1=1n1
75 oveq2 j=nTj=Tn
76 id j=nj=n
77 75 76 oveq12d j=nTjj=Tnn
78 74 77 oveq12d j=n1j1Tjj=1n1Tnn
79 elfznn n1kn
80 79 adantl φkn1kn
81 1cnd n1
82 81 negcld n1
83 nnm1nn0 nn10
84 82 83 expcld n1n1
85 80 84 syl φkn1k1n1
86 19 ad2antrr φkn1kT
87 80 nnnn0d φkn1kn0
88 86 87 expcld φkn1kTn
89 80 nncnd φkn1kn
90 80 nnne0d φkn1kn0
91 88 89 90 divcld φkn1kTnn
92 85 91 mulcld φkn1k1n1Tnn
93 1 78 80 92 fvmptd3 φkn1kDn=1n1Tnn
94 93 92 eqeltrd φkn1kDn
95 addcl nin+i
96 95 adantl φknin+i
97 72 94 96 seqcl φkseq1+Dk
98 2 77 80 91 fvmptd3 φkn1kEn=Tnn
99 98 91 eqeltrd φkn1kEn
100 72 99 96 seqcl φkseq1+Ek
101 simpll φkn1kφ
102 78 77 oveq12d j=n1j1Tjj+Tjj=1n1Tnn+Tnn
103 simpr φnn
104 84 adantl φn1n1
105 19 adantr φnT
106 103 nnnn0d φnn0
107 105 106 expcld φnTn
108 103 nncnd φnn
109 103 nnne0d φnn0
110 107 108 109 divcld φnTnn
111 104 110 mulcld φn1n1Tnn
112 111 110 addcld φn1n1Tnn+Tnn
113 3 102 103 112 fvmptd3 φnFn=1n1Tnn+Tnn
114 1 78 103 111 fvmptd3 φnDn=1n1Tnn
115 114 eqcomd φn1n1Tnn=Dn
116 2 77 103 110 fvmptd3 φnEn=Tnn
117 116 eqcomd φnTnn=En
118 115 117 oveq12d φn1n1Tnn+Tnn=Dn+En
119 113 118 eqtrd φnFn=Dn+En
120 101 80 119 syl2anc φkn1kFn=Dn+En
121 72 94 99 120 seradd φkseq1+Fk=seq1+Dk+seq1+Ek
122 8 9 63 65 70 97 100 121 climadd φseq1+Flog1+T+log1T
123 1rp 1+
124 123 a1i φ1+
125 124 6 rpaddcld φ1+T+
126 125 rpne0d φ1+T0
127 36 126 logcld φlog1+T
128 35 19 subcld φ1T
129 18 55 absltd φT<11<TT<1
130 7 129 mpbid φ1<TT<1
131 130 simprd φT<1
132 18 131 gtned φ1T
133 35 19 132 subne0d φ1T0
134 128 133 logcld φlog1T
135 127 134 negsubd φlog1+T+log1T=log1+Tlog1T
136 122 135 breqtrd φseq1+Flog1+Tlog1T
137 nn0uz 0=0
138 0zd φ0
139 2nn0 20
140 139 a1i j020
141 id j0j0
142 140 141 nn0mulcld j02j0
143 nn0p1nn 2j02j+1
144 142 143 syl j02j+1
145 5 144 fmpti G:0
146 145 a1i φG:0
147 2re 2
148 147 a1i k02
149 nn0re k0k
150 148 149 remulcld k02k
151 1red k01
152 149 151 readdcld k0k+1
153 148 152 remulcld k02k+1
154 2rp 2+
155 154 a1i k02+
156 149 ltp1d k0k<k+1
157 149 152 155 156 ltmul2dd k02k<2k+1
158 150 153 151 157 ltadd1dd k02k+1<2k+1+1
159 5 a1i k0G=j02j+1
160 simpr k0j=kj=k
161 160 oveq2d k0j=k2j=2k
162 161 oveq1d k0j=k2j+1=2k+1
163 id k0k0
164 2cnd k02
165 nn0cn k0k
166 164 165 mulcld k02k
167 1cnd k01
168 166 167 addcld k02k+1
169 159 162 163 168 fvmptd k0Gk=2k+1
170 simpr k0j=k+1j=k+1
171 170 oveq2d k0j=k+12j=2k+1
172 171 oveq1d k0j=k+12j+1=2k+1+1
173 peano2nn0 k0k+10
174 165 167 addcld k0k+1
175 164 174 mulcld k02k+1
176 175 167 addcld k02k+1+1
177 159 172 173 176 fvmptd k0Gk+1=2k+1+1
178 158 169 177 3brtr4d k0Gk<Gk+1
179 178 adantl φk0Gk<Gk+1
180 eldifi nranGn
181 180 adantl φnranGn
182 1cnd nranG1
183 182 negcld nranG1
184 180 83 syl nranGn10
185 183 184 expcld nranG1n1
186 185 adantl φnranG1n1
187 19 adantr φnranGT
188 181 nnnn0d φnranGn0
189 187 188 expcld φnranGTn
190 181 nncnd φnranGn
191 181 nnne0d φnranGn0
192 189 190 191 divcld φnranGTnn
193 186 192 mulcld φnranG1n1Tnn
194 193 192 addcld φnranG1n1Tnn+Tnn
195 3 102 181 194 fvmptd3 φnranGFn=1n1Tnn+Tnn
196 eldifn nranG¬nranG
197 0nn0 00
198 1nn0 10
199 139 198 num0h 1=20+1
200 oveq2 j=02j=20
201 200 oveq1d j=02j+1=20+1
202 201 eqeq2d j=01=2j+11=20+1
203 202 rspcev 001=20+1j01=2j+1
204 197 199 203 mp2an j01=2j+1
205 ax-1cn 1
206 5 elrnmpt 11ranGj01=2j+1
207 205 206 ax-mp 1ranGj01=2j+1
208 204 207 mpbir 1ranG
209 208 a1i n=11ranG
210 eleq1 n=1nranG1ranG
211 209 210 mpbird n=1nranG
212 196 211 nsyl nranG¬n=1
213 nn1m1nn nn=1n1
214 180 213 syl nranGn=1n1
215 214 ord nranG¬n=1n1
216 212 215 mpd nranGn1
217 nfcv _j
218 nfmpt1 _jj02j+1
219 5 218 nfcxfr _jG
220 219 nfrn _jranG
221 217 220 nfdif _jranG
222 221 nfcri jnranG
223 5 elrnmpt nranGnranGj0n=2j+1
224 196 223 mtbid nranG¬j0n=2j+1
225 ralnex j0¬n=2j+1¬j0n=2j+1
226 224 225 sylibr nranGj0¬n=2j+1
227 226 r19.21bi nranGj0¬n=2j+1
228 227 neqned nranGj0n2j+1
229 228 necomd nranGj02j+1n
230 229 adantlr nranGjj02j+1n
231 simplr nranGj¬j0j
232 simpr nranGj¬j0¬j0
233 180 ad2antrr nranGj¬j0n
234 147 a1i j¬j02
235 simpl j¬j0j
236 235 zred j¬j0j
237 234 236 remulcld j¬j02j
238 0red j¬j00
239 1red j¬j01
240 2cnd j¬j02
241 236 recnd j¬j0j
242 240 241 mulcomd j¬j02j=j2
243 simpr j¬j0¬j0
244 elnn0z j0j0j
245 243 244 sylnib j¬j0¬j0j
246 nan j¬j0¬j0jj¬j0j¬0j
247 245 246 mpbi j¬j0j¬0j
248 247 anabss1 j¬j0¬0j
249 236 238 ltnled j¬j0j<0¬0j
250 248 249 mpbird j¬j0j<0
251 154 a1i j¬j02+
252 251 rpregt0d j¬j020<2
253 mulltgt0 jj<020<2j2<0
254 236 250 252 253 syl21anc j¬j0j2<0
255 242 254 eqbrtrd j¬j02j<0
256 237 238 239 255 ltadd1dd j¬j02j+1<0+1
257 1cnd j¬j01
258 257 addlidd j¬j00+1=1
259 256 258 breqtrd j¬j02j+1<1
260 237 239 readdcld j¬j02j+1
261 260 239 ltnled j¬j02j+1<1¬12j+1
262 259 261 mpbid j¬j0¬12j+1
263 nnge1 2j+112j+1
264 262 263 nsyl j¬j0¬2j+1
265 264 adantr j¬j0n¬2j+1
266 simpr n2j+1=n2j+1=n
267 simpl n2j+1=nn
268 266 267 eqeltrd n2j+1=n2j+1
269 268 adantll j¬j0n2j+1=n2j+1
270 265 269 mtand j¬j0n¬2j+1=n
271 270 neqned j¬j0n2j+1n
272 231 232 233 271 syl21anc nranGj¬j02j+1n
273 230 272 pm2.61dan nranGj2j+1n
274 273 neneqd nranGj¬2j+1=n
275 274 ex nranGj¬2j+1=n
276 222 275 ralrimi nranGj¬2j+1=n
277 ralnex j¬2j+1=n¬j2j+1=n
278 276 277 sylib nranG¬j2j+1=n
279 180 nnzd nranGn
280 odd2np1 n¬2nj2j+1=n
281 279 280 syl nranG¬2nj2j+1=n
282 278 281 mtbird nranG¬¬2n
283 282 notnotrd nranG2n
284 180 nncnd nranGn
285 284 182 npcand nranGn-1+1=n
286 283 285 breqtrrd nranG2n-1+1
287 184 nn0zd nranGn1
288 oddp1even n1¬2n12n-1+1
289 287 288 syl nranG¬2n12n-1+1
290 286 289 mpbird nranG¬2n1
291 oexpneg 1n1¬2n11n1=1n1
292 182 216 290 291 syl3anc nranG1n1=1n1
293 1exp n11n1=1
294 287 293 syl nranG1n1=1
295 294 negeqd nranG1n1=1
296 292 295 eqtrd nranG1n1=1
297 296 adantl φnranG1n1=1
298 297 oveq1d φnranG1n1Tnn=-1Tnn
299 298 oveq1d φnranG1n1Tnn+Tnn=-1Tnn+Tnn
300 192 mulm1d φnranG-1Tnn=Tnn
301 300 oveq1d φnranG-1Tnn+Tnn=-Tnn+Tnn
302 192 negcld φnranGTnn
303 302 192 addcomd φnranG-Tnn+Tnn=Tnn+Tnn
304 192 negidd φnranGTnn+Tnn=0
305 301 303 304 3eqtrd φnranG-1Tnn+Tnn=0
306 195 299 305 3eqtrd φnranGFn=0
307 113 112 eqeltrd φnFn
308 3 a1i φk0F=j1j1Tjj+Tjj
309 simpr φk0j=2k+1j=2k+1
310 309 oveq1d φk0j=2k+1j1=2k+1-1
311 310 oveq2d φk0j=2k+11j1=12k+1-1
312 309 oveq2d φk0j=2k+1Tj=T2k+1
313 312 309 oveq12d φk0j=2k+1Tjj=T2k+12k+1
314 311 313 oveq12d φk0j=2k+11j1Tjj=12k+1-1T2k+12k+1
315 314 313 oveq12d φk0j=2k+11j1Tjj+Tjj=12k+1-1T2k+12k+1+T2k+12k+1
316 139 a1i φk020
317 simpr φk0k0
318 316 317 nn0mulcld φk02k0
319 nn0p1nn 2k02k+1
320 318 319 syl φk02k+1
321 167 negcld k01
322 166 167 pncand k02k+1-1=2k
323 139 a1i k020
324 323 163 nn0mulcld k02k0
325 322 324 eqeltrd k02k+1-10
326 321 325 expcld k012k+1-1
327 326 adantl φk012k+1-1
328 19 adantr φk0T
329 198 a1i φk010
330 318 329 nn0addcld φk02k+10
331 328 330 expcld φk0T2k+1
332 2cnd φk02
333 165 adantl φk0k
334 332 333 mulcld φk02k
335 1cnd φk01
336 334 335 addcld φk02k+1
337 0red φk00
338 147 a1i φk02
339 149 adantl φk0k
340 338 339 remulcld φk02k
341 1red φk01
342 0le2 02
343 342 a1i φk002
344 317 nn0ge0d φk00k
345 338 339 343 344 mulge0d φk002k
346 0lt1 0<1
347 346 a1i φk00<1
348 340 341 345 347 addgegt0d φk00<2k+1
349 337 348 gtned φk02k+10
350 331 336 349 divcld φk0T2k+12k+1
351 327 350 mulcld φk012k+1-1T2k+12k+1
352 351 350 addcld φk012k+1-1T2k+12k+1+T2k+12k+1
353 308 315 320 352 fvmptd φk0F2k+1=12k+1-1T2k+12k+1+T2k+12k+1
354 322 adantl φk02k+1-1=2k
355 354 oveq2d φk012k+1-1=12k
356 nn0z k0k
357 m1expeven k12k=1
358 356 357 syl k012k=1
359 358 adantl φk012k=1
360 355 359 eqtrd φk012k+1-1=1
361 360 oveq1d φk012k+1-1T2k+12k+1=1T2k+12k+1
362 350 mullidd φk01T2k+12k+1=T2k+12k+1
363 361 362 eqtrd φk012k+1-1T2k+12k+1=T2k+12k+1
364 363 oveq1d φk012k+1-1T2k+12k+1+T2k+12k+1=T2k+12k+1+T2k+12k+1
365 350 2timesd φk02T2k+12k+1=T2k+12k+1+T2k+12k+1
366 331 336 349 divrec2d φk0T2k+12k+1=12k+1T2k+1
367 366 oveq2d φk02T2k+12k+1=212k+1T2k+1
368 364 365 367 3eqtr2d φk012k+1-1T2k+12k+1+T2k+12k+1=212k+1T2k+1
369 353 368 eqtr2d φk0212k+1T2k+1=F2k+1
370 4 a1i φk0H=j0212j+1T2j+1
371 simpr φk0j=kj=k
372 371 oveq2d φk0j=k2j=2k
373 372 oveq1d φk0j=k2j+1=2k+1
374 373 oveq2d φk0j=k12j+1=12k+1
375 373 oveq2d φk0j=kT2j+1=T2k+1
376 374 375 oveq12d φk0j=k12j+1T2j+1=12k+1T2k+1
377 376 oveq2d φk0j=k212j+1T2j+1=212k+1T2k+1
378 336 349 reccld φk012k+1
379 378 331 mulcld φk012k+1T2k+1
380 332 379 mulcld φk0212k+1T2k+1
381 370 377 317 380 fvmptd φk0Hk=212k+1T2k+1
382 198 a1i k010
383 324 382 nn0addcld k02k+10
384 159 162 163 383 fvmptd k0Gk=2k+1
385 384 adantl φk0Gk=2k+1
386 385 fveq2d φk0FGk=F2k+1
387 369 381 386 3eqtr4d φk0Hk=FGk
388 137 8 138 9 146 179 306 307 387 isercoll2 φseq0+Hlog1+Tlog1Tseq1+Flog1+Tlog1T
389 136 388 mpbird φseq0+Hlog1+Tlog1T
390 55 18 resubcld φ1T
391 19 subidd φTT=0
392 391 eqcomd φ0=TT
393 18 55 18 131 ltsub1dd φTT<1T
394 392 393 eqbrtrd φ0<1T
395 390 394 elrpd φ1T+
396 125 395 relogdivd φlog1+T1T=log1+Tlog1T
397 389 396 breqtrrd φseq0+Hlog1+T1T