Metamath Proof Explorer


Theorem vdwlem6

Description: Lemma for vdw . (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φV
vdwlem3.w φW
vdwlem4.r φRFin
vdwlem4.h φH:1W2VR
vdwlem4.f F=x1Vy1WHy+Wx-1+V
vdwlem7.m φM
vdwlem7.g φG:1WR
vdwlem7.k φK2
vdwlem7.a φA
vdwlem7.d φD
vdwlem7.s φAAPKDF-1G
vdwlem6.b φB
vdwlem6.e φE:1M
vdwlem6.s φi1MB+EiAPKEiG-1GB+Ei
vdwlem6.j J=i1MGB+Ei
vdwlem6.r φranJ=M
vdwlem6.t T=B+WA+VD-1
vdwlem6.p P=j1M+1ifj=M+10Ej+WD
Assertion vdwlem6 φM+1KPolyAPHK+1MonoAPG

Proof

Step Hyp Ref Expression
1 vdwlem3.v φV
2 vdwlem3.w φW
3 vdwlem4.r φRFin
4 vdwlem4.h φH:1W2VR
5 vdwlem4.f F=x1Vy1WHy+Wx-1+V
6 vdwlem7.m φM
7 vdwlem7.g φG:1WR
8 vdwlem7.k φK2
9 vdwlem7.a φA
10 vdwlem7.d φD
11 vdwlem7.s φAAPKDF-1G
12 vdwlem6.b φB
13 vdwlem6.e φE:1M
14 vdwlem6.s φi1MB+EiAPKEiG-1GB+Ei
15 vdwlem6.j J=i1MGB+Ei
16 vdwlem6.r φranJ=M
17 vdwlem6.t T=B+WA+VD-1
18 vdwlem6.p P=j1M+1ifj=M+10Ej+WD
19 fvex GB+EiV
20 19 15 fnmpti JFn1M
21 fvelrnb JFn1MGBranJm1MJm=GB
22 20 21 ax-mp GBranJm1MJm=GB
23 3 adantr φm1MJm=GBRFin
24 eluz2nn K2K
25 8 24 syl φK
26 25 adantr φm1MJm=GBK
27 2 adantr φm1MJm=GBW
28 7 adantr φm1MJm=GBG:1WR
29 12 adantr φm1MJm=GBB
30 6 adantr φm1MJm=GBM
31 13 adantr φm1MJm=GBE:1M
32 14 adantr φm1MJm=GBi1MB+EiAPKEiG-1GB+Ei
33 simprl φm1MJm=GBm1M
34 simprr φm1MJm=GBJm=GB
35 fveq2 i=mEi=Em
36 35 oveq2d i=mB+Ei=B+Em
37 36 fveq2d i=mGB+Ei=GB+Em
38 fvex GB+EmV
39 37 15 38 fvmpt m1MJm=GB+Em
40 33 39 syl φm1MJm=GBJm=GB+Em
41 34 40 eqtr3d φm1MJm=GBGB=GB+Em
42 23 26 27 28 29 30 31 32 33 41 vdwlem1 φm1MJm=GBK+1MonoAPG
43 42 rexlimdvaa φm1MJm=GBK+1MonoAPG
44 22 43 biimtrid φGBranJK+1MonoAPG
45 44 imp φGBranJK+1MonoAPG
46 45 olcd φGBranJM+1KPolyAPHK+1MonoAPG
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 vdwlem5 φT
48 47 adantr φ¬GBranJT
49 0nn0 00
50 49 a1i φ¬GBranJj1M+1j=M+100
51 nnuz =1
52 6 51 eleqtrdi φM1
53 52 adantr φ¬GBranJM1
54 elfzp1 M1j1M+1j1Mj=M+1
55 53 54 syl φ¬GBranJj1M+1j1Mj=M+1
56 55 biimpa φ¬GBranJj1M+1j1Mj=M+1
57 56 ord φ¬GBranJj1M+1¬j1Mj=M+1
58 57 con1d φ¬GBranJj1M+1¬j=M+1j1M
59 58 imp φ¬GBranJj1M+1¬j=M+1j1M
60 13 ad2antrr φ¬GBranJj1M+1E:1M
61 60 ffvelcdmda φ¬GBranJj1M+1j1MEj
62 61 nnnn0d φ¬GBranJj1M+1j1MEj0
63 59 62 syldan φ¬GBranJj1M+1¬j=M+1Ej0
64 50 63 ifclda φ¬GBranJj1M+1ifj=M+10Ej0
65 2 10 nnmulcld φWD
66 65 ad2antrr φ¬GBranJj1M+1WD
67 nn0nnaddcl ifj=M+10Ej0WDifj=M+10Ej+WD
68 64 66 67 syl2anc φ¬GBranJj1M+1ifj=M+10Ej+WD
69 68 18 fmptd φ¬GBranJP:1M+1
70 nnex V
71 ovex 1M+1V
72 70 71 elmap P1M+1P:1M+1
73 69 72 sylibr φ¬GBranJP1M+1
74 elfzp1 M1i1M+1i1Mi=M+1
75 52 74 syl φi1M+1i1Mi=M+1
76 12 adantr φi1MB
77 76 nncnd φi1MB
78 77 adantr φi1Mm0K1B
79 13 ffvelcdmda φi1MEi
80 79 nncnd φi1MEi
81 80 adantr φi1Mm0K1Ei
82 78 81 addcld φi1Mm0K1B+Ei
83 nnm1nn0 AA10
84 9 83 syl φA10
85 nn0nnaddcl A10VA-1+V
86 84 1 85 syl2anc φA-1+V
87 2 86 nnmulcld φWA-1+V
88 87 nncnd φWA-1+V
89 88 ad2antrr φi1Mm0K1WA-1+V
90 elfznn0 m0K1m0
91 90 adantl φm0K1m0
92 91 nn0cnd φm0K1m
93 92 adantlr φi1Mm0K1m
94 93 81 mulcld φi1Mm0K1mEi
95 65 nnnn0d φWD0
96 95 adantr φm0K1WD0
97 91 96 nn0mulcld φm0K1mWD0
98 97 nn0cnd φm0K1mWD
99 98 adantlr φi1Mm0K1mWD
100 82 89 94 99 add4d φi1Mm0K1B+Ei+WA-1+V+mEi+mWD=B+Ei+mEi+WA-1+V+mWD
101 65 nncnd φWD
102 101 ad2antrr φi1Mm0K1WD
103 93 81 102 adddid φi1Mm0K1mEi+WD=mEi+mWD
104 103 oveq2d φi1Mm0K1B+Ei+WA-1+V+mEi+WD=B+Ei+WA-1+V+mEi+mWD
105 2 nncnd φW
106 105 adantr φm0K1W
107 86 nncnd φA-1+V
108 107 adantr φm0K1A-1+V
109 10 nncnd φD
110 109 adantr φm0K1D
111 92 110 mulcld φm0K1mD
112 106 108 111 adddid φm0K1WA1+V+mD=WA-1+V+WmD
113 9 nncnd φA
114 113 adantr φm0K1A
115 1cnd φm0K11
116 114 111 115 addsubd φm0K1A+mD-1=A-1+mD
117 116 oveq1d φm0K1A+mD-1+V=A1+mD+V
118 84 nn0cnd φA1
119 118 adantr φm0K1A1
120 1 nncnd φV
121 120 adantr φm0K1V
122 119 111 121 add32d φm0K1A1+mD+V=A1+V+mD
123 117 122 eqtrd φm0K1A+mD-1+V=A1+V+mD
124 123 oveq2d φm0K1WA+mD-1+V=WA1+V+mD
125 92 106 110 mul12d φm0K1mWD=WmD
126 125 oveq2d φm0K1WA-1+V+mWD=WA-1+V+WmD
127 112 124 126 3eqtr4d φm0K1WA+mD-1+V=WA-1+V+mWD
128 127 adantlr φi1Mm0K1WA+mD-1+V=WA-1+V+mWD
129 128 oveq2d φi1Mm0K1B+Ei+mEi+WA+mD-1+V=B+Ei+mEi+WA-1+V+mWD
130 100 104 129 3eqtr4d φi1Mm0K1B+Ei+WA-1+V+mEi+WD=B+Ei+mEi+WA+mD-1+V
131 1 ad2antrr φi1Mm0K1V
132 2 ad2antrr φi1Mm0K1W
133 11 adantr φm0K1AAPKDF-1G
134 eqid A+mD=A+mD
135 oveq1 n=mnD=mD
136 135 oveq2d n=mA+nD=A+mD
137 136 rspceeqv m0K1A+mD=A+mDn0K1A+mD=A+nD
138 134 137 mpan2 m0K1n0K1A+mD=A+nD
139 25 nnnn0d φK0
140 vdwapval K0ADA+mDAAPKDn0K1A+mD=A+nD
141 139 9 10 140 syl3anc φA+mDAAPKDn0K1A+mD=A+nD
142 141 biimpar φn0K1A+mD=A+nDA+mDAAPKD
143 138 142 sylan2 φm0K1A+mDAAPKD
144 133 143 sseldd φm0K1A+mDF-1G
145 1 2 3 4 5 vdwlem4 φF:1VR1W
146 145 ffnd φFFn1V
147 fniniseg FFn1VA+mDF-1GA+mD1VFA+mD=G
148 146 147 syl φA+mDF-1GA+mD1VFA+mD=G
149 148 biimpa φA+mDF-1GA+mD1VFA+mD=G
150 144 149 syldan φm0K1A+mD1VFA+mD=G
151 150 simpld φm0K1A+mD1V
152 151 adantlr φi1Mm0K1A+mD1V
153 14 r19.21bi φi1MB+EiAPKEiG-1GB+Ei
154 153 adantr φi1Mm0K1B+EiAPKEiG-1GB+Ei
155 eqid B+Ei+mEi=B+Ei+mEi
156 oveq1 n=mnEi=mEi
157 156 oveq2d n=mB+Ei+nEi=B+Ei+mEi
158 157 rspceeqv m0K1B+Ei+mEi=B+Ei+mEin0K1B+Ei+mEi=B+Ei+nEi
159 155 158 mpan2 m0K1n0K1B+Ei+mEi=B+Ei+nEi
160 25 adantr φi1MK
161 160 nnnn0d φi1MK0
162 76 79 nnaddcld φi1MB+Ei
163 vdwapval K0B+EiEiB+Ei+mEiB+EiAPKEin0K1B+Ei+mEi=B+Ei+nEi
164 161 162 79 163 syl3anc φi1MB+Ei+mEiB+EiAPKEin0K1B+Ei+mEi=B+Ei+nEi
165 164 biimpar φi1Mn0K1B+Ei+mEi=B+Ei+nEiB+Ei+mEiB+EiAPKEi
166 159 165 sylan2 φi1Mm0K1B+Ei+mEiB+EiAPKEi
167 154 166 sseldd φi1Mm0K1B+Ei+mEiG-1GB+Ei
168 7 ffnd φGFn1W
169 168 adantr φi1MGFn1W
170 fniniseg GFn1WB+Ei+mEiG-1GB+EiB+Ei+mEi1WGB+Ei+mEi=GB+Ei
171 169 170 syl φi1MB+Ei+mEiG-1GB+EiB+Ei+mEi1WGB+Ei+mEi=GB+Ei
172 171 biimpa φi1MB+Ei+mEiG-1GB+EiB+Ei+mEi1WGB+Ei+mEi=GB+Ei
173 167 172 syldan φi1Mm0K1B+Ei+mEi1WGB+Ei+mEi=GB+Ei
174 173 simpld φi1Mm0K1B+Ei+mEi1W
175 131 132 152 174 vdwlem3 φi1Mm0K1B+Ei+mEi+WA+mD-1+V1W2V
176 130 175 eqeltrd φi1Mm0K1B+Ei+WA-1+V+mEi+WD1W2V
177 fvoveq1 y=B+Ei+mEiHy+WA+mD-1+V=HB+Ei+mEi+WA+mD-1+V
178 eqid y1WHy+WA+mD-1+V=y1WHy+WA+mD-1+V
179 fvex HB+Ei+mEi+WA+mD-1+VV
180 177 178 179 fvmpt B+Ei+mEi1Wy1WHy+WA+mD-1+VB+Ei+mEi=HB+Ei+mEi+WA+mD-1+V
181 174 180 syl φi1Mm0K1y1WHy+WA+mD-1+VB+Ei+mEi=HB+Ei+mEi+WA+mD-1+V
182 173 simprd φi1Mm0K1GB+Ei+mEi=GB+Ei
183 150 simprd φm0K1FA+mD=G
184 oveq1 x=A+mDx1=A+mD-1
185 184 oveq1d x=A+mDx-1+V=A+mD-1+V
186 185 oveq2d x=A+mDWx-1+V=WA+mD-1+V
187 186 oveq2d x=A+mDy+Wx-1+V=y+WA+mD-1+V
188 187 fveq2d x=A+mDHy+Wx-1+V=Hy+WA+mD-1+V
189 188 mpteq2dv x=A+mDy1WHy+Wx-1+V=y1WHy+WA+mD-1+V
190 ovex 1WV
191 190 mptex y1WHy+WA+mD-1+VV
192 189 5 191 fvmpt A+mD1VFA+mD=y1WHy+WA+mD-1+V
193 151 192 syl φm0K1FA+mD=y1WHy+WA+mD-1+V
194 183 193 eqtr3d φm0K1G=y1WHy+WA+mD-1+V
195 194 adantlr φi1Mm0K1G=y1WHy+WA+mD-1+V
196 195 fveq1d φi1Mm0K1GB+Ei+mEi=y1WHy+WA+mD-1+VB+Ei+mEi
197 182 196 eqtr3d φi1Mm0K1GB+Ei=y1WHy+WA+mD-1+VB+Ei+mEi
198 130 fveq2d φi1Mm0K1HB+Ei+WA-1+V+mEi+WD=HB+Ei+mEi+WA+mD-1+V
199 181 197 198 3eqtr4rd φi1Mm0K1HB+Ei+WA-1+V+mEi+WD=GB+Ei
200 176 199 jca φi1Mm0K1B+Ei+WA-1+V+mEi+WD1W2VHB+Ei+WA-1+V+mEi+WD=GB+Ei
201 eleq1 x=B+Ei+WA-1+V+mEi+WDx1W2VB+Ei+WA-1+V+mEi+WD1W2V
202 fveqeq2 x=B+Ei+WA-1+V+mEi+WDHx=GB+EiHB+Ei+WA-1+V+mEi+WD=GB+Ei
203 201 202 anbi12d x=B+Ei+WA-1+V+mEi+WDx1W2VHx=GB+EiB+Ei+WA-1+V+mEi+WD1W2VHB+Ei+WA-1+V+mEi+WD=GB+Ei
204 200 203 syl5ibrcom φi1Mm0K1x=B+Ei+WA-1+V+mEi+WDx1W2VHx=GB+Ei
205 204 rexlimdva φi1Mm0K1x=B+Ei+WA-1+V+mEi+WDx1W2VHx=GB+Ei
206 87 adantr φi1MWA-1+V
207 162 206 nnaddcld φi1MB+Ei+WA-1+V
208 65 adantr φi1MWD
209 79 208 nnaddcld φi1MEi+WD
210 vdwapval K0B+Ei+WA-1+VEi+WDxB+Ei+WA-1+VAPKEi+WDm0K1x=B+Ei+WA-1+V+mEi+WD
211 161 207 209 210 syl3anc φi1MxB+Ei+WA-1+VAPKEi+WDm0K1x=B+Ei+WA-1+V+mEi+WD
212 4 ffnd φHFn1W2V
213 212 adantr φi1MHFn1W2V
214 fniniseg HFn1W2VxH-1GB+Eix1W2VHx=GB+Ei
215 213 214 syl φi1MxH-1GB+Eix1W2VHx=GB+Ei
216 205 211 215 3imtr4d φi1MxB+Ei+WA-1+VAPKEi+WDxH-1GB+Ei
217 216 ssrdv φi1MB+Ei+WA-1+VAPKEi+WDH-1GB+Ei
218 ssun1 1M1MM+1
219 fzsuc M11M+1=1MM+1
220 52 219 syl φ1M+1=1MM+1
221 218 220 sseqtrrid φ1M1M+1
222 221 sselda φi1Mi1M+1
223 eqeq1 j=ij=M+1i=M+1
224 fveq2 j=iEj=Ei
225 223 224 ifbieq2d j=iifj=M+10Ej=ifi=M+10Ei
226 225 oveq1d j=iifj=M+10Ej+WD=ifi=M+10Ei+WD
227 ovex ifi=M+10Ei+WDV
228 226 18 227 fvmpt i1M+1Pi=ifi=M+10Ei+WD
229 222 228 syl φi1MPi=ifi=M+10Ei+WD
230 6 nnred φM
231 230 ltp1d φM<M+1
232 peano2re MM+1
233 230 232 syl φM+1
234 230 233 ltnled φM<M+1¬M+1M
235 231 234 mpbid φ¬M+1M
236 breq1 i=M+1iMM+1M
237 236 notbid i=M+1¬iM¬M+1M
238 235 237 syl5ibrcom φi=M+1¬iM
239 238 con2d φiM¬i=M+1
240 elfzle2 i1MiM
241 239 240 impel φi1M¬i=M+1
242 iffalse ¬i=M+1ifi=M+10Ei=Ei
243 242 oveq1d ¬i=M+1ifi=M+10Ei+WD=Ei+WD
244 241 243 syl φi1Mifi=M+10Ei+WD=Ei+WD
245 229 244 eqtrd φi1MPi=Ei+WD
246 245 oveq2d φi1MT+Pi=T+Ei+WD
247 47 nncnd φT
248 247 adantr φi1MT
249 101 adantr φi1MWD
250 248 80 249 add12d φi1MT+Ei+WD=Ei+T+WD
251 17 oveq1i T+WD=B+WA+VD-1+WD
252 12 nncnd φB
253 120 109 subcld φVD
254 113 253 addcld φA+V-D
255 ax-1cn 1
256 subcl A+V-D1A+VD-1
257 254 255 256 sylancl φA+VD-1
258 105 257 mulcld φWA+VD-1
259 252 258 101 addassd φB+WA+VD-1+WD=B+WA+VD-1+WD
260 105 257 109 adddid φWA+V-D-1+D=WA+VD-1+WD
261 113 253 109 addassd φA+VD+D=A+VD+D
262 120 109 npcand φV-D+D=V
263 262 oveq2d φA+VD+D=A+V
264 261 263 eqtrd φA+VD+D=A+V
265 264 oveq1d φA+V-D+D-1=A+V-1
266 1cnd φ1
267 254 109 266 addsubd φA+V-D+D-1=A+V-D-1+D
268 113 120 266 addsubd φA+V-1=A-1+V
269 265 267 268 3eqtr3d φA+V-D-1+D=A-1+V
270 269 oveq2d φWA+V-D-1+D=WA-1+V
271 260 270 eqtr3d φWA+VD-1+WD=WA-1+V
272 271 oveq2d φB+WA+VD-1+WD=B+WA-1+V
273 259 272 eqtrd φB+WA+VD-1+WD=B+WA-1+V
274 251 273 eqtrid φT+WD=B+WA-1+V
275 274 oveq2d φEi+T+WD=Ei+B+WA-1+V
276 275 adantr φi1MEi+T+WD=Ei+B+WA-1+V
277 88 adantr φi1MWA-1+V
278 80 77 277 addassd φi1MEi+B+WA-1+V=Ei+B+WA-1+V
279 80 77 addcomd φi1MEi+B=B+Ei
280 279 oveq1d φi1MEi+B+WA-1+V=B+Ei+WA-1+V
281 276 278 280 3eqtr2d φi1MEi+T+WD=B+Ei+WA-1+V
282 246 250 281 3eqtrd φi1MT+Pi=B+Ei+WA-1+V
283 282 245 oveq12d φi1MT+PiAPKPi=B+Ei+WA-1+VAPKEi+WD
284 cnvimass G-1GB+EidomG
285 284 7 fssdm φG-1GB+Ei1W
286 285 adantr φi1MG-1GB+Ei1W
287 vdwapid1 KB+EiEiB+EiB+EiAPKEi
288 160 162 79 287 syl3anc φi1MB+EiB+EiAPKEi
289 153 288 sseldd φi1MB+EiG-1GB+Ei
290 286 289 sseldd φi1MB+Ei1W
291 fvoveq1 y=B+EiHy+WA-1+V=HB+Ei+WA-1+V
292 eqid y1WHy+WA-1+V=y1WHy+WA-1+V
293 fvex HB+Ei+WA-1+VV
294 291 292 293 fvmpt B+Ei1Wy1WHy+WA-1+VB+Ei=HB+Ei+WA-1+V
295 290 294 syl φi1My1WHy+WA-1+VB+Ei=HB+Ei+WA-1+V
296 vdwapid1 KADAAAPKD
297 25 9 10 296 syl3anc φAAAPKD
298 11 297 sseldd φAF-1G
299 fniniseg FFn1VAF-1GA1VFA=G
300 146 299 syl φAF-1GA1VFA=G
301 298 300 mpbid φA1VFA=G
302 301 simprd φFA=G
303 301 simpld φA1V
304 oveq1 x=Ax1=A1
305 304 oveq1d x=Ax-1+V=A-1+V
306 305 oveq2d x=AWx-1+V=WA-1+V
307 306 oveq2d x=Ay+Wx-1+V=y+WA-1+V
308 307 fveq2d x=AHy+Wx-1+V=Hy+WA-1+V
309 308 mpteq2dv x=Ay1WHy+Wx-1+V=y1WHy+WA-1+V
310 190 mptex y1WHy+WA-1+VV
311 309 5 310 fvmpt A1VFA=y1WHy+WA-1+V
312 303 311 syl φFA=y1WHy+WA-1+V
313 302 312 eqtr3d φG=y1WHy+WA-1+V
314 313 fveq1d φGB+Ei=y1WHy+WA-1+VB+Ei
315 314 adantr φi1MGB+Ei=y1WHy+WA-1+VB+Ei
316 282 fveq2d φi1MHT+Pi=HB+Ei+WA-1+V
317 295 315 316 3eqtr4rd φi1MHT+Pi=GB+Ei
318 317 sneqd φi1MHT+Pi=GB+Ei
319 318 imaeq2d φi1MH-1HT+Pi=H-1GB+Ei
320 217 283 319 3sstr4d φi1MT+PiAPKPiH-1HT+Pi
321 320 ex φi1MT+PiAPKPiH-1HT+Pi
322 252 adantr φm0K1B
323 88 adantr φm0K1WA-1+V
324 322 323 98 addassd φm0K1B+WA-1+V+mWD=B+WA-1+V+mWD
325 127 oveq2d φm0K1B+WA+mD-1+V=B+WA-1+V+mWD
326 324 325 eqtr4d φm0K1B+WA-1+V+mWD=B+WA+mD-1+V
327 1 adantr φm0K1V
328 2 adantr φm0K1W
329 eluzfz1 M111M
330 52 329 syl φ11M
331 330 ne0d φ1M
332 elfzuz3 B+Ei1WWB+Ei
333 290 332 syl φi1MWB+Ei
334 12 nnzd φB
335 uzid BBB
336 334 335 syl φBB
337 336 adantr φi1MBB
338 79 nnnn0d φi1MEi0
339 uzaddcl BBEi0B+EiB
340 337 338 339 syl2anc φi1MB+EiB
341 uztrn WB+EiB+EiBWB
342 333 340 341 syl2anc φi1MWB
343 eluzle WBBW
344 342 343 syl φi1MBW
345 344 ralrimiva φi1MBW
346 r19.2z 1Mi1MBWi1MBW
347 331 345 346 syl2anc φi1MBW
348 idd i1MBWBW
349 348 rexlimiv i1MBWBW
350 347 349 syl φBW
351 2 nnzd φW
352 fznn WB1WBBW
353 351 352 syl φB1WBBW
354 12 350 353 mpbir2and φB1W
355 354 adantr φm0K1B1W
356 327 328 151 355 vdwlem3 φm0K1B+WA+mD-1+V1W2V
357 326 356 eqeltrd φm0K1B+WA-1+V+mWD1W2V
358 fvoveq1 y=BHy+WA+mD-1+V=HB+WA+mD-1+V
359 fvex HB+WA+mD-1+VV
360 358 178 359 fvmpt B1Wy1WHy+WA+mD-1+VB=HB+WA+mD-1+V
361 355 360 syl φm0K1y1WHy+WA+mD-1+VB=HB+WA+mD-1+V
362 194 fveq1d φm0K1GB=y1WHy+WA+mD-1+VB
363 326 fveq2d φm0K1HB+WA-1+V+mWD=HB+WA+mD-1+V
364 361 362 363 3eqtr4rd φm0K1HB+WA-1+V+mWD=GB
365 357 364 jca φm0K1B+WA-1+V+mWD1W2VHB+WA-1+V+mWD=GB
366 eleq1 z=B+WA-1+V+mWDz1W2VB+WA-1+V+mWD1W2V
367 fveqeq2 z=B+WA-1+V+mWDHz=GBHB+WA-1+V+mWD=GB
368 366 367 anbi12d z=B+WA-1+V+mWDz1W2VHz=GBB+WA-1+V+mWD1W2VHB+WA-1+V+mWD=GB
369 365 368 syl5ibrcom φm0K1z=B+WA-1+V+mWDz1W2VHz=GB
370 369 rexlimdva φm0K1z=B+WA-1+V+mWDz1W2VHz=GB
371 12 87 nnaddcld φB+WA-1+V
372 vdwapval K0B+WA-1+VWDzB+WA-1+VAPKWDm0K1z=B+WA-1+V+mWD
373 139 371 65 372 syl3anc φzB+WA-1+VAPKWDm0K1z=B+WA-1+V+mWD
374 fniniseg HFn1W2VzH-1GBz1W2VHz=GB
375 212 374 syl φzH-1GBz1W2VHz=GB
376 370 373 375 3imtr4d φzB+WA-1+VAPKWDzH-1GB
377 376 ssrdv φB+WA-1+VAPKWDH-1GB
378 6 peano2nnd φM+1
379 378 51 eleqtrdi φM+11
380 eluzfz2 M+11M+11M+1
381 iftrue j=M+1ifj=M+10Ej=0
382 381 oveq1d j=M+1ifj=M+10Ej+WD=0+WD
383 ovex 0+WDV
384 382 18 383 fvmpt M+11M+1PM+1=0+WD
385 379 380 384 3syl φPM+1=0+WD
386 101 addlidd φ0+WD=WD
387 385 386 eqtrd φPM+1=WD
388 387 oveq2d φT+PM+1=T+WD
389 388 274 eqtrd φT+PM+1=B+WA-1+V
390 389 387 oveq12d φT+PM+1APKPM+1=B+WA-1+VAPKWD
391 fvoveq1 y=BHy+WA-1+V=HB+WA-1+V
392 fvex HB+WA-1+VV
393 391 292 392 fvmpt B1Wy1WHy+WA-1+VB=HB+WA-1+V
394 354 393 syl φy1WHy+WA-1+VB=HB+WA-1+V
395 313 fveq1d φGB=y1WHy+WA-1+VB
396 389 fveq2d φHT+PM+1=HB+WA-1+V
397 394 395 396 3eqtr4rd φHT+PM+1=GB
398 397 sneqd φHT+PM+1=GB
399 398 imaeq2d φH-1HT+PM+1=H-1GB
400 377 390 399 3sstr4d φT+PM+1APKPM+1H-1HT+PM+1
401 fveq2 i=M+1Pi=PM+1
402 401 oveq2d i=M+1T+Pi=T+PM+1
403 402 401 oveq12d i=M+1T+PiAPKPi=T+PM+1APKPM+1
404 402 fveq2d i=M+1HT+Pi=HT+PM+1
405 404 sneqd i=M+1HT+Pi=HT+PM+1
406 405 imaeq2d i=M+1H-1HT+Pi=H-1HT+PM+1
407 403 406 sseq12d i=M+1T+PiAPKPiH-1HT+PiT+PM+1APKPM+1H-1HT+PM+1
408 400 407 syl5ibrcom φi=M+1T+PiAPKPiH-1HT+Pi
409 321 408 jaod φi1Mi=M+1T+PiAPKPiH-1HT+Pi
410 75 409 sylbid φi1M+1T+PiAPKPiH-1HT+Pi
411 410 ralrimiv φi1M+1T+PiAPKPiH-1HT+Pi
412 411 adantr φ¬GBranJi1M+1T+PiAPKPiH-1HT+Pi
413 220 rexeqdv φi1M+1x=HT+Pii1MM+1x=HT+Pi
414 rexun i1MM+1x=HT+Pii1Mx=HT+PiiM+1x=HT+Pi
415 317 eqeq2d φi1Mx=HT+Pix=GB+Ei
416 415 rexbidva φi1Mx=HT+Pii1Mx=GB+Ei
417 ovex M+1V
418 404 eqeq2d i=M+1x=HT+Pix=HT+PM+1
419 417 418 rexsn iM+1x=HT+Pix=HT+PM+1
420 397 eqeq2d φx=HT+PM+1x=GB
421 419 420 bitrid φiM+1x=HT+Pix=GB
422 416 421 orbi12d φi1Mx=HT+PiiM+1x=HT+Pii1Mx=GB+Eix=GB
423 414 422 bitrid φi1MM+1x=HT+Pii1Mx=GB+Eix=GB
424 413 423 bitrd φi1M+1x=HT+Pii1Mx=GB+Eix=GB
425 424 adantr φ¬GBranJi1M+1x=HT+Pii1Mx=GB+Eix=GB
426 425 abbidv φ¬GBranJx|i1M+1x=HT+Pi=x|i1Mx=GB+Eix=GB
427 eqid i1M+1HT+Pi=i1M+1HT+Pi
428 427 rnmpt rani1M+1HT+Pi=x|i1M+1x=HT+Pi
429 15 rnmpt ranJ=x|i1Mx=GB+Ei
430 df-sn GB=x|x=GB
431 429 430 uneq12i ranJGB=x|i1Mx=GB+Eix|x=GB
432 unab x|i1Mx=GB+Eix|x=GB=x|i1Mx=GB+Eix=GB
433 431 432 eqtri ranJGB=x|i1Mx=GB+Eix=GB
434 426 428 433 3eqtr4g φ¬GBranJrani1M+1HT+Pi=ranJGB
435 434 fveq2d φ¬GBranJrani1M+1HT+Pi=ranJGB
436 fzfi 1MFin
437 dffn4 JFn1MJ:1MontoranJ
438 20 437 mpbi J:1MontoranJ
439 fofi 1MFinJ:1MontoranJranJFin
440 436 438 439 mp2an ranJFin
441 440 a1i φranJFin
442 fvex GBV
443 hashunsng GBVranJFin¬GBranJranJGB=ranJ+1
444 442 443 ax-mp ranJFin¬GBranJranJGB=ranJ+1
445 441 444 sylan φ¬GBranJranJGB=ranJ+1
446 16 adantr φ¬GBranJranJ=M
447 446 oveq1d φ¬GBranJranJ+1=M+1
448 435 445 447 3eqtrd φ¬GBranJrani1M+1HT+Pi=M+1
449 412 448 jca φ¬GBranJi1M+1T+PiAPKPiH-1HT+Pirani1M+1HT+Pi=M+1
450 oveq1 a=Ta+di=T+di
451 450 oveq1d a=Ta+diAPKdi=T+diAPKdi
452 fvoveq1 a=THa+di=HT+di
453 452 sneqd a=THa+di=HT+di
454 453 imaeq2d a=TH-1Ha+di=H-1HT+di
455 451 454 sseq12d a=Ta+diAPKdiH-1Ha+diT+diAPKdiH-1HT+di
456 455 ralbidv a=Ti1M+1a+diAPKdiH-1Ha+dii1M+1T+diAPKdiH-1HT+di
457 452 mpteq2dv a=Ti1M+1Ha+di=i1M+1HT+di
458 457 rneqd a=Trani1M+1Ha+di=rani1M+1HT+di
459 458 fveqeq2d a=Trani1M+1Ha+di=M+1rani1M+1HT+di=M+1
460 456 459 anbi12d a=Ti1M+1a+diAPKdiH-1Ha+dirani1M+1Ha+di=M+1i1M+1T+diAPKdiH-1HT+dirani1M+1HT+di=M+1
461 fveq1 d=Pdi=Pi
462 461 oveq2d d=PT+di=T+Pi
463 462 461 oveq12d d=PT+diAPKdi=T+PiAPKPi
464 462 fveq2d d=PHT+di=HT+Pi
465 464 sneqd d=PHT+di=HT+Pi
466 465 imaeq2d d=PH-1HT+di=H-1HT+Pi
467 463 466 sseq12d d=PT+diAPKdiH-1HT+diT+PiAPKPiH-1HT+Pi
468 467 ralbidv d=Pi1M+1T+diAPKdiH-1HT+dii1M+1T+PiAPKPiH-1HT+Pi
469 464 mpteq2dv d=Pi1M+1HT+di=i1M+1HT+Pi
470 469 rneqd d=Prani1M+1HT+di=rani1M+1HT+Pi
471 470 fveqeq2d d=Prani1M+1HT+di=M+1rani1M+1HT+Pi=M+1
472 468 471 anbi12d d=Pi1M+1T+diAPKdiH-1HT+dirani1M+1HT+di=M+1i1M+1T+PiAPKPiH-1HT+Pirani1M+1HT+Pi=M+1
473 460 472 rspc2ev TP1M+1i1M+1T+PiAPKPiH-1HT+Pirani1M+1HT+Pi=M+1ad1M+1i1M+1a+diAPKdiH-1Ha+dirani1M+1Ha+di=M+1
474 48 73 449 473 syl3anc φ¬GBranJad1M+1i1M+1a+diAPKdiH-1Ha+dirani1M+1Ha+di=M+1
475 ovex 1W2VV
476 25 adantr φ¬GBranJK
477 476 nnnn0d φ¬GBranJK0
478 4 adantr φ¬GBranJH:1W2VR
479 6 adantr φ¬GBranJM
480 479 peano2nnd φ¬GBranJM+1
481 eqid 1M+1=1M+1
482 475 477 478 480 481 vdwpc φ¬GBranJM+1KPolyAPHad1M+1i1M+1a+diAPKdiH-1Ha+dirani1M+1Ha+di=M+1
483 474 482 mpbird φ¬GBranJM+1KPolyAPH
484 483 orcd φ¬GBranJM+1KPolyAPHK+1MonoAPG
485 46 484 pm2.61dan φM+1KPolyAPHK+1MonoAPG