Metamath Proof Explorer


Theorem axcontlem2

Description: Lemma for axcont . The idea here is to set up a mapping F that will allow to transfer dedekind to two sets of points. Here, we set up F and show its domain and codomain. (Contributed by Scott Fenton, 17-Jun-2013)

Ref Expression
Hypotheses axcontlem2.1 D=p𝔼N|UBtwnZppBtwnZU
axcontlem2.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
Assertion axcontlem2 NZ𝔼NU𝔼NZUF:D1-1 onto0+∞

Proof

Step Hyp Ref Expression
1 axcontlem2.1 D=p𝔼N|UBtwnZppBtwnZU
2 axcontlem2.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
3 opeq2 p=xZp=Zx
4 3 breq2d p=xUBtwnZpUBtwnZx
5 breq1 p=xpBtwnZUxBtwnZU
6 4 5 orbi12d p=xUBtwnZppBtwnZUUBtwnZxxBtwnZU
7 6 1 elrab2 xDx𝔼NUBtwnZxxBtwnZU
8 simpll3 NZ𝔼NU𝔼NZUx𝔼NU𝔼N
9 simpll2 NZ𝔼NU𝔼NZUx𝔼NZ𝔼N
10 simpr NZ𝔼NU𝔼NZUx𝔼Nx𝔼N
11 brbtwn U𝔼NZ𝔼Nx𝔼NUBtwnZxs01i1NUi=1sZi+sxi
12 8 9 10 11 syl3anc NZ𝔼NU𝔼NZUx𝔼NUBtwnZxs01i1NUi=1sZi+sxi
13 12 biimpa NZ𝔼NU𝔼NZUx𝔼NUBtwnZxs01i1NUi=1sZi+sxi
14 simp-4r NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxiZU
15 oveq2 s=01s=10
16 1m0e1 10=1
17 15 16 eqtrdi s=01s=1
18 17 oveq1d s=01sZi=1Zi
19 oveq1 s=0sxi=0xi
20 18 19 oveq12d s=01sZi+sxi=1Zi+0xi
21 20 eqeq2d s=0Ui=1sZi+sxiUi=1Zi+0xi
22 21 ralbidv s=0i1NUi=1sZi+sxii1NUi=1Zi+0xi
23 22 biimpac i1NUi=1sZi+sxis=0i1NUi=1Zi+0xi
24 eqcom Z=UU=Z
25 8 adantr NZ𝔼NU𝔼NZUx𝔼Ns01U𝔼N
26 9 adantr NZ𝔼NU𝔼NZUx𝔼Ns01Z𝔼N
27 eqeefv U𝔼NZ𝔼NU=Zi1NUi=Zi
28 25 26 27 syl2anc NZ𝔼NU𝔼NZUx𝔼Ns01U=Zi1NUi=Zi
29 9 ad2antrr NZ𝔼NU𝔼NZUx𝔼Ns01i1NZ𝔼N
30 fveecn Z𝔼Ni1NZi
31 29 30 sylancom NZ𝔼NU𝔼NZUx𝔼Ns01i1NZi
32 fveecn x𝔼Ni1Nxi
33 32 ad4ant24 NZ𝔼NU𝔼NZUx𝔼Ns01i1Nxi
34 mullid Zi1Zi=Zi
35 mul02 xi0xi=0
36 34 35 oveqan12d Zixi1Zi+0xi=Zi+0
37 addrid ZiZi+0=Zi
38 37 adantr ZixiZi+0=Zi
39 36 38 eqtrd Zixi1Zi+0xi=Zi
40 39 eqeq2d ZixiUi=1Zi+0xiUi=Zi
41 31 33 40 syl2anc NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1Zi+0xiUi=Zi
42 41 ralbidva NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1Zi+0xii1NUi=Zi
43 28 42 bitr4d NZ𝔼NU𝔼NZUx𝔼Ns01U=Zi1NUi=1Zi+0xi
44 24 43 bitrid NZ𝔼NU𝔼NZUx𝔼Ns01Z=Ui1NUi=1Zi+0xi
45 23 44 imbitrrid NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxis=0Z=U
46 45 expdimp NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxis=0Z=U
47 46 necon3d NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxiZUs0
48 14 47 mpd NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxis0
49 elicc01 s01s0ss1
50 49 simp1bi s01s
51 rereccl ss01s
52 50 51 sylan s01s01s
53 50 adantr s01s0s
54 49 simp2bi s010s
55 54 adantr s01s00s
56 simpr s01s0s0
57 53 55 56 ne0gt0d s01s00<s
58 1re 1
59 0le1 01
60 divge0 101s0<s01s
61 58 59 60 mpanl12 s0<s01s
62 53 57 61 syl2anc s01s001s
63 elrege0 1s0+∞1s01s
64 52 62 63 sylanbrc s01s01s0+∞
65 64 adantll NZ𝔼NU𝔼NZUx𝔼Ns01s01s0+∞
66 50 ad3antlr NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Ns
67 66 recnd NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Ns
68 simplr NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Ns0
69 32 ad5ant25 NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Nxi
70 9 ad3antrrr NZ𝔼NU𝔼NZUx𝔼Ns01s0i1NZ𝔼N
71 70 30 sylancom NZ𝔼NU𝔼NZUx𝔼Ns01s0i1NZi
72 ax-1cn 1
73 reccl ss01s
74 subcl 11s11s
75 72 73 74 sylancr ss011s
76 75 adantr ss0xiZi11s
77 subcl 1s1s
78 72 77 mpan s1s
79 78 adantr ss01s
80 73 79 mulcld ss01s1s
81 80 adantr ss0xiZi1s1s
82 simprr ss0xiZiZi
83 76 81 82 adddird ss0xiZi1-1s+1s1sZi=11sZi+1s1sZi
84 simpl ss0s
85 subdi 1s1s1s1s=1s11ss
86 72 85 mp3an2 1ss1s1s=1s11ss
87 73 84 86 syl2anc ss01s1s=1s11ss
88 87 oveq2d ss01-1s+1s1s=11s+1s1-1ss
89 73 mulridd ss01s1=1s
90 recid2 ss01ss=1
91 89 90 oveq12d ss01s11ss=1s1
92 91 oveq2d ss011s+1s1-1ss=11s+1s-1
93 addsubass 11s1s111s+1s-1=11s+1s-1
94 72 93 mp3an3 11s1s11s+1s-1=11s+1s-1
95 75 73 94 syl2anc ss011s+1s-1=11s+1s-1
96 75 73 addcld ss01-1s+1s
97 npcan 11s1-1s+1s=1
98 72 73 97 sylancr ss01-1s+1s=1
99 96 98 subeq0bd ss011s+1s-1=0
100 92 95 99 3eqtr2d ss011s+1s1-1ss=0
101 88 100 eqtrd ss01-1s+1s1s=0
102 101 adantr ss0xiZi1-1s+1s1s=0
103 102 oveq1d ss0xiZi1-1s+1s1sZi=0Zi
104 73 adantr ss0xiZi1s
105 78 ad2antrr ss0xiZi1s
106 104 105 82 mulassd ss0xiZi1s1sZi=1s1sZi
107 106 oveq2d ss0xiZi11sZi+1s1sZi=11sZi+1s1sZi
108 83 103 107 3eqtr3rd ss0xiZi11sZi+1s1sZi=0Zi
109 mul02 Zi0Zi=0
110 109 ad2antll ss0xiZi0Zi=0
111 108 110 eqtrd ss0xiZi11sZi+1s1sZi=0
112 simpll ss0xiZis
113 simprl ss0xiZixi
114 104 112 113 mulassd ss0xiZi1ssxi=1ssxi
115 90 oveq1d ss01ssxi=1xi
116 mullid xi1xi=xi
117 116 adantr xiZi1xi=xi
118 115 117 sylan9eq ss0xiZi1ssxi=xi
119 114 118 eqtr3d ss0xiZi1ssxi=xi
120 111 119 oveq12d ss0xiZi11sZi+1s1sZi+1ssxi=0+xi
121 76 82 mulcld ss0xiZi11sZi
122 simpr xiZiZi
123 mulcl 1sZi1sZi
124 79 122 123 syl2an ss0xiZi1sZi
125 104 124 mulcld ss0xiZi1s1sZi
126 mulcl sxisxi
127 126 ad2ant2r ss0xiZisxi
128 104 127 mulcld ss0xiZi1ssxi
129 121 125 128 addassd ss0xiZi11sZi+1s1sZi+1ssxi=11sZi+1s1sZi+1ssxi
130 104 124 127 adddid ss0xiZi1s1sZi+sxi=1s1sZi+1ssxi
131 130 oveq2d ss0xiZi11sZi+1s1sZi+sxi=11sZi+1s1sZi+1ssxi
132 129 131 eqtr4d ss0xiZi11sZi+1s1sZi+1ssxi=11sZi+1s1sZi+sxi
133 addlid xi0+xi=xi
134 133 ad2antrl ss0xiZi0+xi=xi
135 120 132 134 3eqtr3rd ss0xiZixi=11sZi+1s1sZi+sxi
136 67 68 69 71 135 syl22anc NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Nxi=11sZi+1s1sZi+sxi
137 136 ralrimiva NZ𝔼NU𝔼NZUx𝔼Ns01s0i1Nxi=11sZi+1s1sZi+sxi
138 oveq2 t=1s1t=11s
139 138 oveq1d t=1s1tZi=11sZi
140 oveq1 t=1st1sZi+sxi=1s1sZi+sxi
141 139 140 oveq12d t=1s1tZi+t1sZi+sxi=11sZi+1s1sZi+sxi
142 141 eqeq2d t=1sxi=1tZi+t1sZi+sxixi=11sZi+1s1sZi+sxi
143 142 ralbidv t=1si1Nxi=1tZi+t1sZi+sxii1Nxi=11sZi+1s1sZi+sxi
144 143 rspcev 1s0+∞i1Nxi=11sZi+1s1sZi+sxit0+∞i1Nxi=1tZi+t1sZi+sxi
145 65 137 144 syl2anc NZ𝔼NU𝔼NZUx𝔼Ns01s0t0+∞i1Nxi=1tZi+t1sZi+sxi
146 oveq2 Ui=1sZi+sxitUi=t1sZi+sxi
147 146 oveq2d Ui=1sZi+sxi1tZi+tUi=1tZi+t1sZi+sxi
148 147 eqeq2d Ui=1sZi+sxixi=1tZi+tUixi=1tZi+t1sZi+sxi
149 148 ralimi i1NUi=1sZi+sxii1Nxi=1tZi+tUixi=1tZi+t1sZi+sxi
150 ralbi i1Nxi=1tZi+tUixi=1tZi+t1sZi+sxii1Nxi=1tZi+tUii1Nxi=1tZi+t1sZi+sxi
151 149 150 syl i1NUi=1sZi+sxii1Nxi=1tZi+tUii1Nxi=1tZi+t1sZi+sxi
152 151 rexbidv i1NUi=1sZi+sxit0+∞i1Nxi=1tZi+tUit0+∞i1Nxi=1tZi+t1sZi+sxi
153 145 152 syl5ibrcom NZ𝔼NU𝔼NZUx𝔼Ns01s0i1NUi=1sZi+sxit0+∞i1Nxi=1tZi+tUi
154 153 impancom NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxis0t0+∞i1Nxi=1tZi+tUi
155 48 154 mpd NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxit0+∞i1Nxi=1tZi+tUi
156 155 r19.29an NZ𝔼NU𝔼NZUx𝔼Ns01i1NUi=1sZi+sxit0+∞i1Nxi=1tZi+tUi
157 13 156 syldan NZ𝔼NU𝔼NZUx𝔼NUBtwnZxt0+∞i1Nxi=1tZi+tUi
158 3simpa x0xx1x0x
159 elicc01 x01x0xx1
160 elrege0 x0+∞x0x
161 158 159 160 3imtr4i x01x0+∞
162 161 ssriv 010+∞
163 brbtwn x𝔼NZ𝔼NU𝔼NxBtwnZUt01i1Nxi=1tZi+tUi
164 10 9 8 163 syl3anc NZ𝔼NU𝔼NZUx𝔼NxBtwnZUt01i1Nxi=1tZi+tUi
165 164 biimpa NZ𝔼NU𝔼NZUx𝔼NxBtwnZUt01i1Nxi=1tZi+tUi
166 ssrexv 010+∞t01i1Nxi=1tZi+tUit0+∞i1Nxi=1tZi+tUi
167 162 165 166 mpsyl NZ𝔼NU𝔼NZUx𝔼NxBtwnZUt0+∞i1Nxi=1tZi+tUi
168 157 167 jaodan NZ𝔼NU𝔼NZUx𝔼NUBtwnZxxBtwnZUt0+∞i1Nxi=1tZi+tUi
169 168 anasss NZ𝔼NU𝔼NZUx𝔼NUBtwnZxxBtwnZUt0+∞i1Nxi=1tZi+tUi
170 7 169 sylan2b NZ𝔼NU𝔼NZUxDt0+∞i1Nxi=1tZi+tUi
171 r19.26 i1Nxi=1tZi+tUixi=1sZi+sUii1Nxi=1tZi+tUii1Nxi=1sZi+sUi
172 eqtr2 xi=1tZi+tUixi=1sZi+sUi1tZi+tUi=1sZi+sUi
173 172 ralimi i1Nxi=1tZi+tUixi=1sZi+sUii1N1tZi+tUi=1sZi+sUi
174 171 173 sylbir i1Nxi=1tZi+tUii1Nxi=1sZi+sUii1N1tZi+tUi=1sZi+sUi
175 elrege0 t0+∞t0t
176 175 simplbi t0+∞t
177 176 recnd t0+∞t
178 elrege0 s0+∞s0s
179 178 simplbi s0+∞s
180 179 recnd s0+∞s
181 177 180 anim12i t0+∞s0+∞ts
182 simplr NZ𝔼NU𝔼NZUtsi1Nts
183 simpl2 NZ𝔼NU𝔼NZUZ𝔼N
184 183 ad2antrr NZ𝔼NU𝔼NZUtsi1NZ𝔼N
185 184 30 sylancom NZ𝔼NU𝔼NZUtsi1NZi
186 simpl3 NZ𝔼NU𝔼NZUU𝔼N
187 186 ad2antrr NZ𝔼NU𝔼NZUtsi1NU𝔼N
188 fveecn U𝔼Ni1NUi
189 187 188 sylancom NZ𝔼NU𝔼NZUtsi1NUi
190 subcl 1t1t
191 72 190 mpan t1t
192 191 adantr ts1t
193 simpl ZiUiZi
194 mulcl 1tZi1tZi
195 192 193 194 syl2an tsZiUi1tZi
196 mulcl tUitUi
197 196 ad2ant2rl tsZiUitUi
198 78 adantl ts1s
199 198 193 123 syl2an tsZiUi1sZi
200 mulcl sUisUi
201 200 ad2ant2l tsZiUisUi
202 195 197 199 201 addsubeq4d tsZiUi1tZi+tUi=1sZi+sUi1sZi1tZi=tUisUi
203 nnncan1 1st1-s-1t=ts
204 72 203 mp3an1 st1-s-1t=ts
205 204 ancoms ts1-s-1t=ts
206 205 oveq1d ts1-s-1tZi=tsZi
207 206 adantr tsZiUi1-s-1tZi=tsZi
208 78 ad2antlr tsZiUi1s
209 191 ad2antrr tsZiUi1t
210 simprl tsZiUiZi
211 208 209 210 subdird tsZiUi1-s-1tZi=1sZi1tZi
212 207 211 eqtr3d tsZiUitsZi=1sZi1tZi
213 simpll tsZiUit
214 simplr tsZiUis
215 simprr tsZiUiUi
216 213 214 215 subdird tsZiUitsUi=tUisUi
217 212 216 eqeq12d tsZiUitsZi=tsUi1sZi1tZi=tUisUi
218 subcl tsts
219 218 adantr tsZiUits
220 mulcan1g tsZiUitsZi=tsUits=0Zi=Ui
221 219 210 215 220 syl3anc tsZiUitsZi=tsUits=0Zi=Ui
222 202 217 221 3bitr2d tsZiUi1tZi+tUi=1sZi+sUits=0Zi=Ui
223 182 185 189 222 syl12anc NZ𝔼NU𝔼NZUtsi1N1tZi+tUi=1sZi+sUits=0Zi=Ui
224 223 ralbidva NZ𝔼NU𝔼NZUtsi1N1tZi+tUi=1sZi+sUii1Nts=0Zi=Ui
225 r19.32v i1Nts=0Zi=Uits=0i1NZi=Ui
226 simplr NZ𝔼NU𝔼NZUtsZU
227 226 neneqd NZ𝔼NU𝔼NZUts¬Z=U
228 simpll2 NZ𝔼NU𝔼NZUtsZ𝔼N
229 simpll3 NZ𝔼NU𝔼NZUtsU𝔼N
230 eqeefv Z𝔼NU𝔼NZ=Ui1NZi=Ui
231 228 229 230 syl2anc NZ𝔼NU𝔼NZUtsZ=Ui1NZi=Ui
232 227 231 mtbid NZ𝔼NU𝔼NZUts¬i1NZi=Ui
233 orel2 ¬i1NZi=Uits=0i1NZi=Uits=0
234 232 233 syl NZ𝔼NU𝔼NZUtsts=0i1NZi=Uits=0
235 subeq0 tsts=0t=s
236 235 adantl NZ𝔼NU𝔼NZUtsts=0t=s
237 234 236 sylibd NZ𝔼NU𝔼NZUtsts=0i1NZi=Uit=s
238 225 237 biimtrid NZ𝔼NU𝔼NZUtsi1Nts=0Zi=Uit=s
239 224 238 sylbid NZ𝔼NU𝔼NZUtsi1N1tZi+tUi=1sZi+sUit=s
240 181 239 sylan2 NZ𝔼NU𝔼NZUt0+∞s0+∞i1N1tZi+tUi=1sZi+sUit=s
241 174 240 syl5 NZ𝔼NU𝔼NZUt0+∞s0+∞i1Nxi=1tZi+tUii1Nxi=1sZi+sUit=s
242 241 ralrimivva NZ𝔼NU𝔼NZUt0+∞s0+∞i1Nxi=1tZi+tUii1Nxi=1sZi+sUit=s
243 242 adantr NZ𝔼NU𝔼NZUxDt0+∞s0+∞i1Nxi=1tZi+tUii1Nxi=1sZi+sUit=s
244 oveq2 t=s1t=1s
245 244 oveq1d t=s1tZi=1sZi
246 oveq1 t=stUi=sUi
247 245 246 oveq12d t=s1tZi+tUi=1sZi+sUi
248 247 eqeq2d t=sxi=1tZi+tUixi=1sZi+sUi
249 248 ralbidv t=si1Nxi=1tZi+tUii1Nxi=1sZi+sUi
250 249 reu4 ∃!t0+∞i1Nxi=1tZi+tUit0+∞i1Nxi=1tZi+tUit0+∞s0+∞i1Nxi=1tZi+tUii1Nxi=1sZi+sUit=s
251 170 243 250 sylanbrc NZ𝔼NU𝔼NZUxD∃!t0+∞i1Nxi=1tZi+tUi
252 df-reu ∃!t0+∞i1Nxi=1tZi+tUi∃!tt0+∞i1Nxi=1tZi+tUi
253 251 252 sylib NZ𝔼NU𝔼NZUxD∃!tt0+∞i1Nxi=1tZi+tUi
254 253 ralrimiva NZ𝔼NU𝔼NZUxD∃!tt0+∞i1Nxi=1tZi+tUi
255 2 fnopabg xD∃!tt0+∞i1Nxi=1tZi+tUiFFnD
256 254 255 sylib NZ𝔼NU𝔼NZUFFnD
257 176 ad2antlr NZ𝔼NU𝔼NZUt0+∞k1Nt
258 183 ad2antrr NZ𝔼NU𝔼NZUt0+∞k1NZ𝔼N
259 fveere Z𝔼Nk1NZk
260 258 259 sylancom NZ𝔼NU𝔼NZUt0+∞k1NZk
261 186 ad2antrr NZ𝔼NU𝔼NZUt0+∞k1NU𝔼N
262 fveere U𝔼Nk1NUk
263 261 262 sylancom NZ𝔼NU𝔼NZUt0+∞k1NUk
264 resubcl 1t1t
265 58 264 mpan t1t
266 remulcl 1tZk1tZk
267 265 266 sylan tZk1tZk
268 267 3adant3 tZkUk1tZk
269 remulcl tUktUk
270 269 3adant2 tZkUktUk
271 268 270 readdcld tZkUk1tZk+tUk
272 257 260 263 271 syl3anc NZ𝔼NU𝔼NZUt0+∞k1N1tZk+tUk
273 272 ralrimiva NZ𝔼NU𝔼NZUt0+∞k1N1tZk+tUk
274 simpll1 NZ𝔼NU𝔼NZUt0+∞N
275 mptelee Nk1N1tZk+tUk𝔼Nk1N1tZk+tUk
276 274 275 syl NZ𝔼NU𝔼NZUt0+∞k1N1tZk+tUk𝔼Nk1N1tZk+tUk
277 273 276 mpbird NZ𝔼NU𝔼NZUt0+∞k1N1tZk+tUk𝔼N
278 letric 1t1tt1
279 58 176 278 sylancr t0+∞1tt1
280 279 adantl NZ𝔼NU𝔼NZUt0+∞1tt1
281 simpr t0+∞1t1t
282 176 adantr t0+∞1tt
283 0red t0+∞1t0
284 1red t0+∞1t1
285 0lt1 0<1
286 285 a1i t0+∞1t0<1
287 283 284 282 286 281 ltletrd t0+∞1t0<t
288 divelunit 101t0<t1t011t
289 58 59 288 mpanl12 t0<t1t011t
290 282 287 289 syl2anc t0+∞1t1t011t
291 281 290 mpbird t0+∞1t1t01
292 291 adantll NZ𝔼NU𝔼NZUt0+∞1t1t01
293 176 ad3antlr NZ𝔼NU𝔼NZUt0+∞1ti1Nt
294 293 recnd NZ𝔼NU𝔼NZUt0+∞1ti1Nt
295 287 gt0ne0d t0+∞1tt0
296 295 adantll NZ𝔼NU𝔼NZUt0+∞1tt0
297 296 adantr NZ𝔼NU𝔼NZUt0+∞1ti1Nt0
298 183 ad3antrrr NZ𝔼NU𝔼NZUt0+∞1ti1NZ𝔼N
299 298 30 sylancom NZ𝔼NU𝔼NZUt0+∞1ti1NZi
300 186 ad3antrrr NZ𝔼NU𝔼NZUt0+∞1ti1NU𝔼N
301 300 188 sylancom NZ𝔼NU𝔼NZUt0+∞1ti1NUi
302 reccl tt01t
303 302 adantr tt0ZiUi1t
304 191 adantr tt01t
305 304 193 194 syl2an tt0ZiUi1tZi
306 196 ad2ant2rl tt0ZiUitUi
307 303 305 306 adddid tt0ZiUi1t1tZi+tUi=1t1tZi+1ttUi
308 307 oveq2d tt0ZiUi11tZi+1t1tZi+tUi=11tZi+1t1tZi+1ttUi
309 subcl 11t11t
310 72 302 309 sylancr tt011t
311 mulcl 11tZi11tZi
312 310 193 311 syl2an tt0ZiUi11tZi
313 303 305 mulcld tt0ZiUi1t1tZi
314 recid2 tt01tt=1
315 314 oveq1d tt01ttUi=1Ui
316 315 adantr tt0ZiUi1ttUi=1Ui
317 simpll tt0ZiUit
318 simprr tt0ZiUiUi
319 303 317 318 mulassd tt0ZiUi1ttUi=1ttUi
320 mullid Ui1Ui=Ui
321 320 ad2antll tt0ZiUi1Ui=Ui
322 316 319 321 3eqtr3d tt0ZiUi1ttUi=Ui
323 322 318 eqeltrd tt0ZiUi1ttUi
324 312 313 323 addassd tt0ZiUi11tZi+1t1tZi+1ttUi=11tZi+1t1tZi+1ttUi
325 310 adantr tt0ZiUi11t
326 302 304 mulcld tt01t1t
327 326 adantr tt0ZiUi1t1t
328 simprl tt0ZiUiZi
329 325 327 328 adddird tt0ZiUi1-1t+1t1tZi=11tZi+1t1tZi
330 simpl tt0t
331 subdi 1t1t1t1t=1t11tt
332 72 331 mp3an2 1tt1t1t=1t11tt
333 302 330 332 syl2anc tt01t1t=1t11tt
334 302 mulridd tt01t1=1t
335 334 314 oveq12d tt01t11tt=1t1
336 333 335 eqtrd tt01t1t=1t1
337 336 oveq2d tt01-1t+1t1t=11t+1t-1
338 npncan2 11t11t+1t-1=0
339 72 302 338 sylancr tt011t+1t-1=0
340 337 339 eqtrd tt01-1t+1t1t=0
341 340 adantr tt0ZiUi1-1t+1t1t=0
342 341 oveq1d tt0ZiUi1-1t+1t1tZi=0Zi
343 109 ad2antrl tt0ZiUi0Zi=0
344 342 343 eqtrd tt0ZiUi1-1t+1t1tZi=0
345 191 ad2antrr tt0ZiUi1t
346 303 345 328 mulassd tt0ZiUi1t1tZi=1t1tZi
347 346 oveq2d tt0ZiUi11tZi+1t1tZi=11tZi+1t1tZi
348 329 344 347 3eqtr3rd tt0ZiUi11tZi+1t1tZi=0
349 348 322 oveq12d tt0ZiUi11tZi+1t1tZi+1ttUi=0+Ui
350 addlid Ui0+Ui=Ui
351 350 ad2antll tt0ZiUi0+Ui=Ui
352 349 351 eqtrd tt0ZiUi11tZi+1t1tZi+1ttUi=Ui
353 308 324 352 3eqtr2rd tt0ZiUiUi=11tZi+1t1tZi+tUi
354 294 297 299 301 353 syl22anc NZ𝔼NU𝔼NZUt0+∞1ti1NUi=11tZi+1t1tZi+tUi
355 354 ralrimiva NZ𝔼NU𝔼NZUt0+∞1ti1NUi=11tZi+1t1tZi+tUi
356 oveq2 s=1t1s=11t
357 356 oveq1d s=1t1sZi=11tZi
358 oveq1 s=1tsk1N1tZk+tUki=1tk1N1tZk+tUki
359 357 358 oveq12d s=1t1sZi+sk1N1tZk+tUki=11tZi+1tk1N1tZk+tUki
360 359 eqeq2d s=1tUi=1sZi+sk1N1tZk+tUkiUi=11tZi+1tk1N1tZk+tUki
361 360 ralbidv s=1ti1NUi=1sZi+sk1N1tZk+tUkii1NUi=11tZi+1tk1N1tZk+tUki
362 fveq2 k=iZk=Zi
363 362 oveq2d k=i1tZk=1tZi
364 fveq2 k=iUk=Ui
365 364 oveq2d k=itUk=tUi
366 363 365 oveq12d k=i1tZk+tUk=1tZi+tUi
367 eqid k1N1tZk+tUk=k1N1tZk+tUk
368 ovex 1tZi+tUiV
369 366 367 368 fvmpt i1Nk1N1tZk+tUki=1tZi+tUi
370 369 oveq2d i1N1tk1N1tZk+tUki=1t1tZi+tUi
371 370 oveq2d i1N11tZi+1tk1N1tZk+tUki=11tZi+1t1tZi+tUi
372 371 eqeq2d i1NUi=11tZi+1tk1N1tZk+tUkiUi=11tZi+1t1tZi+tUi
373 372 ralbiia i1NUi=11tZi+1tk1N1tZk+tUkii1NUi=11tZi+1t1tZi+tUi
374 361 373 bitrdi s=1ti1NUi=1sZi+sk1N1tZk+tUkii1NUi=11tZi+1t1tZi+tUi
375 374 rspcev 1t01i1NUi=11tZi+1t1tZi+tUis01i1NUi=1sZi+sk1N1tZk+tUki
376 292 355 375 syl2anc NZ𝔼NU𝔼NZUt0+∞1ts01i1NUi=1sZi+sk1N1tZk+tUki
377 186 ad2antrr NZ𝔼NU𝔼NZUt0+∞1tU𝔼N
378 183 ad2antrr NZ𝔼NU𝔼NZUt0+∞1tZ𝔼N
379 277 adantr NZ𝔼NU𝔼NZUt0+∞1tk1N1tZk+tUk𝔼N
380 brbtwn U𝔼NZ𝔼Nk1N1tZk+tUk𝔼NUBtwnZk1N1tZk+tUks01i1NUi=1sZi+sk1N1tZk+tUki
381 377 378 379 380 syl3anc NZ𝔼NU𝔼NZUt0+∞1tUBtwnZk1N1tZk+tUks01i1NUi=1sZi+sk1N1tZk+tUki
382 376 381 mpbird NZ𝔼NU𝔼NZUt0+∞1tUBtwnZk1N1tZk+tUk
383 382 ex NZ𝔼NU𝔼NZUt0+∞1tUBtwnZk1N1tZk+tUk
384 simpll t0tt1t
385 simplr t0tt10t
386 simpr t0tt1t1
387 384 385 386 3jca t0tt1t0tt1
388 175 anbi1i t0+∞t1t0tt1
389 elicc01 t01t0tt1
390 387 388 389 3imtr4i t0+∞t1t01
391 390 adantll NZ𝔼NU𝔼NZUt0+∞t1t01
392 369 rgen i1Nk1N1tZk+tUki=1tZi+tUi
393 oveq2 s=t1s=1t
394 393 oveq1d s=t1sZi=1tZi
395 oveq1 s=tsUi=tUi
396 394 395 oveq12d s=t1sZi+sUi=1tZi+tUi
397 396 eqeq2d s=tk1N1tZk+tUki=1sZi+sUik1N1tZk+tUki=1tZi+tUi
398 397 ralbidv s=ti1Nk1N1tZk+tUki=1sZi+sUii1Nk1N1tZk+tUki=1tZi+tUi
399 398 rspcev t01i1Nk1N1tZk+tUki=1tZi+tUis01i1Nk1N1tZk+tUki=1sZi+sUi
400 391 392 399 sylancl NZ𝔼NU𝔼NZUt0+∞t1s01i1Nk1N1tZk+tUki=1sZi+sUi
401 277 adantr NZ𝔼NU𝔼NZUt0+∞t1k1N1tZk+tUk𝔼N
402 183 ad2antrr NZ𝔼NU𝔼NZUt0+∞t1Z𝔼N
403 186 ad2antrr NZ𝔼NU𝔼NZUt0+∞t1U𝔼N
404 brbtwn k1N1tZk+tUk𝔼NZ𝔼NU𝔼Nk1N1tZk+tUkBtwnZUs01i1Nk1N1tZk+tUki=1sZi+sUi
405 401 402 403 404 syl3anc NZ𝔼NU𝔼NZUt0+∞t1k1N1tZk+tUkBtwnZUs01i1Nk1N1tZk+tUki=1sZi+sUi
406 400 405 mpbird NZ𝔼NU𝔼NZUt0+∞t1k1N1tZk+tUkBtwnZU
407 406 ex NZ𝔼NU𝔼NZUt0+∞t1k1N1tZk+tUkBtwnZU
408 383 407 orim12d NZ𝔼NU𝔼NZUt0+∞1tt1UBtwnZk1N1tZk+tUkk1N1tZk+tUkBtwnZU
409 280 408 mpd NZ𝔼NU𝔼NZUt0+∞UBtwnZk1N1tZk+tUkk1N1tZk+tUkBtwnZU
410 opeq2 p=k1N1tZk+tUkZp=Zk1N1tZk+tUk
411 410 breq2d p=k1N1tZk+tUkUBtwnZpUBtwnZk1N1tZk+tUk
412 breq1 p=k1N1tZk+tUkpBtwnZUk1N1tZk+tUkBtwnZU
413 411 412 orbi12d p=k1N1tZk+tUkUBtwnZppBtwnZUUBtwnZk1N1tZk+tUkk1N1tZk+tUkBtwnZU
414 413 1 elrab2 k1N1tZk+tUkDk1N1tZk+tUk𝔼NUBtwnZk1N1tZk+tUkk1N1tZk+tUkBtwnZU
415 277 409 414 sylanbrc NZ𝔼NU𝔼NZUt0+∞k1N1tZk+tUkD
416 fveq1 x=k1N1tZk+tUkxi=k1N1tZk+tUki
417 416 eqeq1d x=k1N1tZk+tUkxi=1tZi+tUik1N1tZk+tUki=1tZi+tUi
418 417 ralbidv x=k1N1tZk+tUki1Nxi=1tZi+tUii1Nk1N1tZk+tUki=1tZi+tUi
419 418 rspcev k1N1tZk+tUkDi1Nk1N1tZk+tUki=1tZi+tUixDi1Nxi=1tZi+tUi
420 415 392 419 sylancl NZ𝔼NU𝔼NZUt0+∞xDi1Nxi=1tZi+tUi
421 7 simplbi xDx𝔼N
422 1 ssrab3 D𝔼N
423 422 sseli yDy𝔼N
424 421 423 anim12i xDyDx𝔼Ny𝔼N
425 r19.26 i1Nxi=1tZi+tUiyi=1tZi+tUii1Nxi=1tZi+tUii1Nyi=1tZi+tUi
426 eqtr3 xi=1tZi+tUiyi=1tZi+tUixi=yi
427 426 ralimi i1Nxi=1tZi+tUiyi=1tZi+tUii1Nxi=yi
428 425 427 sylbir i1Nxi=1tZi+tUii1Nyi=1tZi+tUii1Nxi=yi
429 eqeefv x𝔼Ny𝔼Nx=yi1Nxi=yi
430 429 adantl NZ𝔼NU𝔼NZUx𝔼Ny𝔼Nx=yi1Nxi=yi
431 428 430 imbitrrid NZ𝔼NU𝔼NZUx𝔼Ny𝔼Ni1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
432 424 431 sylan2 NZ𝔼NU𝔼NZUxDyDi1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
433 432 ralrimivva NZ𝔼NU𝔼NZUxDyDi1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
434 433 adantr NZ𝔼NU𝔼NZUt0+∞xDyDi1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
435 df-reu ∃!xDi1Nxi=1tZi+tUi∃!xxDi1Nxi=1tZi+tUi
436 fveq1 x=yxi=yi
437 436 eqeq1d x=yxi=1tZi+tUiyi=1tZi+tUi
438 437 ralbidv x=yi1Nxi=1tZi+tUii1Nyi=1tZi+tUi
439 438 reu4 ∃!xDi1Nxi=1tZi+tUixDi1Nxi=1tZi+tUixDyDi1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
440 435 439 bitr3i ∃!xxDi1Nxi=1tZi+tUixDi1Nxi=1tZi+tUixDyDi1Nxi=1tZi+tUii1Nyi=1tZi+tUix=y
441 420 434 440 sylanbrc NZ𝔼NU𝔼NZUt0+∞∃!xxDi1Nxi=1tZi+tUi
442 441 ralrimiva NZ𝔼NU𝔼NZUt0+∞∃!xxDi1Nxi=1tZi+tUi
443 an12 xDt0+∞i1Nxi=1tZi+tUit0+∞xDi1Nxi=1tZi+tUi
444 443 opabbii xt|xDt0+∞i1Nxi=1tZi+tUi=xt|t0+∞xDi1Nxi=1tZi+tUi
445 2 444 eqtri F=xt|t0+∞xDi1Nxi=1tZi+tUi
446 445 cnveqi F-1=xt|t0+∞xDi1Nxi=1tZi+tUi-1
447 cnvopab xt|t0+∞xDi1Nxi=1tZi+tUi-1=tx|t0+∞xDi1Nxi=1tZi+tUi
448 446 447 eqtri F-1=tx|t0+∞xDi1Nxi=1tZi+tUi
449 448 fnopabg t0+∞∃!xxDi1Nxi=1tZi+tUiF-1Fn0+∞
450 442 449 sylib NZ𝔼NU𝔼NZUF-1Fn0+∞
451 dff1o4 F:D1-1 onto0+∞FFnDF-1Fn0+∞
452 256 450 451 sylanbrc NZ𝔼NU𝔼NZUF:D1-1 onto0+∞