Metamath Proof Explorer


Theorem fdc

Description: Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010)

Ref Expression
Hypotheses fdc.1 AV
fdc.2 M
fdc.3 Z=M
fdc.4 N=M+1
fdc.5 a=fk1φψ
fdc.6 b=fkψχ
fdc.7 a=fnθτ
fdc.8 ηCA
fdc.9 ηRFrA
fdc.10 ηaAθbAφ
fdc.11 ηφaAbAbRa
Assertion fdc ηnZff:MnAfM=CτkNnχ

Proof

Step Hyp Ref Expression
1 fdc.1 AV
2 fdc.2 M
3 fdc.3 Z=M
4 fdc.4 N=M+1
5 fdc.5 a=fk1φψ
6 fdc.6 b=fkψχ
7 fdc.7 a=fnθτ
8 fdc.8 ηCA
9 fdc.9 ηRFrA
10 fdc.10 ηaAθbAφ
11 fdc.11 ηφaAbAbRa
12 uzid MMM
13 2 12 ax-mp MM
14 13 3 eleqtrri MZ
15 eqid Ma=Ma
16 2 elexi MV
17 vex aV
18 16 17 fsn Ma:MaMa=Ma
19 15 18 mpbir Ma:Ma
20 snssi aAaA
21 fss Ma:MaaAMa:MA
22 19 20 21 sylancr aAMa:MA
23 fzsn MMM=M
24 2 23 ax-mp MM=M
25 24 feq2i Ma:MMAMa:MA
26 22 25 sylibr aAMa:MMA
27 26 adantr aAθMa:MMA
28 16 17 fvsn MaM=a
29 28 a1i aAθMaM=a
30 simpr aAθθ
31 snex MaV
32 feq1 f=Maf:MMAMa:MMA
33 fveq1 f=MafM=MaM
34 33 eqeq1d f=MafM=aMaM=a
35 33 28 eqtrdi f=MafM=a
36 sbceq2a fM=a[˙fM/a]˙θθ
37 35 36 syl f=Ma[˙fM/a]˙θθ
38 34 37 anbi12d f=MafM=a[˙fM/a]˙θMaM=aθ
39 32 38 anbi12d f=Maf:MMAfM=a[˙fM/a]˙θMa:MMAMaM=aθ
40 31 39 spcev Ma:MMAMaM=aθff:MMAfM=a[˙fM/a]˙θ
41 27 29 30 40 syl12anc aAθff:MMAfM=a[˙fM/a]˙θ
42 oveq2 n=MMn=MM
43 42 feq2d n=Mf:MnAf:MMA
44 fvex fnV
45 44 7 sbcie [˙fn/a]˙θτ
46 fveq2 n=Mfn=fM
47 46 sbceq1d n=M[˙fn/a]˙θ[˙fM/a]˙θ
48 45 47 bitr3id n=Mτ[˙fM/a]˙θ
49 48 anbi2d n=MfM=aτfM=a[˙fM/a]˙θ
50 oveq2 n=MNn=NM
51 4 oveq1i NM=M+1M
52 2 zrei M
53 52 ltp1i M<M+1
54 peano2z MM+1
55 2 54 ax-mp M+1
56 fzn M+1MM<M+1M+1M=
57 55 2 56 mp2an M<M+1M+1M=
58 53 57 mpbi M+1M=
59 51 58 eqtri NM=
60 50 59 eqtrdi n=MNn=
61 60 raleqdv n=MkNnχkχ
62 43 49 61 3anbi123d n=Mf:MnAfM=aτkNnχf:MMAfM=a[˙fM/a]˙θkχ
63 ral0 kχ
64 df-3an f:MMAfM=a[˙fM/a]˙θkχf:MMAfM=a[˙fM/a]˙θkχ
65 63 64 mpbiran2 f:MMAfM=a[˙fM/a]˙θkχf:MMAfM=a[˙fM/a]˙θ
66 62 65 bitrdi n=Mf:MnAfM=aτkNnχf:MMAfM=a[˙fM/a]˙θ
67 66 exbidv n=Mff:MnAfM=aτkNnχff:MMAfM=a[˙fM/a]˙θ
68 67 rspcev MZff:MMAfM=a[˙fM/a]˙θnZff:MnAfM=aτkNnχ
69 14 41 68 sylancr aAθnZff:MnAfM=aτkNnχ
70 69 adantll ηaAθnZff:MnAfM=aτkNnχ
71 70 a1d ηaAθdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
72 breq1 d=bdRabRa
73 72 rspcev bAcA|nZff:MnAfM=cτkNnχbRadAcA|nZff:MnAfM=cτkNnχdRa
74 73 expcom bRabAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχdRa
75 11 74 syl ηφaAbAbAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχdRa
76 dfrex2 dAcA|nZff:MnAfM=cτkNnχdRa¬dAcA|nZff:MnAfM=cτkNnχ¬dRa
77 75 76 imbitrdi ηφaAbAbAcA|nZff:MnAfM=cτkNnχ¬dAcA|nZff:MnAfM=cτkNnχ¬dRa
78 77 con2d ηφaAbAdAcA|nZff:MnAfM=cτkNnχ¬dRa¬bAcA|nZff:MnAfM=cτkNnχ
79 eldif bAAcA|nZff:MnAfM=cτkNnχbA¬bAcA|nZff:MnAfM=cτkNnχ
80 79 simplbi2 bA¬bAcA|nZff:MnAfM=cτkNnχbAAcA|nZff:MnAfM=cτkNnχ
81 ssrab2 cA|nZff:MnAfM=cτkNnχA
82 dfss4 cA|nZff:MnAfM=cτkNnχAAAcA|nZff:MnAfM=cτkNnχ=cA|nZff:MnAfM=cτkNnχ
83 81 82 mpbi AAcA|nZff:MnAfM=cτkNnχ=cA|nZff:MnAfM=cτkNnχ
84 83 eleq2i bAAcA|nZff:MnAfM=cτkNnχbcA|nZff:MnAfM=cτkNnχ
85 eqeq2 c=bfM=cfM=b
86 85 anbi1d c=bfM=cτfM=bτ
87 86 3anbi2d c=bf:MnAfM=cτkNnχf:MnAfM=bτkNnχ
88 87 exbidv c=bff:MnAfM=cτkNnχff:MnAfM=bτkNnχ
89 88 rexbidv c=bnZff:MnAfM=cτkNnχnZff:MnAfM=bτkNnχ
90 89 elrab3 bAbcA|nZff:MnAfM=cτkNnχnZff:MnAfM=bτkNnχ
91 84 90 bitrid bAbAAcA|nZff:MnAfM=cτkNnχnZff:MnAfM=bτkNnχ
92 80 91 sylibd bA¬bAcA|nZff:MnAfM=cτkNnχnZff:MnAfM=bτkNnχ
93 92 ad2antll ηφaAbA¬bAcA|nZff:MnAfM=cτkNnχnZff:MnAfM=bτkNnχ
94 oveq2 n=mMn=Mm
95 94 feq2d n=mf:MnAf:MmA
96 fveq2 n=mfn=fm
97 96 sbceq1d n=m[˙fn/a]˙θ[˙fm/a]˙θ
98 45 97 bitr3id n=mτ[˙fm/a]˙θ
99 98 anbi2d n=mfM=bτfM=b[˙fm/a]˙θ
100 oveq2 n=mNn=Nm
101 100 raleqdv n=mkNnχkNmχ
102 95 99 101 3anbi123d n=mf:MnAfM=bτkNnχf:MmAfM=b[˙fm/a]˙θkNmχ
103 102 exbidv n=mff:MnAfM=bτkNnχff:MmAfM=b[˙fm/a]˙θkNmχ
104 103 cbvrexvw nZff:MnAfM=bτkNnχmZff:MmAfM=b[˙fm/a]˙θkNmχ
105 feq1 f=gf:MmAg:MmA
106 fveq1 f=gfM=gM
107 106 eqeq1d f=gfM=bgM=b
108 fveq1 f=gfm=gm
109 108 sbceq1d f=g[˙fm/a]˙θ[˙gm/a]˙θ
110 107 109 anbi12d f=gfM=b[˙fm/a]˙θgM=b[˙gm/a]˙θ
111 fvex fk1V
112 5 sbcbidv a=fk1[˙fk/b]˙φ[˙fk/b]˙ψ
113 111 112 sbcie [˙fk1/a]˙[˙fk/b]˙φ[˙fk/b]˙ψ
114 fvex fkV
115 114 6 sbcie [˙fk/b]˙ψχ
116 113 115 bitri [˙fk1/a]˙[˙fk/b]˙φχ
117 fveq1 f=gfk1=gk1
118 fveq1 f=gfk=gk
119 118 sbceq1d f=g[˙fk/b]˙φ[˙gk/b]˙φ
120 117 119 sbceqbid f=g[˙fk1/a]˙[˙fk/b]˙φ[˙gk1/a]˙[˙gk/b]˙φ
121 116 120 bitr3id f=gχ[˙gk1/a]˙[˙gk/b]˙φ
122 121 ralbidv f=gkNmχkNm[˙gk1/a]˙[˙gk/b]˙φ
123 105 110 122 3anbi123d f=gf:MmAfM=b[˙fm/a]˙θkNmχg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ
124 123 cbvexvw ff:MmAfM=b[˙fm/a]˙θkNmχgg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ
125 124 rexbii mZff:MmAfM=b[˙fm/a]˙θkNmχmZgg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ
126 104 125 bitri nZff:MnAfM=bτkNnχmZgg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ
127 3 peano2uzs mZm+1Z
128 127 ad2antlr ηφaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φm+1Z
129 sbceq2a d=b[˙d/b]˙φφ
130 129 anbi1d d=b[˙d/b]˙φaAφaA
131 130 anbi1d d=b[˙d/b]˙φaAmZφaAmZ
132 eqeq2 d=bgM=dgM=b
133 132 anbi1d d=bgM=d[˙gm/a]˙θgM=b[˙gm/a]˙θ
134 133 3anbi2d d=bg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ
135 134 imbi1d d=bg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
136 131 135 imbi12d d=b[˙d/b]˙φaAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χφaAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
137 sbceq2a c=a[˙c/a]˙[˙d/b]˙φ[˙d/b]˙φ
138 eleq1 c=acAaA
139 137 138 anbi12d c=a[˙c/a]˙[˙d/b]˙φcA[˙d/b]˙φaA
140 139 anbi1d c=a[˙c/a]˙[˙d/b]˙φcAmZ[˙d/b]˙φaAmZ
141 eqeq2 c=afM=cfM=a
142 141 anbi1d c=afM=c[˙fm+1/a]˙θfM=a[˙fm+1/a]˙θ
143 142 3anbi2d c=af:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χf:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
144 143 exbidv c=aff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
145 144 imbi2d c=ag:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
146 140 145 imbi12d c=a[˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χ[˙d/b]˙φaAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
147 peano2uz mMm+1M
148 147 3 eleq2s mZm+1M
149 elfzp12 m+1MxMm+1x=MxM+1m+1
150 148 149 syl mZxMm+1x=MxM+1m+1
151 150 ad2antlr cAmZg:MmAxMm+1x=MxM+1m+1
152 iftrue x=Mifx=Mcgx1=c
153 152 eleq1d x=Mifx=Mcgx1AcA
154 153 biimprcd cAx=Mifx=Mcgx1A
155 154 ad2antrr cAmZg:MmAx=Mifx=Mcgx1A
156 1re 1
157 52 156 readdcli M+1
158 52 157 ltnlei M<M+1¬M+1M
159 53 158 mpbi ¬M+1M
160 eleq1 x=MxM+1m+1MM+1m+1
161 elfzle1 MM+1m+1M+1M
162 160 161 syl6bi x=MxM+1m+1M+1M
163 162 com12 xM+1m+1x=MM+1M
164 159 163 mtoi xM+1m+1¬x=M
165 164 adantl mZg:MmAxM+1m+1¬x=M
166 165 iffalsed mZg:MmAxM+1m+1ifx=Mcgx1=gx1
167 elfzelz xM+1m+1x
168 167 adantl mZxM+1m+1x
169 eluzelz mMm
170 169 3 eleq2s mZm
171 170 peano2zd mZm+1
172 1z 1
173 fzsubel M+1m+1x1xM+1m+1x1M+1-1m+1-1
174 173 biimpd M+1m+1x1xM+1m+1x1M+1-1m+1-1
175 172 174 mpanr2 M+1m+1xxM+1m+1x1M+1-1m+1-1
176 55 175 mpanl1 m+1xxM+1m+1x1M+1-1m+1-1
177 176 ex m+1xxM+1m+1x1M+1-1m+1-1
178 171 177 syl mZxxM+1m+1x1M+1-1m+1-1
179 178 com23 mZxM+1m+1xx1M+1-1m+1-1
180 179 imp mZxM+1m+1xx1M+1-1m+1-1
181 168 180 mpd mZxM+1m+1x1M+1-1m+1-1
182 52 recni M
183 ax-1cn 1
184 182 183 pncan3oi M+1-1=M
185 184 a1i mZM+1-1=M
186 170 zcnd mZm
187 pncan m1m+1-1=m
188 186 183 187 sylancl mZm+1-1=m
189 185 188 oveq12d mZM+1-1m+1-1=Mm
190 189 adantr mZxM+1m+1M+1-1m+1-1=Mm
191 181 190 eleqtrd mZxM+1m+1x1Mm
192 ffvelcdm g:MmAx1Mmgx1A
193 191 192 sylan2 g:MmAmZxM+1m+1gx1A
194 193 anassrs g:MmAmZxM+1m+1gx1A
195 194 ancom1s mZg:MmAxM+1m+1gx1A
196 166 195 eqeltrd mZg:MmAxM+1m+1ifx=Mcgx1A
197 196 ex mZg:MmAxM+1m+1ifx=Mcgx1A
198 197 adantll cAmZg:MmAxM+1m+1ifx=Mcgx1A
199 155 198 jaod cAmZg:MmAx=MxM+1m+1ifx=Mcgx1A
200 151 199 sylbid cAmZg:MmAxMm+1ifx=Mcgx1A
201 200 ralrimiv cAmZg:MmAxMm+1ifx=Mcgx1A
202 eqid xMm+1ifx=Mcgx1=xMm+1ifx=Mcgx1
203 202 fmpt xMm+1ifx=Mcgx1AxMm+1ifx=Mcgx1:Mm+1A
204 201 203 sylib cAmZg:MmAxMm+1ifx=Mcgx1:Mm+1A
205 204 adantlll [˙c/a]˙[˙d/b]˙φcAmZg:MmAxMm+1ifx=Mcgx1:Mm+1A
206 205 3ad2antr1 [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φxMm+1ifx=Mcgx1:Mm+1A
207 eluzfz1 m+1MMMm+1
208 147 207 syl mMMMm+1
209 208 3 eleq2s mZMMm+1
210 vex cV
211 152 202 210 fvmpt MMm+1xMm+1ifx=Mcgx1M=c
212 209 211 syl mZxMm+1ifx=Mcgx1M=c
213 212 ad2antlr [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φxMm+1ifx=Mcgx1M=c
214 eluzfz2 m+1Mm+1Mm+1
215 147 214 syl mMm+1Mm+1
216 215 3 eleq2s mZm+1Mm+1
217 eqeq1 x=m+1x=Mm+1=M
218 fvoveq1 x=m+1gx1=gm+1-1
219 217 218 ifbieq2d x=m+1ifx=Mcgx1=ifm+1=Mcgm+1-1
220 fvex gm+1-1V
221 210 220 ifex ifm+1=Mcgm+1-1V
222 219 202 221 fvmpt m+1Mm+1xMm+1ifx=Mcgx1m+1=ifm+1=Mcgm+1-1
223 216 222 syl mZxMm+1ifx=Mcgx1m+1=ifm+1=Mcgm+1-1
224 eluzle mMMm
225 224 3 eleq2s mZMm
226 zleltp1 MmMmM<m+1
227 2 170 226 sylancr mZMmM<m+1
228 225 227 mpbid mZM<m+1
229 ltne MM<m+1m+1M
230 52 228 229 sylancr mZm+1M
231 230 neneqd mZ¬m+1=M
232 231 iffalsed mZifm+1=Mcgm+1-1=gm+1-1
233 188 fveq2d mZgm+1-1=gm
234 223 232 233 3eqtrd mZxMm+1ifx=Mcgx1m+1=gm
235 234 sbceq1d mZ[˙xMm+1ifx=Mcgx1m+1/a]˙θ[˙gm/a]˙θ
236 235 biimpar mZ[˙gm/a]˙θ[˙xMm+1ifx=Mcgx1m+1/a]˙θ
237 236 ad2ant2l [˙c/a]˙[˙d/b]˙φcAmZgM=d[˙gm/a]˙θ[˙xMm+1ifx=Mcgx1m+1/a]˙θ
238 237 3ad2antr2 [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φ[˙xMm+1ifx=Mcgx1m+1/a]˙θ
239 eluzp1p1 mMm+1M+1
240 239 3 eleq2s mZm+1M+1
241 4 fveq2i N=M+1
242 240 241 eleqtrrdi mZm+1N
243 elfzp12 m+1NjNm+1j=NjN+1m+1
244 242 243 syl mZjNm+1j=NjN+1m+1
245 244 biimpa mZjNm+1j=NjN+1m+1
246 245 adantll [˙c/a]˙[˙d/b]˙φmZjNm+1j=NjN+1m+1
247 246 adantlr [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φjNm+1j=NjN+1m+1
248 oveq1 j=Nj1=N1
249 4 oveq1i N1=M+1-1
250 249 184 eqtri N1=M
251 248 250 eqtrdi j=Nj1=M
252 251 fveq2d j=NxMm+1ifx=Mcgx1j1=xMm+1ifx=Mcgx1M
253 252 ad2antll mZgM=dj=NxMm+1ifx=Mcgx1j1=xMm+1ifx=Mcgx1M
254 212 adantr mZgM=dj=NxMm+1ifx=Mcgx1M=c
255 253 254 eqtrd mZgM=dj=NxMm+1ifx=Mcgx1j1=c
256 4 eqeq2i j=Nj=M+1
257 fveq2 j=M+1xMm+1ifx=Mcgx1j=xMm+1ifx=Mcgx1M+1
258 256 257 sylbi j=NxMm+1ifx=Mcgx1j=xMm+1ifx=Mcgx1M+1
259 258 ad2antll mZgM=dj=NxMm+1ifx=Mcgx1j=xMm+1ifx=Mcgx1M+1
260 52 157 53 ltleii MM+1
261 eluz2 M+1MMM+1MM+1
262 2 55 260 261 mpbir3an M+1M
263 fzss1 M+1MM+1m+1Mm+1
264 262 263 ax-mp M+1m+1Mm+1
265 eluzfz1 mMMMm
266 265 3 eleq2s mZMMm
267 fzaddel MmM1MMmM+1M+1m+1
268 2 172 267 mpanr12 MmMMmM+1M+1m+1
269 2 170 268 sylancr mZMMmM+1M+1m+1
270 266 269 mpbid mZM+1M+1m+1
271 264 270 sselid mZM+1Mm+1
272 eqeq1 x=M+1x=MM+1=M
273 oveq1 x=M+1x1=M+1-1
274 273 184 eqtrdi x=M+1x1=M
275 274 fveq2d x=M+1gx1=gM
276 272 275 ifbieq2d x=M+1ifx=Mcgx1=ifM+1=McgM
277 fvex gMV
278 210 277 ifex ifM+1=McgMV
279 276 202 278 fvmpt M+1Mm+1xMm+1ifx=Mcgx1M+1=ifM+1=McgM
280 271 279 syl mZxMm+1ifx=Mcgx1M+1=ifM+1=McgM
281 52 53 gtneii M+1M
282 ifnefalse M+1MifM+1=McgM=gM
283 281 282 ax-mp ifM+1=McgM=gM
284 280 283 eqtrdi mZxMm+1ifx=Mcgx1M+1=gM
285 284 adantr mZgM=dj=NxMm+1ifx=Mcgx1M+1=gM
286 simprl mZgM=dj=NgM=d
287 259 285 286 3eqtrd mZgM=dj=NxMm+1ifx=Mcgx1j=d
288 287 sbceq1d mZgM=dj=N[˙xMm+1ifx=Mcgx1j/b]˙φ[˙d/b]˙φ
289 255 288 sbceqbid mZgM=dj=N[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ[˙c/a]˙[˙d/b]˙φ
290 289 biimparc [˙c/a]˙[˙d/b]˙φmZgM=dj=N[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
291 290 anassrs [˙c/a]˙[˙d/b]˙φmZgM=dj=N[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
292 291 anassrs [˙c/a]˙[˙d/b]˙φmZgM=dj=N[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
293 292 adantlrr [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φj=N[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
294 elfzelz jN+1m+1j
295 294 adantl mZjN+1m+1j
296 4 55 eqeltri N
297 peano2z NN+1
298 296 297 ax-mp N+1
299 fzsubel N+1m+1j1jN+1m+1j1N+1-1m+1-1
300 299 biimpd N+1m+1j1jN+1m+1j1N+1-1m+1-1
301 172 300 mpanr2 N+1m+1jjN+1m+1j1N+1-1m+1-1
302 301 ex N+1m+1jjN+1m+1j1N+1-1m+1-1
303 298 171 302 sylancr mZjjN+1m+1j1N+1-1m+1-1
304 303 com23 mZjN+1m+1jj1N+1-1m+1-1
305 304 imp mZjN+1m+1jj1N+1-1m+1-1
306 295 305 mpd mZjN+1m+1j1N+1-1m+1-1
307 296 zrei N
308 307 recni N
309 308 183 pncan3oi N+1-1=N
310 309 a1i mZN+1-1=N
311 310 188 oveq12d mZN+1-1m+1-1=Nm
312 311 adantr mZjN+1m+1N+1-1m+1-1=Nm
313 306 312 eleqtrd mZjN+1m+1j1Nm
314 fvoveq1 k=j1gk1=gj-1-1
315 fveq2 k=j1gk=gj1
316 315 sbceq1d k=j1[˙gk/b]˙φ[˙gj1/b]˙φ
317 314 316 sbceqbid k=j1[˙gk1/a]˙[˙gk/b]˙φ[˙gj-1-1/a]˙[˙gj1/b]˙φ
318 317 rspcva j1NmkNm[˙gk1/a]˙[˙gk/b]˙φ[˙gj-1-1/a]˙[˙gj1/b]˙φ
319 313 318 sylan mZjN+1m+1kNm[˙gk1/a]˙[˙gk/b]˙φ[˙gj-1-1/a]˙[˙gj1/b]˙φ
320 4 262 eqeltri NM
321 fzss1 NMNm+1Mm+1
322 320 321 ax-mp Nm+1Mm+1
323 fzssp1 NmNm+1
324 323 313 sselid mZjN+1m+1j1Nm+1
325 322 324 sselid mZjN+1m+1j1Mm+1
326 eqeq1 x=j1x=Mj1=M
327 fvoveq1 x=j1gx1=gj-1-1
328 326 327 ifbieq2d x=j1ifx=Mcgx1=ifj1=Mcgj-1-1
329 fvex gj-1-1V
330 210 329 ifex ifj1=Mcgj-1-1V
331 328 202 330 fvmpt j1Mm+1xMm+1ifx=Mcgx1j1=ifj1=Mcgj-1-1
332 325 331 syl mZjN+1m+1xMm+1ifx=Mcgx1j1=ifj1=Mcgj-1-1
333 157 ltp1i M+1<M+1+1
334 4 oveq1i N+1=M+1+1
335 333 334 breqtrri M+1<N+1
336 307 156 readdcli N+1
337 157 336 ltnlei M+1<N+1¬N+1M+1
338 335 337 mpbi ¬N+1M+1
339 294 zcnd jN+1m+1j
340 subadd j1Mj1=M1+M=j
341 183 182 340 mp3an23 jj1=M1+M=j
342 339 341 syl jN+1m+1j1=M1+M=j
343 eqcom 1+M=jj=1+M
344 183 182 addcomi 1+M=M+1
345 344 eqeq2i j=1+Mj=M+1
346 343 345 bitri 1+M=jj=M+1
347 eleq1 j=M+1jN+1m+1M+1N+1m+1
348 elfzle1 M+1N+1m+1N+1M+1
349 347 348 syl6bi j=M+1jN+1m+1N+1M+1
350 349 com12 jN+1m+1j=M+1N+1M+1
351 346 350 biimtrid jN+1m+11+M=jN+1M+1
352 342 351 sylbid jN+1m+1j1=MN+1M+1
353 338 352 mtoi jN+1m+1¬j1=M
354 353 adantl mZjN+1m+1¬j1=M
355 354 iffalsed mZjN+1m+1ifj1=Mcgj-1-1=gj-1-1
356 332 355 eqtrd mZjN+1m+1xMm+1ifx=Mcgx1j1=gj-1-1
357 peano2uz NMN+1M
358 fzss1 N+1MN+1m+1Mm+1
359 320 357 358 mp2b N+1m+1Mm+1
360 simpr mZjN+1m+1jN+1m+1
361 359 360 sselid mZjN+1m+1jMm+1
362 eqeq1 x=jx=Mj=M
363 fvoveq1 x=jgx1=gj1
364 362 363 ifbieq2d x=jifx=Mcgx1=ifj=Mcgj1
365 fvex gj1V
366 210 365 ifex ifj=Mcgj1V
367 364 202 366 fvmpt jMm+1xMm+1ifx=Mcgx1j=ifj=Mcgj1
368 361 367 syl mZjN+1m+1xMm+1ifx=Mcgx1j=ifj=Mcgj1
369 53 4 breqtrri M<N
370 307 ltp1i N<N+1
371 52 307 336 lttri M<NN<N+1M<N+1
372 369 370 371 mp2an M<N+1
373 52 336 ltnlei M<N+1¬N+1M
374 372 373 mpbi ¬N+1M
375 eleq1 j=MjN+1m+1MN+1m+1
376 elfzle1 MN+1m+1N+1M
377 375 376 syl6bi j=MjN+1m+1N+1M
378 377 com12 jN+1m+1j=MN+1M
379 374 378 mtoi jN+1m+1¬j=M
380 379 adantl mZjN+1m+1¬j=M
381 380 iffalsed mZjN+1m+1ifj=Mcgj1=gj1
382 368 381 eqtrd mZjN+1m+1xMm+1ifx=Mcgx1j=gj1
383 382 sbceq1d mZjN+1m+1[˙xMm+1ifx=Mcgx1j/b]˙φ[˙gj1/b]˙φ
384 356 383 sbceqbid mZjN+1m+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ[˙gj-1-1/a]˙[˙gj1/b]˙φ
385 384 biimpar mZjN+1m+1[˙gj-1-1/a]˙[˙gj1/b]˙φ[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
386 319 385 syldan mZjN+1m+1kNm[˙gk1/a]˙[˙gk/b]˙φ[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
387 386 an32s mZkNm[˙gk1/a]˙[˙gk/b]˙φjN+1m+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
388 387 adantlrl mZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φjN+1m+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
389 388 adantlll [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φjN+1m+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
390 293 389 jaodan [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φj=NjN+1m+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
391 247 390 syldan [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φjNm+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
392 391 ralrimiva [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φjNm+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ
393 fvoveq1 j=kxMm+1ifx=Mcgx1j1=xMm+1ifx=Mcgx1k1
394 fveq2 j=kxMm+1ifx=Mcgx1j=xMm+1ifx=Mcgx1k
395 394 sbceq1d j=k[˙xMm+1ifx=Mcgx1j/b]˙φ[˙xMm+1ifx=Mcgx1k/b]˙φ
396 393 395 sbceqbid j=k[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φ[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
397 396 cbvralvw jNm+1[˙xMm+1ifx=Mcgx1j1/a]˙[˙xMm+1ifx=Mcgx1j/b]˙φkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
398 392 397 sylib [˙c/a]˙[˙d/b]˙φmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
399 398 adantllr [˙c/a]˙[˙d/b]˙φcAmZgM=dkNm[˙gk1/a]˙[˙gk/b]˙φkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
400 399 adantrlr [˙c/a]˙[˙d/b]˙φcAmZgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
401 400 3adantr1 [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
402 ovex Mm+1V
403 402 mptex xMm+1ifx=Mcgx1V
404 feq1 f=xMm+1ifx=Mcgx1f:Mm+1AxMm+1ifx=Mcgx1:Mm+1A
405 fveq1 f=xMm+1ifx=Mcgx1fM=xMm+1ifx=Mcgx1M
406 405 eqeq1d f=xMm+1ifx=Mcgx1fM=cxMm+1ifx=Mcgx1M=c
407 fveq1 f=xMm+1ifx=Mcgx1fm+1=xMm+1ifx=Mcgx1m+1
408 407 sbceq1d f=xMm+1ifx=Mcgx1[˙fm+1/a]˙θ[˙xMm+1ifx=Mcgx1m+1/a]˙θ
409 406 408 anbi12d f=xMm+1ifx=Mcgx1fM=c[˙fm+1/a]˙θxMm+1ifx=Mcgx1M=c[˙xMm+1ifx=Mcgx1m+1/a]˙θ
410 fveq1 f=xMm+1ifx=Mcgx1fk1=xMm+1ifx=Mcgx1k1
411 fveq1 f=xMm+1ifx=Mcgx1fk=xMm+1ifx=Mcgx1k
412 411 sbceq1d f=xMm+1ifx=Mcgx1[˙fk/b]˙φ[˙xMm+1ifx=Mcgx1k/b]˙φ
413 410 412 sbceqbid f=xMm+1ifx=Mcgx1[˙fk1/a]˙[˙fk/b]˙φ[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
414 116 413 bitr3id f=xMm+1ifx=Mcgx1χ[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
415 414 ralbidv f=xMm+1ifx=Mcgx1kNm+1χkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
416 404 409 415 3anbi123d f=xMm+1ifx=Mcgx1f:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χxMm+1ifx=Mcgx1:Mm+1AxMm+1ifx=Mcgx1M=c[˙xMm+1ifx=Mcgx1m+1/a]˙θkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φ
417 403 416 spcev xMm+1ifx=Mcgx1:Mm+1AxMm+1ifx=Mcgx1M=c[˙xMm+1ifx=Mcgx1m+1/a]˙θkNm+1[˙xMm+1ifx=Mcgx1k1/a]˙[˙xMm+1ifx=Mcgx1k/b]˙φff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χ
418 206 213 238 401 417 syl121anc [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χ
419 418 ex [˙c/a]˙[˙d/b]˙φcAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=c[˙fm+1/a]˙θkNm+1χ
420 146 419 chvarvv [˙d/b]˙φaAmZg:MmAgM=d[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
421 136 420 chvarvv φaAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
422 421 adantlrr φaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
423 422 adantlll ηφaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
424 423 imp ηφaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
425 oveq2 n=m+1Mn=Mm+1
426 425 feq2d n=m+1f:MnAf:Mm+1A
427 fveq2 n=m+1fn=fm+1
428 427 sbceq1d n=m+1[˙fn/a]˙θ[˙fm+1/a]˙θ
429 45 428 bitr3id n=m+1τ[˙fm+1/a]˙θ
430 429 anbi2d n=m+1fM=aτfM=a[˙fm+1/a]˙θ
431 oveq2 n=m+1Nn=Nm+1
432 431 raleqdv n=m+1kNnχkNm+1χ
433 426 430 432 3anbi123d n=m+1f:MnAfM=aτkNnχf:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
434 433 exbidv n=m+1ff:MnAfM=aτkNnχff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χ
435 434 rspcev m+1Zff:Mm+1AfM=a[˙fm+1/a]˙θkNm+1χnZff:MnAfM=aτkNnχ
436 128 424 435 syl2anc ηφaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φnZff:MnAfM=aτkNnχ
437 436 ex ηφaAbAmZg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φnZff:MnAfM=aτkNnχ
438 437 exlimdv ηφaAbAmZgg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φnZff:MnAfM=aτkNnχ
439 438 rexlimdva ηφaAbAmZgg:MmAgM=b[˙gm/a]˙θkNm[˙gk1/a]˙[˙gk/b]˙φnZff:MnAfM=aτkNnχ
440 126 439 biimtrid ηφaAbAnZff:MnAfM=bτkNnχnZff:MnAfM=aτkNnχ
441 78 93 440 3syld ηφaAbAdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
442 441 an42s ηaAbAφdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
443 442 rexlimdvaa ηaAbAφdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
444 443 imp ηaAbAφdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
445 71 444 10 mpjaodan ηaAdAcA|nZff:MnAfM=cτkNnχ¬dRanZff:MnAfM=aτkNnχ
446 141 anbi1d c=afM=cτfM=aτ
447 446 3anbi2d c=af:MnAfM=cτkNnχf:MnAfM=aτkNnχ
448 447 exbidv c=aff:MnAfM=cτkNnχff:MnAfM=aτkNnχ
449 448 rexbidv c=anZff:MnAfM=cτkNnχnZff:MnAfM=aτkNnχ
450 449 elrab3 aAacA|nZff:MnAfM=cτkNnχnZff:MnAfM=aτkNnχ
451 450 adantl ηaAacA|nZff:MnAfM=cτkNnχnZff:MnAfM=aτkNnχ
452 445 451 sylibrd ηaAdAcA|nZff:MnAfM=cτkNnχ¬dRaacA|nZff:MnAfM=cτkNnχ
453 452 ex ηaAdAcA|nZff:MnAfM=cτkNnχ¬dRaacA|nZff:MnAfM=cτkNnχ
454 453 com23 ηdAcA|nZff:MnAfM=cτkNnχ¬dRaaAacA|nZff:MnAfM=cτkNnχ
455 eldif aAcA|nZff:MnAfM=cτkNnχaA¬acA|nZff:MnAfM=cτkNnχ
456 455 notbii ¬aAcA|nZff:MnAfM=cτkNnχ¬aA¬acA|nZff:MnAfM=cτkNnχ
457 iman aAacA|nZff:MnAfM=cτkNnχ¬aA¬acA|nZff:MnAfM=cτkNnχ
458 456 457 bitr4i ¬aAcA|nZff:MnAfM=cτkNnχaAacA|nZff:MnAfM=cτkNnχ
459 454 458 syl6ibr ηdAcA|nZff:MnAfM=cτkNnχ¬dRa¬aAcA|nZff:MnAfM=cτkNnχ
460 459 con2d ηaAcA|nZff:MnAfM=cτkNnχ¬dAcA|nZff:MnAfM=cτkNnχ¬dRa
461 460 imp ηaAcA|nZff:MnAfM=cτkNnχ¬dAcA|nZff:MnAfM=cτkNnχ¬dRa
462 461 nrexdv η¬aAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
463 df-ne AcA|nZff:MnAfM=cτkNnχ¬AcA|nZff:MnAfM=cτkNnχ=
464 difss AcA|nZff:MnAfM=cτkNnχA
465 difexg AVAcA|nZff:MnAfM=cτkNnχV
466 1 465 ax-mp AcA|nZff:MnAfM=cτkNnχV
467 fri AcA|nZff:MnAfM=cτkNnχVRFrAAcA|nZff:MnAfM=cτkNnχAAcA|nZff:MnAfM=cτkNnχaAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
468 466 467 mpanl1 RFrAAcA|nZff:MnAfM=cτkNnχAAcA|nZff:MnAfM=cτkNnχaAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
469 468 expr RFrAAcA|nZff:MnAfM=cτkNnχAAcA|nZff:MnAfM=cτkNnχaAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
470 9 464 469 sylancl ηAcA|nZff:MnAfM=cτkNnχaAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
471 463 470 biimtrrid η¬AcA|nZff:MnAfM=cτkNnχ=aAcA|nZff:MnAfM=cτkNnχdAcA|nZff:MnAfM=cτkNnχ¬dRa
472 462 471 mt3d ηAcA|nZff:MnAfM=cτkNnχ=
473 ssdif0 AcA|nZff:MnAfM=cτkNnχAcA|nZff:MnAfM=cτkNnχ=
474 472 473 sylibr ηAcA|nZff:MnAfM=cτkNnχ
475 81 a1i ηcA|nZff:MnAfM=cτkNnχA
476 474 475 eqssd ηA=cA|nZff:MnAfM=cτkNnχ
477 rabid2 A=cA|nZff:MnAfM=cτkNnχcAnZff:MnAfM=cτkNnχ
478 476 477 sylib ηcAnZff:MnAfM=cτkNnχ
479 eqeq2 c=CfM=cfM=C
480 479 anbi1d c=CfM=cτfM=Cτ
481 480 3anbi2d c=Cf:MnAfM=cτkNnχf:MnAfM=CτkNnχ
482 481 exbidv c=Cff:MnAfM=cτkNnχff:MnAfM=CτkNnχ
483 482 rexbidv c=CnZff:MnAfM=cτkNnχnZff:MnAfM=CτkNnχ
484 483 rspcva CAcAnZff:MnAfM=cτkNnχnZff:MnAfM=CτkNnχ
485 8 478 484 syl2anc ηnZff:MnAfM=CτkNnχ