Metamath Proof Explorer


Theorem fourierdlem64

Description: The partition V is finer than Q , when Q is moved on the same interval where V lies. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem64.t T=BA
fourierdlem64.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem64.m φM
fourierdlem64.q φQPM
fourierdlem64.c φC
fourierdlem64.d φD
fourierdlem64.cltd φC<D
fourierdlem64.h H=CDyCD|ky+kTranQ
fourierdlem64.n N=H1
fourierdlem64.v V=ιf|fIsom<,<0NH
fourierdlem64.j φJ0..^N
fourierdlem64.l L=supk|Q0+kTVJ<
fourierdlem64.i I=supj0..^M|Qj+LTVJ<
Assertion fourierdlem64 φI0..^MLi0..^MlVJVJ+1Qi+lTQi+1+lT

Proof

Step Hyp Ref Expression
1 fourierdlem64.t T=BA
2 fourierdlem64.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem64.m φM
4 fourierdlem64.q φQPM
5 fourierdlem64.c φC
6 fourierdlem64.d φD
7 fourierdlem64.cltd φC<D
8 fourierdlem64.h H=CDyCD|ky+kTranQ
9 fourierdlem64.n N=H1
10 fourierdlem64.v V=ιf|fIsom<,<0NH
11 fourierdlem64.j φJ0..^N
12 fourierdlem64.l L=supk|Q0+kTVJ<
13 fourierdlem64.i I=supj0..^M|Qj+LTVJ<
14 ssrab2 j0..^M|Qj+LTVJ0..^M
15 fzossfz 0..^M0M
16 fzssz 0M
17 15 16 sstri 0..^M
18 14 17 sstri j0..^M|Qj+LTVJ
19 18 a1i φj0..^M|Qj+LTVJ
20 0zd φ0
21 3 nnzd φM
22 3 nngt0d φ0<M
23 fzolb 00..^M0M0<M
24 20 21 22 23 syl3anbrc φ00..^M
25 ssrab2 k|Q0+kTVJ
26 25 a1i φk|Q0+kTVJ
27 prssi CDCD
28 5 6 27 syl2anc φCD
29 ssrab2 yCD|ky+kTranQCD
30 29 a1i φyCD|ky+kTranQCD
31 5 6 iccssred φCD
32 30 31 sstrd φyCD|ky+kTranQ
33 28 32 unssd φCDyCD|ky+kTranQ
34 8 33 eqsstrid φH
35 eqid mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Di0..^mpi<pi+1
36 1 2 3 4 5 6 7 35 8 9 10 fourierdlem54 φNVmp0m|p0=Cpm=Di0..^mpi<pi+1NVIsom<,<0NH
37 36 simprd φVIsom<,<0NH
38 isof1o VIsom<,<0NHV:0N1-1 ontoH
39 f1of V:0N1-1 ontoHV:0NH
40 37 38 39 3syl φV:0NH
41 elfzofz J0..^NJ0N
42 11 41 syl φJ0N
43 40 42 ffvelcdmd φVJH
44 34 43 sseldd φVJ
45 2 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
46 3 45 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
47 4 46 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
48 47 simpld φQ0M
49 elmapi Q0MQ:0M
50 48 49 syl φQ:0M
51 3 nnnn0d φM0
52 nn0uz 0=0
53 51 52 eleqtrdi φM0
54 eluzfz1 M000M
55 53 54 syl φ00M
56 50 55 ffvelcdmd φQ0
57 44 56 resubcld φVJQ0
58 2 3 4 fourierdlem11 φABA<B
59 58 simp2d φB
60 58 simp1d φA
61 59 60 resubcld φBA
62 1 61 eqeltrid φT
63 58 simp3d φA<B
64 60 59 posdifd φA<B0<BA
65 63 64 mpbid φ0<BA
66 65 1 breqtrrdi φ0<T
67 66 gt0ne0d φT0
68 57 62 67 redivcld φVJQ0T
69 btwnz VJQ0Tkk<VJQ0TzVJQ0T<z
70 68 69 syl φkk<VJQ0TzVJQ0T<z
71 70 simpld φkk<VJQ0T
72 zre kk
73 56 ad2antrr φkk<VJQ0TQ0
74 simplr φkk<VJQ0Tk
75 62 ad2antrr φkk<VJQ0TT
76 74 75 remulcld φkk<VJQ0TkT
77 73 76 readdcld φkk<VJQ0TQ0+kT
78 44 ad2antrr φkk<VJQ0TVJ
79 simpr φkk<VJQ0Tk<VJQ0T
80 57 ad2antrr φkk<VJQ0TVJQ0
81 62 66 elrpd φT+
82 81 ad2antrr φkk<VJQ0TT+
83 74 80 82 ltmuldivd φkk<VJQ0TkT<VJQ0k<VJQ0T
84 79 83 mpbird φkk<VJQ0TkT<VJQ0
85 56 adantr φkQ0
86 simpr φkk
87 62 adantr φkT
88 86 87 remulcld φkkT
89 44 adantr φkVJ
90 85 88 89 ltaddsub2d φkQ0+kT<VJkT<VJQ0
91 90 adantr φkk<VJQ0TQ0+kT<VJkT<VJQ0
92 84 91 mpbird φkk<VJQ0TQ0+kT<VJ
93 77 78 92 ltled φkk<VJQ0TQ0+kTVJ
94 93 ex φkk<VJQ0TQ0+kTVJ
95 72 94 sylan2 φkk<VJQ0TQ0+kTVJ
96 95 reximdva φkk<VJQ0TkQ0+kTVJ
97 71 96 mpd φkQ0+kTVJ
98 rabn0 k|Q0+kTVJkQ0+kTVJ
99 97 98 sylibr φk|Q0+kTVJ
100 simpl φjk|Q0+kTVJφ
101 26 sselda φjk|Q0+kTVJj
102 oveq1 k=jkT=jT
103 102 oveq2d k=jQ0+kT=Q0+jT
104 103 breq1d k=jQ0+kTVJQ0+jTVJ
105 104 elrab jk|Q0+kTVJjQ0+jTVJ
106 105 simprbi jk|Q0+kTVJQ0+jTVJ
107 106 adantl φjk|Q0+kTVJQ0+jTVJ
108 zre jj
109 simpr φjQ0+jTVJQ0+jTVJ
110 56 ad2antrr φjQ0+jTVJQ0
111 simpr φjj
112 62 adantr φjT
113 111 112 remulcld φjjT
114 113 adantr φjQ0+jTVJjT
115 44 ad2antrr φjQ0+jTVJVJ
116 110 114 115 leaddsub2d φjQ0+jTVJQ0+jTVJjTVJQ0
117 109 116 mpbid φjQ0+jTVJjTVJQ0
118 simplr φjQ0+jTVJj
119 57 ad2antrr φjQ0+jTVJVJQ0
120 81 ad2antrr φjQ0+jTVJT+
121 118 119 120 lemuldivd φjQ0+jTVJjTVJQ0jVJQ0T
122 117 121 mpbid φjQ0+jTVJjVJQ0T
123 108 122 sylanl2 φjQ0+jTVJjVJQ0T
124 100 101 107 123 syl21anc φjk|Q0+kTVJjVJQ0T
125 124 ralrimiva φjk|Q0+kTVJjVJQ0T
126 breq2 b=VJQ0TjbjVJQ0T
127 126 ralbidv b=VJQ0Tjk|Q0+kTVJjbjk|Q0+kTVJjVJQ0T
128 127 rspcev VJQ0Tjk|Q0+kTVJjVJQ0Tbjk|Q0+kTVJjb
129 68 125 128 syl2anc φbjk|Q0+kTVJjb
130 suprzcl k|Q0+kTVJk|Q0+kTVJbjk|Q0+kTVJjbsupk|Q0+kTVJ<k|Q0+kTVJ
131 26 99 129 130 syl3anc φsupk|Q0+kTVJ<k|Q0+kTVJ
132 12 131 eqeltrid φLk|Q0+kTVJ
133 oveq1 k=LkT=LT
134 133 oveq2d k=LQ0+kT=Q0+LT
135 134 breq1d k=LQ0+kTVJQ0+LTVJ
136 135 elrab Lk|Q0+kTVJLQ0+LTVJ
137 132 136 sylib φLQ0+LTVJ
138 137 simprd φQ0+LTVJ
139 fveq2 j=0Qj=Q0
140 139 oveq1d j=0Qj+LT=Q0+LT
141 140 breq1d j=0Qj+LTVJQ0+LTVJ
142 141 elrab 0j0..^M|Qj+LTVJ00..^MQ0+LTVJ
143 24 138 142 sylanbrc φ0j0..^M|Qj+LTVJ
144 ne0i 0j0..^M|Qj+LTVJj0..^M|Qj+LTVJ
145 143 144 syl φj0..^M|Qj+LTVJ
146 3 nnred φM
147 14 a1i φj0..^M|Qj+LTVJ0..^M
148 147 sselda φkj0..^M|Qj+LTVJk0..^M
149 elfzoelz k0..^Mk
150 149 zred k0..^Mk
151 150 adantl φk0..^Mk
152 146 adantr φk0..^MM
153 elfzolt2 k0..^Mk<M
154 153 adantl φk0..^Mk<M
155 151 152 154 ltled φk0..^MkM
156 148 155 syldan φkj0..^M|Qj+LTVJkM
157 156 ralrimiva φkj0..^M|Qj+LTVJkM
158 breq2 b=MkbkM
159 158 ralbidv b=Mkj0..^M|Qj+LTVJkbkj0..^M|Qj+LTVJkM
160 159 rspcev Mkj0..^M|Qj+LTVJkMbkj0..^M|Qj+LTVJkb
161 146 157 160 syl2anc φbkj0..^M|Qj+LTVJkb
162 suprzcl j0..^M|Qj+LTVJj0..^M|Qj+LTVJbkj0..^M|Qj+LTVJkbsupj0..^M|Qj+LTVJ<j0..^M|Qj+LTVJ
163 19 145 161 162 syl3anc φsupj0..^M|Qj+LTVJ<j0..^M|Qj+LTVJ
164 14 163 sselid φsupj0..^M|Qj+LTVJ<0..^M
165 13 164 eqeltrid φI0..^M
166 25 131 sselid φsupk|Q0+kTVJ<
167 12 166 eqeltrid φL
168 15 165 sselid φI0M
169 50 168 ffvelcdmd φQI
170 167 zred φL
171 170 62 remulcld φLT
172 169 171 readdcld φQI+LT
173 172 rexrd φQI+LT*
174 173 adantr φxVJVJ+1QI+LT*
175 fzofzp1 I0..^MI+10M
176 165 175 syl φI+10M
177 50 176 ffvelcdmd φQI+1
178 177 171 readdcld φQI+1+LT
179 178 rexrd φQI+1+LT*
180 179 adantr φxVJVJ+1QI+1+LT*
181 elioore xVJVJ+1x
182 181 adantl φxVJVJ+1x
183 172 adantr φxVJVJ+1QI+LT
184 44 adantr φxVJVJ+1VJ
185 13 163 eqeltrid φIj0..^M|Qj+LTVJ
186 fveq2 j=IQj=QI
187 186 oveq1d j=IQj+LT=QI+LT
188 187 breq1d j=IQj+LTVJQI+LTVJ
189 188 elrab Ij0..^M|Qj+LTVJI0..^MQI+LTVJ
190 185 189 sylib φI0..^MQI+LTVJ
191 190 simprd φQI+LTVJ
192 191 adantr φxVJVJ+1QI+LTVJ
193 184 rexrd φxVJVJ+1VJ*
194 fzofzp1 J0..^NJ+10N
195 11 194 syl φJ+10N
196 40 195 ffvelcdmd φVJ+1H
197 34 196 sseldd φVJ+1
198 197 rexrd φVJ+1*
199 198 adantr φxVJVJ+1VJ+1*
200 simpr φxVJVJ+1xVJVJ+1
201 ioogtlb VJ*VJ+1*xVJVJ+1VJ<x
202 193 199 200 201 syl3anc φxVJVJ+1VJ<x
203 183 184 182 192 202 lelttrd φxVJVJ+1QI+LT<x
204 zssre
205 25 204 sstri k|Q0+kTVJ
206 205 a1i φI=M1QI+1+LTVJk|Q0+kTVJ
207 99 ad2antrr φI=M1QI+1+LTVJk|Q0+kTVJ
208 129 ad2antrr φI=M1QI+1+LTVJbjk|Q0+kTVJjb
209 167 peano2zd φL+1
210 209 ad2antrr φI=M1QI+1+LTVJL+1
211 oveq1 I=M1I+1=M-1+1
212 146 recnd φM
213 1cnd φ1
214 212 213 npcand φM-1+1=M
215 211 214 sylan9eqr φI=M1I+1=M
216 215 fveq2d φI=M1QI+1=QM
217 47 simprd φQ0=AQM=Bi0..^MQi<Qi+1
218 217 simpld φQ0=AQM=B
219 218 simprd φQM=B
220 219 adantr φI=M1QM=B
221 59 recnd φB
222 60 recnd φA
223 221 222 npcand φB-A+A=B
224 223 eqcomd φB=B-A+A
225 1 eqcomi BA=T
226 225 a1i φBA=T
227 226 oveq1d φB-A+A=T+A
228 218 simpld φQ0=A
229 228 eqcomd φA=Q0
230 229 oveq2d φT+A=T+Q0
231 224 227 230 3eqtrd φB=T+Q0
232 231 adantr φI=M1B=T+Q0
233 216 220 232 3eqtrd φI=M1QI+1=T+Q0
234 62 recnd φT
235 228 222 eqeltrd φQ0
236 234 235 addcomd φT+Q0=Q0+T
237 236 adantr φI=M1T+Q0=Q0+T
238 233 237 eqtrd φI=M1QI+1=Q0+T
239 238 oveq1d φI=M1QI+1+LT=Q0+T+LT
240 171 recnd φLT
241 235 234 240 addassd φQ0+T+LT=Q0+T+LT
242 234 mullidd φ1T=T
243 242 234 eqeltrd φ1T
244 243 240 addcomd φ1T+LT=LT+1T
245 242 eqcomd φT=1T
246 245 oveq1d φT+LT=1T+LT
247 170 recnd φL
248 247 213 234 adddird φL+1T=LT+1T
249 244 246 248 3eqtr4d φT+LT=L+1T
250 249 oveq2d φQ0+T+LT=Q0+L+1T
251 241 250 eqtrd φQ0+T+LT=Q0+L+1T
252 251 adantr φI=M1Q0+T+LT=Q0+L+1T
253 239 252 eqtr2d φI=M1Q0+L+1T=QI+1+LT
254 253 adantr φI=M1QI+1+LTVJQ0+L+1T=QI+1+LT
255 simpr φI=M1QI+1+LTVJQI+1+LTVJ
256 254 255 eqbrtrd φI=M1QI+1+LTVJQ0+L+1TVJ
257 oveq1 k=L+1kT=L+1T
258 257 oveq2d k=L+1Q0+kT=Q0+L+1T
259 258 breq1d k=L+1Q0+kTVJQ0+L+1TVJ
260 259 elrab L+1k|Q0+kTVJL+1Q0+L+1TVJ
261 210 256 260 sylanbrc φI=M1QI+1+LTVJL+1k|Q0+kTVJ
262 suprub k|Q0+kTVJk|Q0+kTVJbjk|Q0+kTVJjbL+1k|Q0+kTVJL+1supk|Q0+kTVJ<
263 206 207 208 261 262 syl31anc φI=M1QI+1+LTVJL+1supk|Q0+kTVJ<
264 263 12 breqtrrdi φI=M1QI+1+LTVJL+1L
265 170 ltp1d φL<L+1
266 peano2re LL+1
267 170 266 syl φL+1
268 170 267 ltnled φL<L+1¬L+1L
269 265 268 mpbid φ¬L+1L
270 269 ad2antrr φI=M1QI+1+LTVJ¬L+1L
271 264 270 pm2.65da φI=M1¬QI+1+LTVJ
272 17 165 sselid φI
273 272 zred φI
274 273 adantr φ¬I=M1I
275 peano2rem MM1
276 146 275 syl φM1
277 276 adantr φ¬I=M1M1
278 elfzolt2 I0..^MI<M
279 elfzoelz I0..^MI
280 elfzoel2 I0..^MM
281 zltlem1 IMI<MIM1
282 279 280 281 syl2anc I0..^MI<MIM1
283 278 282 mpbid I0..^MIM1
284 165 283 syl φIM1
285 284 adantr φ¬I=M1IM1
286 neqne ¬I=M1IM1
287 286 necomd ¬I=M1M1I
288 287 adantl φ¬I=M1M1I
289 274 277 285 288 leneltd φ¬I=M1I<M1
290 18 204 sstri j0..^M|Qj+LTVJ
291 290 a1i φI<M1QI+1+LTVJj0..^M|Qj+LTVJ
292 145 ad2antrr φI<M1QI+1+LTVJj0..^M|Qj+LTVJ
293 161 ad2antrr φI<M1QI+1+LTVJbkj0..^M|Qj+LTVJkb
294 176 adantr φI<M1I+10M
295 273 adantr φI<M1I
296 276 adantr φI<M1M1
297 1red φI<M11
298 simpr φI<M1I<M1
299 295 296 297 298 ltadd1dd φI<M1I+1<M-1+1
300 214 adantr φI<M1M-1+1=M
301 299 300 breqtrd φI<M1I+1<M
302 elfzfzo I+10..^MI+10MI+1<M
303 294 301 302 sylanbrc φI<M1I+10..^M
304 303 anim1i φI<M1QI+1+LTVJI+10..^MQI+1+LTVJ
305 fveq2 j=I+1Qj=QI+1
306 305 oveq1d j=I+1Qj+LT=QI+1+LT
307 306 breq1d j=I+1Qj+LTVJQI+1+LTVJ
308 307 elrab I+1j0..^M|Qj+LTVJI+10..^MQI+1+LTVJ
309 304 308 sylibr φI<M1QI+1+LTVJI+1j0..^M|Qj+LTVJ
310 suprub j0..^M|Qj+LTVJj0..^M|Qj+LTVJbkj0..^M|Qj+LTVJkbI+1j0..^M|Qj+LTVJI+1supj0..^M|Qj+LTVJ<
311 291 292 293 309 310 syl31anc φI<M1QI+1+LTVJI+1supj0..^M|Qj+LTVJ<
312 311 13 breqtrrdi φI<M1QI+1+LTVJI+1I
313 273 ltp1d φI<I+1
314 peano2re II+1
315 273 314 syl φI+1
316 273 315 ltnled φI<I+1¬I+1I
317 313 316 mpbid φ¬I+1I
318 317 ad2antrr φI<M1QI+1+LTVJ¬I+1I
319 312 318 pm2.65da φI<M1¬QI+1+LTVJ
320 289 319 syldan φ¬I=M1¬QI+1+LTVJ
321 271 320 pm2.61dan φ¬QI+1+LTVJ
322 44 178 ltnled φVJ<QI+1+LT¬QI+1+LTVJ
323 321 322 mpbird φVJ<QI+1+LT
324 197 adantr φDQI+1+LTVJ+1
325 6 adantr φDQI+1+LTD
326 178 adantr φDQI+1+LTQI+1+LT
327 5 rexrd φC*
328 6 rexrd φD*
329 5 6 7 ltled φCD
330 lbicc2 C*D*CDCCD
331 327 328 329 330 syl3anc φCCD
332 ubicc2 C*D*CDDCD
333 327 328 329 332 syl3anc φDCD
334 331 333 jca φCCDDCD
335 prssg CDCCDDCDCDCD
336 5 6 335 syl2anc φCCDDCDCDCD
337 334 336 mpbid φCDCD
338 337 30 unssd φCDyCD|ky+kTranQCD
339 8 338 eqsstrid φHCD
340 339 196 sseldd φVJ+1CD
341 iccleub C*D*VJ+1CDVJ+1D
342 327 328 340 341 syl3anc φVJ+1D
343 342 adantr φDQI+1+LTVJ+1D
344 simpr φDQI+1+LTDQI+1+LT
345 324 325 326 343 344 letrd φDQI+1+LTVJ+1QI+1+LT
346 345 adantlr φVJ<QI+1+LTDQI+1+LTVJ+1QI+1+LT
347 simpr φ¬DQI+1+LT¬DQI+1+LT
348 178 adantr φ¬DQI+1+LTQI+1+LT
349 6 adantr φ¬DQI+1+LTD
350 348 349 ltnled φ¬DQI+1+LTQI+1+LT<D¬DQI+1+LT
351 347 350 mpbird φ¬DQI+1+LTQI+1+LT<D
352 351 adantlr φVJ<QI+1+LT¬DQI+1+LTQI+1+LT<D
353 simpll φVJ<QI+1+LTQI+1+LT<D¬VJ+1QI+1+LTφVJ<QI+1+LT
354 simpr φ¬VJ+1QI+1+LT¬VJ+1QI+1+LT
355 178 adantr φ¬VJ+1QI+1+LTQI+1+LT
356 197 adantr φ¬VJ+1QI+1+LTVJ+1
357 355 356 ltnled φ¬VJ+1QI+1+LTQI+1+LT<VJ+1¬VJ+1QI+1+LT
358 354 357 mpbird φ¬VJ+1QI+1+LTQI+1+LT<VJ+1
359 358 ad4ant14 φVJ<QI+1+LTQI+1+LT<D¬VJ+1QI+1+LTQI+1+LT<VJ+1
360 5 ad2antrr φVJ<QI+1+LTQI+1+LT<DC
361 6 ad2antrr φVJ<QI+1+LTQI+1+LT<DD
362 178 ad2antrr φVJ<QI+1+LTQI+1+LT<DQI+1+LT
363 5 adantr φVJ<QI+1+LTC
364 178 adantr φVJ<QI+1+LTQI+1+LT
365 44 adantr φVJ<QI+1+LTVJ
366 339 43 sseldd φVJCD
367 iccgelb C*D*VJCDCVJ
368 327 328 366 367 syl3anc φCVJ
369 368 adantr φVJ<QI+1+LTCVJ
370 simpr φVJ<QI+1+LTVJ<QI+1+LT
371 363 365 364 369 370 lelttrd φVJ<QI+1+LTC<QI+1+LT
372 363 364 371 ltled φVJ<QI+1+LTCQI+1+LT
373 372 adantr φVJ<QI+1+LTQI+1+LT<DCQI+1+LT
374 178 adantr φQI+1+LT<DQI+1+LT
375 6 adantr φQI+1+LT<DD
376 simpr φQI+1+LT<DQI+1+LT<D
377 374 375 376 ltled φQI+1+LT<DQI+1+LTD
378 377 adantlr φVJ<QI+1+LTQI+1+LT<DQI+1+LTD
379 360 361 362 373 378 eliccd φVJ<QI+1+LTQI+1+LT<DQI+1+LTCD
380 167 znegcld φL
381 247 234 mulneg1d φLT=LT
382 381 oveq2d φQI+1+LT+LT=QI+1+LT+LT
383 178 recnd φQI+1+LT
384 383 240 negsubd φQI+1+LT+LT=QI+1+LT-LT
385 177 recnd φQI+1
386 385 240 pncand φQI+1+LT-LT=QI+1
387 382 384 386 3eqtrd φQI+1+LT+LT=QI+1
388 ffn Q:0MQFn0M
389 50 388 syl φQFn0M
390 fnfvelrn QFn0MI+10MQI+1ranQ
391 389 176 390 syl2anc φQI+1ranQ
392 387 391 eqeltrd φQI+1+LT+LTranQ
393 oveq1 k=LkT=LT
394 393 oveq2d k=LQI+1+LT+kT=QI+1+LT+LT
395 394 eleq1d k=LQI+1+LT+kTranQQI+1+LT+LTranQ
396 395 rspcev LQI+1+LT+LTranQkQI+1+LT+kTranQ
397 380 392 396 syl2anc φkQI+1+LT+kTranQ
398 397 ad2antrr φVJ<QI+1+LTQI+1+LT<DkQI+1+LT+kTranQ
399 oveq1 y=QI+1+LTy+kT=QI+1+LT+kT
400 399 eleq1d y=QI+1+LTy+kTranQQI+1+LT+kTranQ
401 400 rexbidv y=QI+1+LTky+kTranQkQI+1+LT+kTranQ
402 401 elrab QI+1+LTyCD|ky+kTranQQI+1+LTCDkQI+1+LT+kTranQ
403 379 398 402 sylanbrc φVJ<QI+1+LTQI+1+LT<DQI+1+LTyCD|ky+kTranQ
404 elun2 QI+1+LTyCD|ky+kTranQQI+1+LTCDyCD|ky+kTranQ
405 403 404 syl φVJ<QI+1+LTQI+1+LT<DQI+1+LTCDyCD|ky+kTranQ
406 8 eqcomi CDyCD|ky+kTranQ=H
407 405 406 eleqtrdi φVJ<QI+1+LTQI+1+LT<DQI+1+LTH
408 407 adantr φVJ<QI+1+LTQI+1+LT<D¬VJ+1QI+1+LTQI+1+LTH
409 f1ofo V:0N1-1 ontoHV:0NontoH
410 37 38 409 3syl φV:0NontoH
411 foelrn V:0NontoHQI+1+LTHj0NQI+1+LT=Vj
412 410 411 sylan φQI+1+LTHj0NQI+1+LT=Vj
413 id QI+1+LT=VjQI+1+LT=Vj
414 413 eqcomd QI+1+LT=VjVj=QI+1+LT
415 414 a1i φQI+1+LTHQI+1+LT=VjVj=QI+1+LT
416 415 reximdv φQI+1+LTHj0NQI+1+LT=Vjj0NVj=QI+1+LT
417 412 416 mpd φQI+1+LTHj0NVj=QI+1+LT
418 417 ad4ant14 φVJ<QI+1+LTQI+1+LT<VJ+1QI+1+LTHj0NVj=QI+1+LT
419 simpl VJ<QI+1+LTVj=QI+1+LTVJ<QI+1+LT
420 413 eqcoms Vj=QI+1+LTQI+1+LT=Vj
421 420 adantl VJ<QI+1+LTVj=QI+1+LTQI+1+LT=Vj
422 419 421 breqtrd VJ<QI+1+LTVj=QI+1+LTVJ<Vj
423 422 adantll φVJ<QI+1+LTVj=QI+1+LTVJ<Vj
424 423 adantlr φVJ<QI+1+LTj0NVj=QI+1+LTVJ<Vj
425 37 ad3antrrr φVJ<QI+1+LTj0NVj=QI+1+LTVIsom<,<0NH
426 42 ad3antrrr φVJ<QI+1+LTj0NVj=QI+1+LTJ0N
427 simplr φVJ<QI+1+LTj0NVj=QI+1+LTj0N
428 isorel VIsom<,<0NHJ0Nj0NJ<jVJ<Vj
429 425 426 427 428 syl12anc φVJ<QI+1+LTj0NVj=QI+1+LTJ<jVJ<Vj
430 424 429 mpbird φVJ<QI+1+LTj0NVj=QI+1+LTJ<j
431 430 adantllr φVJ<QI+1+LTQI+1+LT<VJ+1j0NVj=QI+1+LTJ<j
432 simpr QI+1+LT<VJ+1Vj=QI+1+LTVj=QI+1+LT
433 simpl QI+1+LT<VJ+1Vj=QI+1+LTQI+1+LT<VJ+1
434 432 433 eqbrtrd QI+1+LT<VJ+1Vj=QI+1+LTVj<VJ+1
435 434 adantll φQI+1+LT<VJ+1Vj=QI+1+LTVj<VJ+1
436 435 adantlr φQI+1+LT<VJ+1j0NVj=QI+1+LTVj<VJ+1
437 37 ad3antrrr φQI+1+LT<VJ+1j0NVj=QI+1+LTVIsom<,<0NH
438 simplr φQI+1+LT<VJ+1j0NVj=QI+1+LTj0N
439 195 ad3antrrr φQI+1+LT<VJ+1j0NVj=QI+1+LTJ+10N
440 isorel VIsom<,<0NHj0NJ+10Nj<J+1Vj<VJ+1
441 437 438 439 440 syl12anc φQI+1+LT<VJ+1j0NVj=QI+1+LTj<J+1Vj<VJ+1
442 436 441 mpbird φQI+1+LT<VJ+1j0NVj=QI+1+LTj<J+1
443 442 adantl3r φVJ<QI+1+LTQI+1+LT<VJ+1j0NVj=QI+1+LTj<J+1
444 431 443 jca φVJ<QI+1+LTQI+1+LT<VJ+1j0NVj=QI+1+LTJ<jj<J+1
445 444 ex φVJ<QI+1+LTQI+1+LT<VJ+1j0NVj=QI+1+LTJ<jj<J+1
446 445 adantlr φVJ<QI+1+LTQI+1+LT<VJ+1QI+1+LTHj0NVj=QI+1+LTJ<jj<J+1
447 446 reximdva φVJ<QI+1+LTQI+1+LT<VJ+1QI+1+LTHj0NVj=QI+1+LTj0NJ<jj<J+1
448 418 447 mpd φVJ<QI+1+LTQI+1+LT<VJ+1QI+1+LTHj0NJ<jj<J+1
449 353 359 408 448 syl21anc φVJ<QI+1+LTQI+1+LT<D¬VJ+1QI+1+LTj0NJ<jj<J+1
450 elfzelz j0Nj
451 450 ad2antlr φj0NJ<jj<J+1j
452 elfzelz J0NJ
453 42 452 syl φJ
454 453 ad2antrr φj0NJ<jj<J+1J
455 simprl φj0NJ<jj<J+1J<j
456 simprr φj0NJ<jj<J+1j<J+1
457 btwnnz JJ<jj<J+1¬j
458 454 455 456 457 syl3anc φj0NJ<jj<J+1¬j
459 451 458 pm2.65da φj0N¬J<jj<J+1
460 459 nrexdv φ¬j0NJ<jj<J+1
461 460 ad3antrrr φVJ<QI+1+LTQI+1+LT<D¬VJ+1QI+1+LT¬j0NJ<jj<J+1
462 449 461 condan φVJ<QI+1+LTQI+1+LT<DVJ+1QI+1+LT
463 352 462 syldan φVJ<QI+1+LT¬DQI+1+LTVJ+1QI+1+LT
464 346 463 pm2.61dan φVJ<QI+1+LTVJ+1QI+1+LT
465 323 464 mpdan φVJ+1QI+1+LT
466 465 adantr φxVJVJ+1VJ+1QI+1+LT
467 182 adantr φxVJVJ+1VJ+1QI+1+LTx
468 197 ad2antrr φxVJVJ+1VJ+1QI+1+LTVJ+1
469 178 ad2antrr φxVJVJ+1VJ+1QI+1+LTQI+1+LT
470 iooltub VJ*VJ+1*xVJVJ+1x<VJ+1
471 193 199 200 470 syl3anc φxVJVJ+1x<VJ+1
472 471 adantr φxVJVJ+1VJ+1QI+1+LTx<VJ+1
473 simpr φxVJVJ+1VJ+1QI+1+LTVJ+1QI+1+LT
474 467 468 469 472 473 ltletrd φxVJVJ+1VJ+1QI+1+LTx<QI+1+LT
475 466 474 mpdan φxVJVJ+1x<QI+1+LT
476 174 180 182 203 475 eliood φxVJVJ+1xQI+LTQI+1+LT
477 476 ralrimiva φxVJVJ+1xQI+LTQI+1+LT
478 dfss3 VJVJ+1QI+LTQI+1+LTxVJVJ+1xQI+LTQI+1+LT
479 477 478 sylibr φVJVJ+1QI+LTQI+1+LT
480 fveq2 i=IQi=QI
481 480 oveq1d i=IQi+lT=QI+lT
482 oveq1 i=Ii+1=I+1
483 482 fveq2d i=IQi+1=QI+1
484 483 oveq1d i=IQi+1+lT=QI+1+lT
485 481 484 oveq12d i=IQi+lTQi+1+lT=QI+lTQI+1+lT
486 485 sseq2d i=IVJVJ+1Qi+lTQi+1+lTVJVJ+1QI+lTQI+1+lT
487 oveq1 l=LlT=LT
488 487 oveq2d l=LQI+lT=QI+LT
489 487 oveq2d l=LQI+1+lT=QI+1+LT
490 488 489 oveq12d l=LQI+lTQI+1+lT=QI+LTQI+1+LT
491 490 sseq2d l=LVJVJ+1QI+lTQI+1+lTVJVJ+1QI+LTQI+1+LT
492 486 491 rspc2ev I0..^MLVJVJ+1QI+LTQI+1+LTi0..^MlVJVJ+1Qi+lTQi+1+lT
493 165 167 479 492 syl3anc φi0..^MlVJVJ+1Qi+lTQi+1+lT
494 165 167 493 jca31 φI0..^MLi0..^MlVJVJ+1Qi+lTQi+1+lT