Metamath Proof Explorer


Theorem heicant

Description: Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on Rosenlicht p. 80. (Contributed by Brendan Leahy, 13-Aug-2018) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Hypotheses heicant.c φC∞MetX
heicant.d φD∞MetY
heicant.j φMetOpenCComp
heicant.x φX
heicant.y φY
Assertion heicant φmetUnifCuCnmetUnifD=MetOpenCCnMetOpenD

Proof

Step Hyp Ref Expression
1 heicant.c φC∞MetX
2 heicant.d φD∞MetY
3 heicant.j φMetOpenCComp
4 heicant.x φX
5 heicant.y φY
6 breq2 d=yfxDfw<dfxDfw<y
7 6 imbi2d d=yxCw<zfxDfw<dxCw<zfxDfw<y
8 7 2ralbidv d=yxXwXxCw<zfxDfw<dxXwXxCw<zfxDfw<y
9 8 rexbidv d=yz+xXwXxCw<zfxDfw<dz+xXwXxCw<zfxDfw<y
10 9 cbvralvw d+z+xXwXxCw<zfxDfw<dy+z+xXwXxCw<zfxDfw<y
11 r19.12 z+xXwXxCw<zfxDfw<yxXz+wXxCw<zfxDfw<y
12 11 ralimi y+z+xXwXxCw<zfxDfw<yy+xXz+wXxCw<zfxDfw<y
13 10 12 sylbi d+z+xXwXxCw<zfxDfw<dy+xXz+wXxCw<zfxDfw<y
14 rphalfcl d+d2+
15 breq2 y=d2fxDfw<yfxDfw<d2
16 15 imbi2d y=d2xCw<zfxDfw<yxCw<zfxDfw<d2
17 16 ralbidv y=d2wXxCw<zfxDfw<ywXxCw<zfxDfw<d2
18 17 rexbidv y=d2z+wXxCw<zfxDfw<yz+wXxCw<zfxDfw<d2
19 18 ralbidv y=d2xXz+wXxCw<zfxDfw<yxXz+wXxCw<zfxDfw<d2
20 19 rspcva d2+y+xXz+wXxCw<zfxDfw<yxXz+wXxCw<zfxDfw<d2
21 3 ad3antrrr φf:XYd+xXz+wXxCw<zfxDfw<d2MetOpenCComp
22 1 ad2antrr φf:XYd+C∞MetX
23 22 anim1i φf:XYd+xXC∞MetXxX
24 rphalfcl z+z2+
25 24 rpxrd z+z2*
26 eqid MetOpenC=MetOpenC
27 26 blopn C∞MetXxXz2*xballCz2MetOpenC
28 27 3expa C∞MetXxXz2*xballCz2MetOpenC
29 23 25 28 syl2an φf:XYd+xXz+xballCz2MetOpenC
30 29 adantr φf:XYd+xXz+wXxCw<zfxDfw<d2xballCz2MetOpenC
31 24 rpgt0d z+0<z2
32 25 31 jca z+z2*0<z2
33 xblcntr C∞MetXxXz2*0<z2xxballCz2
34 33 3expa C∞MetXxXz2*0<z2xxballCz2
35 23 32 34 syl2an φf:XYd+xXz+xxballCz2
36 35 adantr φf:XYd+xXz+wXxCw<zfxDfw<d2xxballCz2
37 opelxpi xXz2+xz2X×+
38 24 37 sylan2 xXz+xz2X×+
39 38 ad4ant23 φf:XYd+xXz+wXxCw<zfxDfw<d2xz2X×+
40 rpcn z+z
41 40 2halvesd z+z2+z2=z
42 41 breq2d z+xCc<z2+z2xCc<z
43 42 imbi1d z+xCc<z2+z2fxDfc<d2xCc<zfxDfc<d2
44 43 ralbidv z+cXxCc<z2+z2fxDfc<d2cXxCc<zfxDfc<d2
45 oveq2 c=wxCc=xCw
46 45 breq1d c=wxCc<zxCw<z
47 fveq2 c=wfc=fw
48 47 oveq2d c=wfxDfc=fxDfw
49 48 breq1d c=wfxDfc<d2fxDfw<d2
50 46 49 imbi12d c=wxCc<zfxDfc<d2xCw<zfxDfw<d2
51 50 cbvralvw cXxCc<zfxDfc<d2wXxCw<zfxDfw<d2
52 44 51 bitrdi z+cXxCc<z2+z2fxDfc<d2wXxCw<zfxDfw<d2
53 52 biimpar z+wXxCw<zfxDfw<d2cXxCc<z2+z2fxDfc<d2
54 53 adantll φf:XYd+xXz+wXxCw<zfxDfw<d2cXxCc<z2+z2fxDfc<d2
55 vex xV
56 ovex z2V
57 55 56 op1std p=xz21stp=x
58 55 56 op2ndd p=xz22ndp=z2
59 57 58 oveq12d p=xz21stpballC2ndp=xballCz2
60 59 eqcomd p=xz2xballCz2=1stpballC2ndp
61 60 biantrurd p=xz2cX1stpCc<2ndp+2ndpf1stpDfc<d2xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
62 57 oveq1d p=xz21stpCc=xCc
63 58 58 oveq12d p=xz22ndp+2ndp=z2+z2
64 62 63 breq12d p=xz21stpCc<2ndp+2ndpxCc<z2+z2
65 57 fveq2d p=xz2f1stp=fx
66 65 oveq1d p=xz2f1stpDfc=fxDfc
67 66 breq1d p=xz2f1stpDfc<d2fxDfc<d2
68 64 67 imbi12d p=xz21stpCc<2ndp+2ndpf1stpDfc<d2xCc<z2+z2fxDfc<d2
69 68 ralbidv p=xz2cX1stpCc<2ndp+2ndpf1stpDfc<d2cXxCc<z2+z2fxDfc<d2
70 61 69 bitr3d p=xz2xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2cXxCc<z2+z2fxDfc<d2
71 70 rspcev xz2X×+cXxCc<z2+z2fxDfc<d2pX×+xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
72 39 54 71 syl2anc φf:XYd+xXz+wXxCw<zfxDfw<d2pX×+xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
73 eleq2 b=xballCz2xbxxballCz2
74 eqeq1 b=xballCz2b=1stpballC2ndpxballCz2=1stpballC2ndp
75 74 anbi1d b=xballCz2b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
76 75 rexbidv b=xballCz2pX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2pX×+xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
77 73 76 anbi12d b=xballCz2xbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2xxballCz2pX×+xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
78 77 rspcev xballCz2MetOpenCxxballCz2pX×+xballCz2=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2bMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
79 30 36 72 78 syl12anc φf:XYd+xXz+wXxCw<zfxDfw<d2bMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
80 79 rexlimdva2 φf:XYd+xXz+wXxCw<zfxDfw<d2bMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
81 80 ralimdva φf:XYd+xXz+wXxCw<zfxDfw<d2xXbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
82 81 imp φf:XYd+xXz+wXxCw<zfxDfw<d2xXbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
83 26 mopnuni C∞MetXX=MetOpenC
84 1 83 syl φX=MetOpenC
85 84 raleqdv φxXbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2xMetOpenCbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
86 85 ad3antrrr φf:XYd+xXz+wXxCw<zfxDfw<d2xXbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2xMetOpenCbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
87 82 86 mpbid φf:XYd+xXz+wXxCw<zfxDfw<d2xMetOpenCbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2
88 eqid MetOpenC=MetOpenC
89 fveq2 p=gb1stp=1stgb
90 fveq2 p=gb2ndp=2ndgb
91 89 90 oveq12d p=gb1stpballC2ndp=1stgbballC2ndgb
92 91 eqeq2d p=gbb=1stpballC2ndpb=1stgbballC2ndgb
93 89 oveq1d p=gb1stpCc=1stgbCc
94 90 90 oveq12d p=gb2ndp+2ndp=2ndgb+2ndgb
95 93 94 breq12d p=gb1stpCc<2ndp+2ndp1stgbCc<2ndgb+2ndgb
96 89 fveq2d p=gbf1stp=f1stgb
97 96 oveq1d p=gbf1stpDfc=f1stgbDfc
98 97 breq1d p=gbf1stpDfc<d2f1stgbDfc<d2
99 95 98 imbi12d p=gb1stpCc<2ndp+2ndpf1stpDfc<d21stgbCc<2ndgb+2ndgbf1stgbDfc<d2
100 99 ralbidv p=gbcX1stpCc<2ndp+2ndpf1stpDfc<d2cX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
101 92 100 anbi12d p=gbb=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2b=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
102 88 101 cmpcovf MetOpenCCompxMetOpenCbMetOpenCxbpX×+b=1stpballC2ndpcX1stpCc<2ndp+2ndpf1stpDfc<d2s𝒫MetOpenCFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
103 21 87 102 syl2anc φf:XYd+xXz+wXxCw<zfxDfw<d2s𝒫MetOpenCFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
104 103 ex φf:XYd+xXz+wXxCw<zfxDfw<d2s𝒫MetOpenCFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
105 elinel2 s𝒫MetOpenCFinsFin
106 simpll φf:XYd+φ
107 106 anim1i φf:XYd+sFinφsFin
108 frn g:sX×+rangX×+
109 rnss rangX×+ranrangranX×+
110 108 109 syl g:sX×+ranrangranX×+
111 rnxpss ranX×++
112 110 111 sstrdi g:sX×+ranrang+
113 112 adantl φsFinMetOpenC=sg:sX×+ranrang+
114 simplr φsFinMetOpenC=ssFin
115 ffun g:sX×+Fung
116 vex gV
117 116 fundmen Fungdomgg
118 117 ensymd Funggdomg
119 115 118 syl g:sX×+gdomg
120 fdm g:sX×+domg=s
121 119 120 breqtrd g:sX×+gs
122 enfii sFingsgFin
123 121 122 sylan2 sFing:sX×+gFin
124 rnfi gFinrangFin
125 rnfi rangFinranrangFin
126 123 124 125 3syl sFing:sX×+ranrangFin
127 114 126 sylan φsFinMetOpenC=sg:sX×+ranrangFin
128 120 adantl φMetOpenC=sg:sX×+domg=s
129 eqtr X=MetOpenCMetOpenC=sX=s
130 84 129 sylan φMetOpenC=sX=s
131 4 adantr φMetOpenC=sX
132 130 131 eqnetrrd φMetOpenC=ss
133 unieq s=s=
134 uni0 =
135 133 134 eqtrdi s=s=
136 135 necon3i ss
137 132 136 syl φMetOpenC=ss
138 137 adantr φMetOpenC=sg:sX×+s
139 128 138 eqnetrd φMetOpenC=sg:sX×+domg
140 dm0rn0 domg=rang=
141 140 necon3bii domgrang
142 139 141 sylib φMetOpenC=sg:sX×+rang
143 relxp RelX×+
144 relss rangX×+RelX×+Relrang
145 108 143 144 mpisyl g:sX×+Relrang
146 relrn0 Relrangrang=ranrang=
147 146 necon3bid Relrangrangranrang
148 145 147 syl g:sX×+rangranrang
149 148 adantl φMetOpenC=sg:sX×+rangranrang
150 142 149 mpbid φMetOpenC=sg:sX×+ranrang
151 150 adantllr φsFinMetOpenC=sg:sX×+ranrang
152 rpssre +
153 113 152 sstrdi φsFinMetOpenC=sg:sX×+ranrang
154 ltso <Or
155 fiinfcl <OrranrangFinranrangranrangsupranrang<ranrang
156 154 155 mpan ranrangFinranrangranrangsupranrang<ranrang
157 127 151 153 156 syl3anc φsFinMetOpenC=sg:sX×+supranrang<ranrang
158 113 157 sseldd φsFinMetOpenC=sg:sX×+supranrang<+
159 107 158 sylanl1 φf:XYd+sFinMetOpenC=sg:sX×+supranrang<+
160 159 adantr φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2supranrang<+
161 84 ad3antrrr φf:XYd+sFinX=MetOpenC
162 161 anim1i φf:XYd+sFinMetOpenC=sX=MetOpenCMetOpenC=s
163 162 ad2antrr φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2X=MetOpenCMetOpenC=s
164 simpl xXwXxX
165 129 eleq2d X=MetOpenCMetOpenC=sxXxs
166 eluni2 xsbsxb
167 165 166 bitrdi X=MetOpenCMetOpenC=sxXbsxb
168 167 biimpa X=MetOpenCMetOpenC=sxXbsxb
169 163 164 168 syl2an φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwXbsxb
170 nfv bφf:XYd+sFinMetOpenC=sg:sX×+
171 nfra1 bbsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
172 170 171 nfan bφf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
173 nfv bxXwX
174 172 173 nfan bφf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwX
175 nfv bxCw<supranrang<fxDfw<d
176 rspa bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2
177 oveq2 c=x1stgbCc=1stgbCx
178 177 breq1d c=x1stgbCc<2ndgb+2ndgb1stgbCx<2ndgb+2ndgb
179 fveq2 c=xfc=fx
180 179 oveq2d c=xf1stgbDfc=f1stgbDfx
181 180 breq1d c=xf1stgbDfc<d2f1stgbDfx<d2
182 178 181 imbi12d c=x1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgbf1stgbDfx<d2
183 182 rspcva xXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgbf1stgbDfx<d2
184 oveq2 c=w1stgbCc=1stgbCw
185 184 breq1d c=w1stgbCc<2ndgb+2ndgb1stgbCw<2ndgb+2ndgb
186 47 oveq2d c=wf1stgbDfc=f1stgbDfw
187 186 breq1d c=wf1stgbDfc<d2f1stgbDfw<d2
188 185 187 imbi12d c=w1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCw<2ndgb+2ndgbf1stgbDfw<d2
189 188 rspcva wXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCw<2ndgb+2ndgbf1stgbDfw<d2
190 183 189 anim12i xXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2wXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgbf1stgbDfx<d21stgbCw<2ndgb+2ndgbf1stgbDfw<d2
191 190 anandirs xXwXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgbf1stgbDfx<d21stgbCw<2ndgb+2ndgbf1stgbDfw<d2
192 anim12 1stgbCx<2ndgb+2ndgbf1stgbDfx<d21stgbCw<2ndgb+2ndgbf1stgbDfw<d21stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2
193 191 192 syl xXwXcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2
194 193 adantrl xXwXb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d21stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2
195 194 ad4ant23 φf:XYd+sFinMetOpenC=sg:sX×+xXwXb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsxb1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2
196 simpll φf:XYd+sFinMetOpenC=sφf:XYd+
197 196 anim1i φf:XYd+sFinMetOpenC=sg:sX×+φf:XYd+g:sX×+
198 197 anim1i φf:XYd+sFinMetOpenC=sg:sX×+xXwXφf:XYd+g:sX×+xXwX
199 112 152 sstrdi g:sX×+ranrang
200 199 adantr g:sX×+bsranrang
201 0re 0
202 rpge0 y+0y
203 202 rgen y+0y
204 ssralv ranrang+y+0yyranrang0y
205 112 203 204 mpisyl g:sX×+yranrang0y
206 breq1 x=0xy0y
207 206 ralbidv x=0yranrangxyyranrang0y
208 207 rspcev 0yranrang0yxyranrangxy
209 201 205 208 sylancr g:sX×+xyranrangxy
210 209 adantr g:sX×+bsxyranrangxy
211 145 adantr g:sX×+bsRelrang
212 ffn g:sX×+gFns
213 fnfvelrn gFnsbsgbrang
214 212 213 sylan g:sX×+bsgbrang
215 2ndrn Relranggbrang2ndgbranrang
216 211 214 215 syl2anc g:sX×+bs2ndgbranrang
217 infrelb ranrangxyranrangxy2ndgbranrangsupranrang<2ndgb
218 200 210 216 217 syl3anc g:sX×+bssupranrang<2ndgb
219 218 adantll φf:XYd+g:sX×+bssupranrang<2ndgb
220 219 ad2ant2r φf:XYd+g:sX×+xXwXbsxbsupranrang<2ndgb
221 1 ad3antrrr φf:XYd+g:sX×+C∞MetX
222 xmetcl C∞MetXxXwXxCw*
223 222 3expb C∞MetXxXwXxCw*
224 221 223 sylan φf:XYd+g:sX×+xXwXxCw*
225 224 adantr φf:XYd+g:sX×+xXwXbsxbxCw*
226 simplr φf:XYd+g:sX×+xXwXg:sX×+
227 simpl bsxbbs
228 216 ne0d g:sX×+bsranrang
229 infrecl ranrangranrangxyranrangxysupranrang<
230 200 228 210 229 syl3anc g:sX×+bssupranrang<
231 230 rexrd g:sX×+bssupranrang<*
232 226 227 231 syl2an φf:XYd+g:sX×+xXwXbsxbsupranrang<*
233 simpr φf:XYd+g:sX×+g:sX×+
234 233 ffvelcdmda φf:XYd+g:sX×+bsgbX×+
235 xp2nd gbX×+2ndgb+
236 234 235 syl φf:XYd+g:sX×+bs2ndgb+
237 236 rpxrd φf:XYd+g:sX×+bs2ndgb*
238 237 ad2ant2r φf:XYd+g:sX×+xXwXbsxb2ndgb*
239 xrltletr xCw*supranrang<*2ndgb*xCw<supranrang<supranrang<2ndgbxCw<2ndgb
240 225 232 238 239 syl3anc φf:XYd+g:sX×+xXwXbsxbxCw<supranrang<supranrang<2ndgbxCw<2ndgb
241 220 240 mpan2d φf:XYd+g:sX×+xXwXbsxbxCw<supranrang<xCw<2ndgb
242 241 adantlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<supranrang<xCw<2ndgb
243 1 ad6antr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbC∞MetX
244 simpllr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbg:sX×+
245 ffvelcdm g:sX×+bsgbX×+
246 xp1st gbX×+1stgbX
247 245 246 syl g:sX×+bs1stgbX
248 244 227 247 syl2an φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbX
249 simpr xXwXwX
250 249 ad3antlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbwX
251 xmetcl C∞MetX1stgbXwX1stgbCw*
252 243 248 250 251 syl3anc φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCw*
253 252 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCw*
254 245 235 syl g:sX×+bs2ndgb+
255 226 254 sylan φf:XYd+g:sX×+xXwXbs2ndgb+
256 255 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb+
257 256 rpred φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb
258 164 ad3antlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxX
259 xmetcl C∞MetX1stgbXxX1stgbCx*
260 243 248 258 259 syl3anc φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx*
261 254 rpxrd g:sX×+bs2ndgb*
262 244 227 261 syl2an φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb*
263 eleq2 b=1stgbballC2ndgbxbx1stgbballC2ndgb
264 1 ad5antr φf:XYd+g:sX×+xXwXbsC∞MetX
265 226 247 sylan φf:XYd+g:sX×+xXwXbs1stgbX
266 255 rpxrd φf:XYd+g:sX×+xXwXbs2ndgb*
267 elbl C∞MetX1stgbX2ndgb*x1stgbballC2ndgbxX1stgbCx<2ndgb
268 264 265 266 267 syl3anc φf:XYd+g:sX×+xXwXbsx1stgbballC2ndgbxX1stgbCx<2ndgb
269 263 268 sylan9bbr φf:XYd+g:sX×+xXwXbsb=1stgbballC2ndgbxbxX1stgbCx<2ndgb
270 269 biimpd φf:XYd+g:sX×+xXwXbsb=1stgbballC2ndgbxbxX1stgbCx<2ndgb
271 270 an32s φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxX1stgbCx<2ndgb
272 271 impr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxX1stgbCx<2ndgb
273 272 simprd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx<2ndgb
274 260 262 273 xrltled φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx2ndgb
275 226 ffvelcdmda φf:XYd+g:sX×+xXwXbsgbX×+
276 275 246 syl φf:XYd+g:sX×+xXwXbs1stgbX
277 simplrl φf:XYd+g:sX×+xXwXbsxX
278 264 276 277 259 syl3anc φf:XYd+g:sX×+xXwXbs1stgbCx*
279 xmetge0 C∞MetX1stgbXxX01stgbCx
280 264 276 277 279 syl3anc φf:XYd+g:sX×+xXwXbs01stgbCx
281 xrrege0 1stgbCx*2ndgb01stgbCx1stgbCx2ndgb1stgbCx
282 281 an4s 1stgbCx*01stgbCx2ndgb1stgbCx2ndgb1stgbCx
283 282 ex 1stgbCx*01stgbCx2ndgb1stgbCx2ndgb1stgbCx
284 278 280 283 syl2anc φf:XYd+g:sX×+xXwXbs2ndgb1stgbCx2ndgb1stgbCx
285 284 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb1stgbCx2ndgb1stgbCx
286 257 274 285 mp2and φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx
287 286 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx
288 xrltle xCw*2ndgb*xCw<2ndgbxCw2ndgb
289 225 238 288 syl2anc φf:XYd+g:sX×+xXwXbsxbxCw<2ndgbxCw2ndgb
290 xmetge0 C∞MetXxXwX0xCw
291 290 3expb C∞MetXxXwX0xCw
292 221 291 sylan φf:XYd+g:sX×+xXwX0xCw
293 292 adantr φf:XYd+g:sX×+xXwXbsxb0xCw
294 236 rpred φf:XYd+g:sX×+bs2ndgb
295 294 ad2ant2r φf:XYd+g:sX×+xXwXbsxb2ndgb
296 xrrege0 xCw*2ndgb0xCwxCw2ndgbxCw
297 296 ex xCw*2ndgb0xCwxCw2ndgbxCw
298 225 295 297 syl2anc φf:XYd+g:sX×+xXwXbsxb0xCwxCw2ndgbxCw
299 293 298 mpand φf:XYd+g:sX×+xXwXbsxbxCw2ndgbxCw
300 289 299 syld φf:XYd+g:sX×+xXwXbsxbxCw<2ndgbxCw
301 300 adantlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgbxCw
302 301 imp φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgbxCw
303 287 302 readdcld φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx+xCw
304 303 rexrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx+xCw*
305 256 256 rpaddcld φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb+2ndgb+
306 305 rpxrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb+2ndgb*
307 306 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb2ndgb+2ndgb*
308 xmettri C∞MetX1stgbXwXxX1stgbCw1stgbCx+𝑒xCw
309 243 248 250 258 308 syl13anc φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCw1stgbCx+𝑒xCw
310 309 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCw1stgbCx+𝑒xCw
311 rexadd 1stgbCxxCw1stgbCx+𝑒xCw=1stgbCx+xCw
312 287 302 311 syl2anc φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx+𝑒xCw=1stgbCx+xCw
313 310 312 breqtrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCw1stgbCx+xCw
314 257 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb2ndgb
315 273 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx<2ndgb
316 simpr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgbxCw<2ndgb
317 287 302 314 314 315 316 lt2addd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx+xCw<2ndgb+2ndgb
318 253 304 307 313 317 xrlelttrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCw<2ndgb+2ndgb
319 318 ex φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCw<2ndgb+2ndgb
320 254 rpred g:sX×+bs2ndgb
321 320 254 ltaddrpd g:sX×+bs2ndgb<2ndgb+2ndgb
322 244 227 321 syl2an φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb2ndgb<2ndgb+2ndgb
323 260 262 306 273 322 xrlttrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx<2ndgb+2ndgb
324 319 323 jctild φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<2ndgb1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgb
325 242 324 syld φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbxCw<supranrang<1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgb
326 simpll φf:XYd+g:sX×+φf:XY
327 ffvelcdm f:XYxXfxY
328 ffvelcdm f:XYwXfwY
329 327 328 anim12dan f:XYxXwXfxYfwY
330 xmetcl D∞MetYfxYfwYfxDfw*
331 330 3expb D∞MetYfxYfwYfxDfw*
332 2 329 331 syl2an φf:XYxXwXfxDfw*
333 332 anassrs φf:XYxXwXfxDfw*
334 326 333 sylan φf:XYd+g:sX×+xXwXfxDfw*
335 334 ad3antrrr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDfw*
336 2 ad5antr φf:XYd+g:sX×+xXwXbsD∞MetY
337 simp-5r φf:XYd+g:sX×+xXwXbsf:XY
338 337 276 ffvelcdmd φf:XYd+g:sX×+xXwXbsf1stgbY
339 simpllr φf:XYd+g:sX×+f:XY
340 339 ffvelcdmda φf:XYd+g:sX×+xXfxY
341 340 adantrr φf:XYd+g:sX×+xXwXfxY
342 341 adantr φf:XYd+g:sX×+xXwXbsfxY
343 xmetcl D∞MetYf1stgbYfxYf1stgbDfx*
344 336 338 342 343 syl3anc φf:XYd+g:sX×+xXwXbsf1stgbDfx*
345 14 rpxrd d+d2*
346 345 ad4antlr φf:XYd+g:sX×+xXwXbsd2*
347 xrltle f1stgbDfx*d2*f1stgbDfx<d2f1stgbDfxd2
348 344 346 347 syl2anc φf:XYd+g:sX×+xXwXbsf1stgbDfx<d2f1stgbDfxd2
349 xmetge0 D∞MetYf1stgbYfxY0f1stgbDfx
350 336 338 342 349 syl3anc φf:XYd+g:sX×+xXwXbs0f1stgbDfx
351 14 rpred d+d2
352 351 ad4antlr φf:XYd+g:sX×+xXwXbsd2
353 xrrege0 f1stgbDfx*d20f1stgbDfxf1stgbDfxd2f1stgbDfx
354 353 ex f1stgbDfx*d20f1stgbDfxf1stgbDfxd2f1stgbDfx
355 344 352 354 syl2anc φf:XYd+g:sX×+xXwXbs0f1stgbDfxf1stgbDfxd2f1stgbDfx
356 350 355 mpand φf:XYd+g:sX×+xXwXbsf1stgbDfxd2f1stgbDfx
357 348 356 syld φf:XYd+g:sX×+xXwXbsf1stgbDfx<d2f1stgbDfx
358 357 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfx
359 358 imp φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfx
360 339 ffvelcdmda φf:XYd+g:sX×+wXfwY
361 360 adantrl φf:XYd+g:sX×+xXwXfwY
362 361 adantr φf:XYd+g:sX×+xXwXbsfwY
363 xmetcl D∞MetYf1stgbYfwYf1stgbDfw*
364 336 338 362 363 syl3anc φf:XYd+g:sX×+xXwXbsf1stgbDfw*
365 xrltle f1stgbDfw*d2*f1stgbDfw<d2f1stgbDfwd2
366 364 346 365 syl2anc φf:XYd+g:sX×+xXwXbsf1stgbDfw<d2f1stgbDfwd2
367 xmetge0 D∞MetYf1stgbYfwY0f1stgbDfw
368 336 338 362 367 syl3anc φf:XYd+g:sX×+xXwXbs0f1stgbDfw
369 xrrege0 f1stgbDfw*d20f1stgbDfwf1stgbDfwd2f1stgbDfw
370 369 ex f1stgbDfw*d20f1stgbDfwf1stgbDfwd2f1stgbDfw
371 364 352 370 syl2anc φf:XYd+g:sX×+xXwXbs0f1stgbDfwf1stgbDfwd2f1stgbDfw
372 368 371 mpand φf:XYd+g:sX×+xXwXbsf1stgbDfwd2f1stgbDfw
373 366 372 syld φf:XYd+g:sX×+xXwXbsf1stgbDfw<d2f1stgbDfw
374 373 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfw<d2f1stgbDfw
375 374 imp φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfw<d2f1stgbDfw
376 readdcl f1stgbDfxf1stgbDfwf1stgbDfx+f1stgbDfw
377 359 375 376 syl2an φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfw<d2f1stgbDfx+f1stgbDfw
378 377 anandis φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw
379 378 rexrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw*
380 rpxr d+d*
381 380 ad6antlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2d*
382 xmettri D∞MetYfxYfwYf1stgbYfxDfwfxDf1stgb+𝑒f1stgbDfw
383 336 342 362 338 382 syl13anc φf:XYd+g:sX×+xXwXbsfxDfwfxDf1stgb+𝑒f1stgbDfw
384 383 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbfxDfwfxDf1stgb+𝑒f1stgbDfw
385 384 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDfwfxDf1stgb+𝑒f1stgbDfw
386 xmetsym D∞MetYfxYf1stgbYfxDf1stgb=f1stgbDfx
387 336 342 338 386 syl3anc φf:XYd+g:sX×+xXwXbsfxDf1stgb=f1stgbDfx
388 387 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbfxDf1stgb=f1stgbDfx
389 388 adantr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDf1stgb=f1stgbDfx
390 389 oveq1d φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDf1stgb+𝑒f1stgbDfw=f1stgbDfx+𝑒f1stgbDfw
391 rexadd f1stgbDfxf1stgbDfwf1stgbDfx+𝑒f1stgbDfw=f1stgbDfx+f1stgbDfw
392 359 375 391 syl2an φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfw<d2f1stgbDfx+𝑒f1stgbDfw=f1stgbDfx+f1stgbDfw
393 392 anandis φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+𝑒f1stgbDfw=f1stgbDfx+f1stgbDfw
394 390 393 eqtrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDf1stgb+𝑒f1stgbDfw=f1stgbDfx+f1stgbDfw
395 385 394 breqtrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDfwf1stgbDfx+f1stgbDfw
396 lt2add f1stgbDfxf1stgbDfwd2d2f1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
397 396 expcom d2d2f1stgbDfxf1stgbDfwf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
398 352 352 397 syl2anc φf:XYd+g:sX×+xXwXbsf1stgbDfxf1stgbDfwf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
399 357 373 398 syl2and φf:XYd+g:sX×+xXwXbsf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
400 399 pm2.43d φf:XYd+g:sX×+xXwXbsf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
401 400 ad2ant2r φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
402 401 imp φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d2+d2
403 rpcn d+d
404 403 2halvesd d+d2+d2=d
405 404 ad6antlr φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2d2+d2=d
406 402 405 breqtrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2f1stgbDfx+f1stgbDfw<d
407 335 379 381 395 406 xrlelttrd φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDfw<d
408 407 ex φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxbf1stgbDfx<d2f1stgbDfw<d2fxDfw<d
409 325 408 imim12d φf:XYd+g:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2xCw<supranrang<fxDfw<d
410 198 409 sylanl1 φf:XYd+sFinMetOpenC=sg:sX×+xXwXb=1stgbballC2ndgbbsxb1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2xCw<supranrang<fxDfw<d
411 410 adantlrr φf:XYd+sFinMetOpenC=sg:sX×+xXwXb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsxb1stgbCx<2ndgb+2ndgb1stgbCw<2ndgb+2ndgbf1stgbDfx<d2f1stgbDfw<d2xCw<supranrang<fxDfw<d
412 195 411 mpd φf:XYd+sFinMetOpenC=sg:sX×+xXwXb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsxbxCw<supranrang<fxDfw<d
413 412 exp32 φf:XYd+sFinMetOpenC=sg:sX×+xXwXb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsxbxCw<supranrang<fxDfw<d
414 176 413 sylan2 φf:XYd+sFinMetOpenC=sg:sX×+xXwXbsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsbsxbxCw<supranrang<fxDfw<d
415 414 expr φf:XYd+sFinMetOpenC=sg:sX×+xXwXbsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsbsxbxCw<supranrang<fxDfw<d
416 415 pm2.43d φf:XYd+sFinMetOpenC=sg:sX×+xXwXbsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2bsxbxCw<supranrang<fxDfw<d
417 416 an32s φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwXbsxbxCw<supranrang<fxDfw<d
418 174 175 417 rexlimd φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwXbsxbxCw<supranrang<fxDfw<d
419 169 418 mpd φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwXxCw<supranrang<fxDfw<d
420 419 ralrimivva φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2xXwXxCw<supranrang<fxDfw<d
421 breq2 z=supranrang<xCw<zxCw<supranrang<
422 421 imbi1d z=supranrang<xCw<zfxDfw<dxCw<supranrang<fxDfw<d
423 422 2ralbidv z=supranrang<xXwXxCw<zfxDfw<dxXwXxCw<supranrang<fxDfw<d
424 423 rspcev supranrang<+xXwXxCw<supranrang<fxDfw<dz+xXwXxCw<zfxDfw<d
425 160 420 424 syl2anc φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
426 425 expl φf:XYd+sFinMetOpenC=sg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
427 426 exlimdv φf:XYd+sFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
428 427 expimpd φf:XYd+sFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
429 105 428 sylan2 φf:XYd+s𝒫MetOpenCFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
430 429 rexlimdva φf:XYd+s𝒫MetOpenCFinMetOpenC=sgg:sX×+bsb=1stgbballC2ndgbcX1stgbCc<2ndgb+2ndgbf1stgbDfc<d2z+xXwXxCw<zfxDfw<d
431 104 430 syld φf:XYd+xXz+wXxCw<zfxDfw<d2z+xXwXxCw<zfxDfw<d
432 20 431 syl5 φf:XYd+d2+y+xXz+wXxCw<zfxDfw<yz+xXwXxCw<zfxDfw<d
433 432 exp4b φf:XYd+d2+y+xXz+wXxCw<zfxDfw<yz+xXwXxCw<zfxDfw<d
434 14 433 mpdi φf:XYd+y+xXz+wXxCw<zfxDfw<yz+xXwXxCw<zfxDfw<d
435 434 ralrimiv φf:XYd+y+xXz+wXxCw<zfxDfw<yz+xXwXxCw<zfxDfw<d
436 r19.21v d+y+xXz+wXxCw<zfxDfw<yz+xXwXxCw<zfxDfw<dy+xXz+wXxCw<zfxDfw<yd+z+xXwXxCw<zfxDfw<d
437 435 436 sylib φf:XYy+xXz+wXxCw<zfxDfw<yd+z+xXwXxCw<zfxDfw<d
438 13 437 impbid2 φf:XYd+z+xXwXxCw<zfxDfw<dy+xXz+wXxCw<zfxDfw<y
439 ralcom y+xXz+wXxCw<zfxDfw<yxXy+z+wXxCw<zfxDfw<y
440 438 439 bitrdi φf:XYd+z+xXwXxCw<zfxDfw<dxXy+z+wXxCw<zfxDfw<y
441 440 pm5.32da φf:XYd+z+xXwXxCw<zfxDfw<df:XYxXy+z+wXxCw<zfxDfw<y
442 eqid metUnifC=metUnifC
443 eqid metUnifD=metUnifD
444 xmetpsmet C∞MetXCPsMetX
445 1 444 syl φCPsMetX
446 xmetpsmet D∞MetYDPsMetY
447 2 446 syl φDPsMetY
448 442 443 4 5 445 447 metucn φfmetUnifCuCnmetUnifDf:XYd+z+xXwXxCw<zfxDfw<d
449 eqid MetOpenD=MetOpenD
450 26 449 metcn C∞MetXD∞MetYfMetOpenCCnMetOpenDf:XYxXy+z+wXxCw<zfxDfw<y
451 1 2 450 syl2anc φfMetOpenCCnMetOpenDf:XYxXy+z+wXxCw<zfxDfw<y
452 441 448 451 3bitr4d φfmetUnifCuCnmetUnifDfMetOpenCCnMetOpenD
453 452 eqrdv φmetUnifCuCnmetUnifD=MetOpenCCnMetOpenD