Metamath Proof Explorer


Theorem poimirlem24

Description: Lemma for poimir , two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem28.1 p=1sts+f2nds1j×12ndsj+1N×0B=C
poimirlem28.2 φp:1N0KB0N
poimirlem25.3 φT:1N0..^K
poimirlem25.4 φU:1N1-1 onto1N
poimirlem24.5 φV0N
Assertion poimirlem24 φx0K1N0N1x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxBpranxpN0i0N1j0NVi=TU/sC¬V=NTN=0UN=N

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem28.1 p=1sts+f2nds1j×12ndsj+1N×0B=C
3 poimirlem28.2 φp:1N0KB0N
4 poimirlem25.3 φT:1N0..^K
5 poimirlem25.4 φU:1N1-1 onto1N
6 poimirlem24.5 φV0N
7 nfv jφy0N1
8 nfcsb1v _jy/jT+fU1j×1Uj+1N×0
9 nfcv _j1N
10 nfcv _j0K
11 8 9 10 nff jy/jT+fU1j×1Uj+1N×0:1N0K
12 7 11 nfim jφy0N1y/jT+fU1j×1Uj+1N×0:1N0K
13 eleq1 j=yj0N1y0N1
14 13 anbi2d j=yφj0N1φy0N1
15 csbeq1a j=yT+fU1j×1Uj+1N×0=y/jT+fU1j×1Uj+1N×0
16 15 feq1d j=yT+fU1j×1Uj+1N×0:1N0Ky/jT+fU1j×1Uj+1N×0:1N0K
17 14 16 imbi12d j=yφj0N1T+fU1j×1Uj+1N×0:1N0Kφy0N1y/jT+fU1j×1Uj+1N×0:1N0K
18 1 nncnd φN
19 npcan1 NN-1+1=N
20 18 19 syl φN-1+1=N
21 1 nnzd φN
22 peano2zm NN1
23 21 22 syl φN1
24 uzid N1N1N1
25 peano2uz N1N1N-1+1N1
26 23 24 25 3syl φN-1+1N1
27 20 26 eqeltrrd φNN1
28 fzss2 NN10N10N
29 27 28 syl φ0N10N
30 29 sselda φj0N1j0N
31 elun y10y1y0
32 fzofzp1 x0..^Kx+10K
33 elsni y1y=1
34 33 oveq2d y1x+y=x+1
35 34 eleq1d y1x+y0Kx+10K
36 32 35 syl5ibrcom x0..^Ky1x+y0K
37 elfzoelz x0..^Kx
38 37 zcnd x0..^Kx
39 38 addridd x0..^Kx+0=x
40 elfzofz x0..^Kx0K
41 39 40 eqeltrd x0..^Kx+00K
42 elsni y0y=0
43 42 oveq2d y0x+y=x+0
44 43 eleq1d y0x+y0Kx+00K
45 41 44 syl5ibrcom x0..^Ky0x+y0K
46 36 45 jaod x0..^Ky1y0x+y0K
47 31 46 biimtrid x0..^Ky10x+y0K
48 47 imp x0..^Ky10x+y0K
49 48 adantl φj0Nx0..^Ky10x+y0K
50 4 adantr φj0NT:1N0..^K
51 1ex 1V
52 51 fconst U1j×1:U1j1
53 c0ex 0V
54 53 fconst Uj+1N×0:Uj+1N0
55 52 54 pm3.2i U1j×1:U1j1Uj+1N×0:Uj+1N0
56 dff1o3 U:1N1-1 onto1NU:1Nonto1NFunU-1
57 56 simprbi U:1N1-1 onto1NFunU-1
58 imain FunU-1U1jj+1N=U1jUj+1N
59 5 57 58 3syl φU1jj+1N=U1jUj+1N
60 elfznn0 j0Nj0
61 60 nn0red j0Nj
62 61 ltp1d j0Nj<j+1
63 fzdisj j<j+11jj+1N=
64 62 63 syl j0N1jj+1N=
65 64 imaeq2d j0NU1jj+1N=U
66 ima0 U=
67 65 66 eqtrdi j0NU1jj+1N=
68 59 67 sylan9req φj0NU1jUj+1N=
69 fun U1j×1:U1j1Uj+1N×0:Uj+1N0U1jUj+1N=U1j×1Uj+1N×0:U1jUj+1N10
70 55 68 69 sylancr φj0NU1j×1Uj+1N×0:U1jUj+1N10
71 nn0p1nn j0j+1
72 60 71 syl j0Nj+1
73 nnuz =1
74 72 73 eleqtrdi j0Nj+11
75 elfzuz3 j0NNj
76 fzsplit2 j+11Nj1N=1jj+1N
77 74 75 76 syl2anc j0N1N=1jj+1N
78 77 imaeq2d j0NU1N=U1jj+1N
79 imaundi U1jj+1N=U1jUj+1N
80 78 79 eqtr2di j0NU1jUj+1N=U1N
81 f1ofo U:1N1-1 onto1NU:1Nonto1N
82 foima U:1Nonto1NU1N=1N
83 5 81 82 3syl φU1N=1N
84 80 83 sylan9eqr φj0NU1jUj+1N=1N
85 84 feq2d φj0NU1j×1Uj+1N×0:U1jUj+1N10U1j×1Uj+1N×0:1N10
86 70 85 mpbid φj0NU1j×1Uj+1N×0:1N10
87 ovex 1NV
88 87 a1i φj0N1NV
89 inidm 1N1N=1N
90 49 50 86 88 88 89 off φj0NT+fU1j×1Uj+1N×0:1N0K
91 30 90 syldan φj0N1T+fU1j×1Uj+1N×0:1N0K
92 12 17 91 chvarfv φy0N1y/jT+fU1j×1Uj+1N×0:1N0K
93 fzp1elp1 y0N1y+10N-1+1
94 20 oveq2d φ0N-1+1=0N
95 94 eleq2d φy+10N-1+1y+10N
96 95 biimpa φy+10N-1+1y+10N
97 93 96 sylan2 φy0N1y+10N
98 nfv jφy+10N
99 nfcsb1v _jy+1/jT+fU1j×1Uj+1N×0
100 99 9 10 nff jy+1/jT+fU1j×1Uj+1N×0:1N0K
101 98 100 nfim jφy+10Ny+1/jT+fU1j×1Uj+1N×0:1N0K
102 ovex y+1V
103 eleq1 j=y+1j0Ny+10N
104 103 anbi2d j=y+1φj0Nφy+10N
105 csbeq1a j=y+1T+fU1j×1Uj+1N×0=y+1/jT+fU1j×1Uj+1N×0
106 105 feq1d j=y+1T+fU1j×1Uj+1N×0:1N0Ky+1/jT+fU1j×1Uj+1N×0:1N0K
107 104 106 imbi12d j=y+1φj0NT+fU1j×1Uj+1N×0:1N0Kφy+10Ny+1/jT+fU1j×1Uj+1N×0:1N0K
108 101 102 107 90 vtoclf φy+10Ny+1/jT+fU1j×1Uj+1N×0:1N0K
109 97 108 syldan φy0N1y+1/jT+fU1j×1Uj+1N×0:1N0K
110 csbeq1 y=ify<Vyy+1y/jT+fU1j×1Uj+1N×0=ify<Vyy+1/jT+fU1j×1Uj+1N×0
111 110 feq1d y=ify<Vyy+1y/jT+fU1j×1Uj+1N×0:1N0Kify<Vyy+1/jT+fU1j×1Uj+1N×0:1N0K
112 csbeq1 y+1=ify<Vyy+1y+1/jT+fU1j×1Uj+1N×0=ify<Vyy+1/jT+fU1j×1Uj+1N×0
113 112 feq1d y+1=ify<Vyy+1y+1/jT+fU1j×1Uj+1N×0:1N0Kify<Vyy+1/jT+fU1j×1Uj+1N×0:1N0K
114 111 113 ifboth y/jT+fU1j×1Uj+1N×0:1N0Ky+1/jT+fU1j×1Uj+1N×0:1N0Kify<Vyy+1/jT+fU1j×1Uj+1N×0:1N0K
115 92 109 114 syl2anc φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0:1N0K
116 ovex 0KV
117 116 87 elmap ify<Vyy+1/jT+fU1j×1Uj+1N×00K1Nify<Vyy+1/jT+fU1j×1Uj+1N×0:1N0K
118 115 117 sylibr φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00K1N
119 118 fmpttd φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0:0N10K1N
120 ovex 0K1NV
121 ovex 0N1V
122 120 121 elmap y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00K1N0N1y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0:0N10K1N
123 119 122 sylibr φy0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00K1N0N1
124 rneq x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0ranx=rany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0
125 124 mpteq1d x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pranxB=prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
126 125 rneqd x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0ranpranxB=ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
127 126 sseq2d x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxB0N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
128 124 rexeqdv x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pranxpN0prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0
129 127 128 anbi12d x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxBpranxpN00N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0
130 129 ceqsrexv y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00K1N0N1x0K1N0N1x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxBpranxpN00N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0
131 123 130 syl φx0K1N0N1x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxBpranxpN00N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0
132 dfss3 0N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bi0N1iranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
133 ovex 1sts+f2nds1j×12ndsj+1N×0V
134 133 2 csbie 1sts+f2nds1j×12ndsj+1N×0/pB=C
135 134 csbeq2i TU/s1sts+f2nds1j×12ndsj+1N×0/pB=TU/sC
136 opex TUV
137 136 a1i φTUV
138 fveq2 s=TU1sts=1stTU
139 fex T:1N0..^K1NVTV
140 4 87 139 sylancl φTV
141 f1oexrnex U:1N1-1 onto1N1NVUV
142 5 87 141 sylancl φUV
143 op1stg TVUV1stTU=T
144 140 142 143 syl2anc φ1stTU=T
145 138 144 sylan9eqr φs=TU1sts=T
146 fveq2 s=TU2nds=2ndTU
147 op2ndg TVUV2ndTU=U
148 140 142 147 syl2anc φ2ndTU=U
149 146 148 sylan9eqr φs=TU2nds=U
150 imaeq1 2nds=U2nds1j=U1j
151 150 xpeq1d 2nds=U2nds1j×1=U1j×1
152 imaeq1 2nds=U2ndsj+1N=Uj+1N
153 152 xpeq1d 2nds=U2ndsj+1N×0=Uj+1N×0
154 151 153 uneq12d 2nds=U2nds1j×12ndsj+1N×0=U1j×1Uj+1N×0
155 149 154 syl φs=TU2nds1j×12ndsj+1N×0=U1j×1Uj+1N×0
156 145 155 oveq12d φs=TU1sts+f2nds1j×12ndsj+1N×0=T+fU1j×1Uj+1N×0
157 156 csbeq1d φs=TU1sts+f2nds1j×12ndsj+1N×0/pB=T+fU1j×1Uj+1N×0/pB
158 137 157 csbied φTU/s1sts+f2nds1j×12ndsj+1N×0/pB=T+fU1j×1Uj+1N×0/pB
159 135 158 eqtr3id φTU/sC=T+fU1j×1Uj+1N×0/pB
160 159 csbeq2dv φify<Vyy+1/jTU/sC=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
161 160 eqeq2d φi=ify<Vyy+1/jTU/sCi=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
162 161 rexbidv φy0N1i=ify<Vyy+1/jTU/sCy0N1i=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
163 vex iV
164 eqid prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B=prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
165 164 elrnmpt iViranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=B
166 163 165 ax-mp iranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=B
167 nfv ki=B
168 nfcsb1v _pk/pB
169 168 nfeq2 pi=k/pB
170 csbeq1a p=kB=k/pB
171 170 eqeq2d p=ki=Bi=k/pB
172 167 169 171 cbvrexw prany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=Bkrany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=k/pB
173 ovex T+fU1j×1Uj+1N×0V
174 173 csbex ify<Vyy+1/jT+fU1j×1Uj+1N×0V
175 174 rgenw y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0V
176 eqid y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0
177 csbeq1 k=ify<Vyy+1/jT+fU1j×1Uj+1N×0k/pB=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
178 vex yV
179 178 102 ifex ify<Vyy+1V
180 csbnestgw ify<Vyy+1Vify<Vyy+1/jT+fU1j×1Uj+1N×0/pB=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
181 179 180 ax-mp ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
182 177 181 eqtr4di k=ify<Vyy+1/jT+fU1j×1Uj+1N×0k/pB=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
183 182 eqeq2d k=ify<Vyy+1/jT+fU1j×1Uj+1N×0i=k/pBi=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
184 176 183 rexrnmptw y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Vkrany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=k/pBy0N1i=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
185 175 184 ax-mp krany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0i=k/pBy0N1i=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
186 166 172 185 3bitri iranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0By0N1i=ify<Vyy+1/jT+fU1j×1Uj+1N×0/pB
187 162 186 bitr4di φy0N1i=ify<Vyy+1/jTU/sCiranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0B
188 29 sselda φy0N1y0N
189 188 adantr φy0N1y<Vy0N
190 elfzelz y0N1y
191 190 zred y0N1y
192 191 adantl φy0N1y
193 ltne yy<VVy
194 193 necomd yy<VyV
195 192 194 sylan φy0N1y<VyV
196 eldifsn y0NVy0NyV
197 189 195 196 sylanbrc φy0N1y<Vy0NV
198 97 adantr φy0N1¬y<Vy+10N
199 6 elfzelzd φV
200 199 zred φV
201 200 ad2antrr φy0N1¬y<VV
202 zre VV
203 zre yy
204 lenlt VyVy¬y<V
205 202 203 204 syl2an VyVy¬y<V
206 zleltp1 VyVyV<y+1
207 205 206 bitr3d Vy¬y<VV<y+1
208 199 190 207 syl2an φy0N1¬y<VV<y+1
209 208 biimpa φy0N1¬y<VV<y+1
210 201 209 gtned φy0N1¬y<Vy+1V
211 eldifsn y+10NVy+10Ny+1V
212 198 210 211 sylanbrc φy0N1¬y<Vy+10NV
213 197 212 ifclda φy0N1ify<Vyy+10NV
214 nfcsb1v _jify<Vyy+1/jTU/sC
215 214 nfeq2 ji=ify<Vyy+1/jTU/sC
216 csbeq1a j=ify<Vyy+1TU/sC=ify<Vyy+1/jTU/sC
217 216 eqeq2d j=ify<Vyy+1i=TU/sCi=ify<Vyy+1/jTU/sC
218 215 217 rspce ify<Vyy+10NVi=ify<Vyy+1/jTU/sCj0NVi=TU/sC
219 218 ex ify<Vyy+10NVi=ify<Vyy+1/jTU/sCj0NVi=TU/sC
220 213 219 syl φy0N1i=ify<Vyy+1/jTU/sCj0NVi=TU/sC
221 220 rexlimdva φy0N1i=ify<Vyy+1/jTU/sCj0NVi=TU/sC
222 nfv jφ
223 nfcv _j0N1
224 223 215 nfrexw jy0N1i=ify<Vyy+1/jTU/sC
225 eldifi j0NVj0N
226 225 60 syl j0NVj0
227 226 nn0ge0d j0NV0j
228 227 ad2antlr φj0NVj<V0j
229 226 nn0red j0NVj
230 229 ad2antlr φj0NVj<Vj
231 200 ad2antrr φj0NVj<VV
232 21 zred φN
233 232 ad2antrr φj0NVj<VN
234 simpr φj0NVj<Vj<V
235 elfzle2 V0NVN
236 6 235 syl φVN
237 236 ad2antrr φj0NVj<VVN
238 230 231 233 234 237 ltletrd φj0NVj<Vj<N
239 225 elfzelzd j0NVj
240 zltlem1 jNj<NjN1
241 239 21 240 syl2anr φj0NVj<NjN1
242 241 adantr φj0NVj<Vj<NjN1
243 238 242 mpbid φj0NVj<VjN1
244 0z 0
245 elfz j0N1j0N10jjN1
246 244 245 mp3an2 jN1j0N10jjN1
247 239 23 246 syl2anr φj0NVj0N10jjN1
248 247 adantr φj0NVj<Vj0N10jjN1
249 228 243 248 mpbir2and φj0NVj<Vj0N1
250 0red φj0NV¬j<V0
251 200 ad2antrr φj0NV¬j<VV
252 229 ad2antlr φj0NV¬j<Vj
253 elfzle1 V0N0V
254 6 253 syl φ0V
255 254 ad2antrr φj0NV¬j<V0V
256 lenlt VjVj¬j<V
257 200 229 256 syl2an φj0NVVj¬j<V
258 257 biimpar φj0NV¬j<VVj
259 eldifsni j0NVjV
260 259 ad2antlr φj0NV¬j<VjV
261 ltlen VjV<jVjjV
262 200 229 261 syl2an φj0NVV<jVjjV
263 262 adantr φj0NV¬j<VV<jVjjV
264 258 260 263 mpbir2and φj0NV¬j<VV<j
265 250 251 252 255 264 lelttrd φj0NV¬j<V0<j
266 zgt0ge1 j0<j1j
267 239 266 syl j0NV0<j1j
268 267 ad2antlr φj0NV¬j<V0<j1j
269 265 268 mpbid φj0NV¬j<V1j
270 elfzle2 j0NjN
271 225 270 syl j0NVjN
272 271 ad2antlr φj0NV¬j<VjN
273 1z 1
274 elfz j1Nj1N1jjN
275 273 274 mp3an2 jNj1N1jjN
276 239 21 275 syl2anr φj0NVj1N1jjN
277 276 adantr φj0NV¬j<Vj1N1jjN
278 269 272 277 mpbir2and φj0NV¬j<Vj1N
279 elfzmlbm j1Nj10N1
280 278 279 syl φj0NV¬j<Vj10N1
281 249 280 ifclda φj0NVifj<Vjj10N1
282 breq1 j=ifj<Vjj1j<Vifj<Vjj1<V
283 id j=ifj<Vjj1j=ifj<Vjj1
284 oveq1 j=ifj<Vjj1j+1=ifj<Vjj1+1
285 282 283 284 ifbieq12d j=ifj<Vjj1ifj<Vjj+1=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
286 285 eqeq2d j=ifj<Vjj1j=ifj<Vjj+1j=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
287 breq1 j1=ifj<Vjj1j1<Vifj<Vjj1<V
288 id j1=ifj<Vjj1j1=ifj<Vjj1
289 oveq1 j1=ifj<Vjj1j-1+1=ifj<Vjj1+1
290 287 288 289 ifbieq12d j1=ifj<Vjj1ifj1<Vj1j-1+1=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
291 290 eqeq2d j1=ifj<Vjj1j=ifj1<Vj1j-1+1j=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
292 iftrue j<Vifj<Vjj+1=j
293 292 eqcomd j<Vj=ifj<Vjj+1
294 293 adantl φj0NVj<Vj=ifj<Vjj+1
295 zlem1lt jVjVj1<V
296 239 199 295 syl2anr φj0NVjVj1<V
297 259 necomd j0NVVj
298 297 adantl φj0NVVj
299 ltlen jVj<VjVVj
300 229 200 299 syl2anr φj0NVj<VjVVj
301 300 biimprd φj0NVjVVjj<V
302 298 301 mpan2d φj0NVjVj<V
303 296 302 sylbird φj0NVj1<Vj<V
304 303 con3dimp φj0NV¬j<V¬j1<V
305 304 iffalsed φj0NV¬j<Vifj1<Vj1j-1+1=j-1+1
306 226 nn0cnd j0NVj
307 npcan1 jj-1+1=j
308 306 307 syl j0NVj-1+1=j
309 308 ad2antlr φj0NV¬j<Vj-1+1=j
310 305 309 eqtr2d φj0NV¬j<Vj=ifj1<Vj1j-1+1
311 286 291 294 310 ifbothda φj0NVj=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
312 csbeq1a j=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1TU/sC=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
313 311 312 syl φj0NVTU/sC=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
314 313 eqeq2d φj0NVi=TU/sCi=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
315 314 biimpd φj0NVi=TU/sCi=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
316 breq1 y=ifj<Vjj1y<Vifj<Vjj1<V
317 id y=ifj<Vjj1y=ifj<Vjj1
318 oveq1 y=ifj<Vjj1y+1=ifj<Vjj1+1
319 316 317 318 ifbieq12d y=ifj<Vjj1ify<Vyy+1=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1
320 319 csbeq1d y=ifj<Vjj1ify<Vyy+1/jTU/sC=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
321 320 eqeq2d y=ifj<Vjj1i=ify<Vyy+1/jTU/sCi=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sC
322 321 rspcev ifj<Vjj10N1i=ififj<Vjj1<Vifj<Vjj1ifj<Vjj1+1/jTU/sCy0N1i=ify<Vyy+1/jTU/sC
323 281 315 322 syl6an φj0NVi=TU/sCy0N1i=ify<Vyy+1/jTU/sC
324 323 ex φj0NVi=TU/sCy0N1i=ify<Vyy+1/jTU/sC
325 222 224 324 rexlimd φj0NVi=TU/sCy0N1i=ify<Vyy+1/jTU/sC
326 221 325 impbid φy0N1i=ify<Vyy+1/jTU/sCj0NVi=TU/sC
327 187 326 bitr3d φiranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bj0NVi=TU/sC
328 327 ralbidv φi0N1iranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bi0N1j0NVi=TU/sC
329 132 328 bitrid φ0N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bi0N1j0NVi=TU/sC
330 329 anbi1d φ0N1ranprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0Bprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0i0N1j0NVi=TU/sCprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0
331 1 4 5 6 poimirlem23 φprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0¬V=NTN=0UN=N
332 331 anbi2d φi0N1j0NVi=TU/sCprany0N1ify<Vyy+1/jT+fU1j×1Uj+1N×0pN0i0N1j0NVi=TU/sC¬V=NTN=0UN=N
333 131 330 332 3bitrd φx0K1N0N1x=y0N1ify<Vyy+1/jT+fU1j×1Uj+1N×00N1ranpranxBpranxpN0i0N1j0NVi=TU/sC¬V=NTN=0UN=N