Metamath Proof Explorer


Theorem poimirlem4

Description: Lemma for poimir connecting the admissible faces on the back face of the ( M + 1 ) -cube to admissible simplices in the M -cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem4.1 φ K
poimirlem4.2 φ M 0
poimirlem4.3 φ M < N
Assertion poimirlem4 φ s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem4.1 φ K
3 poimirlem4.2 φ M 0
4 poimirlem4.3 φ M < N
5 1 adantr φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M N
6 2 adantr φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M K
7 3 adantr φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M 0
8 4 adantr φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M < N
9 xp1st t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t 0 ..^ K 1 M
10 elmapi 1 st t 0 ..^ K 1 M 1 st t : 1 M 0 ..^ K
11 9 10 syl t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t : 1 M 0 ..^ K
12 11 adantl φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t : 1 M 0 ..^ K
13 xp2nd t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t f | f : 1 M 1-1 onto 1 M
14 fvex 2 nd t V
15 f1oeq1 f = 2 nd t f : 1 M 1-1 onto 1 M 2 nd t : 1 M 1-1 onto 1 M
16 14 15 elab 2 nd t f | f : 1 M 1-1 onto 1 M 2 nd t : 1 M 1-1 onto 1 M
17 13 16 sylib t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t : 1 M 1-1 onto 1 M
18 17 adantl φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t : 1 M 1-1 onto 1 M
19 5 6 7 8 12 18 poimirlem3 φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st t M + 1 0 M + 1 = 0 2 nd t M + 1 M + 1 M + 1 = M + 1
20 fvex 1 st t V
21 snex M + 1 0 V
22 20 21 unex 1 st t M + 1 0 V
23 snex M + 1 M + 1 V
24 14 23 unex 2 nd t M + 1 M + 1 V
25 22 24 op1std s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s = 1 st t M + 1 0
26 22 24 op2ndd s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s = 2 nd t M + 1 M + 1
27 26 imaeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s 1 j = 2 nd t M + 1 M + 1 1 j
28 27 xpeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s 1 j × 1 = 2 nd t M + 1 M + 1 1 j × 1
29 26 imaeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s j + 1 M + 1 = 2 nd t M + 1 M + 1 j + 1 M + 1
30 29 xpeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s j + 1 M + 1 × 0 = 2 nd t M + 1 M + 1 j + 1 M + 1 × 0
31 28 30 uneq12d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 = 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0
32 25 31 oveq12d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0
33 32 uneq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0
34 33 csbeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
35 34 eqeq2d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
36 35 rexbidv s = 1 st t M + 1 0 2 nd t M + 1 M + 1 j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B j 0 M i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
37 36 ralbidv s = 1 st t M + 1 0 2 nd t M + 1 M + 1 i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i 0 M j 0 M i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
38 25 fveq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s M + 1 = 1 st t M + 1 0 M + 1
39 38 eqeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 1 st s M + 1 = 0 1 st t M + 1 0 M + 1 = 0
40 26 fveq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s M + 1 = 2 nd t M + 1 M + 1 M + 1
41 40 eqeq1d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 2 nd s M + 1 = M + 1 2 nd t M + 1 M + 1 M + 1 = M + 1
42 37 39 41 3anbi123d s = 1 st t M + 1 0 2 nd t M + 1 M + 1 i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 i 0 M j 0 M i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st t M + 1 0 M + 1 = 0 2 nd t M + 1 M + 1 M + 1 = M + 1
43 42 elrab 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 1 st t M + 1 0 2 nd t M + 1 M + 1 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st t M + 1 0 + f 2 nd t M + 1 M + 1 1 j × 1 2 nd t M + 1 M + 1 j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st t M + 1 0 M + 1 = 0 2 nd t M + 1 M + 1 M + 1 = M + 1
44 19 43 syl6ibr φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
45 44 ralrimiva φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
46 fveq2 s = t 1 st s = 1 st t
47 fveq2 s = t 2 nd s = 2 nd t
48 47 imaeq1d s = t 2 nd s 1 j = 2 nd t 1 j
49 48 xpeq1d s = t 2 nd s 1 j × 1 = 2 nd t 1 j × 1
50 47 imaeq1d s = t 2 nd s j + 1 M = 2 nd t j + 1 M
51 50 xpeq1d s = t 2 nd s j + 1 M × 0 = 2 nd t j + 1 M × 0
52 49 51 uneq12d s = t 2 nd s 1 j × 1 2 nd s j + 1 M × 0 = 2 nd t 1 j × 1 2 nd t j + 1 M × 0
53 46 52 oveq12d s = t 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0
54 53 uneq1d s = t 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0
55 54 csbeq1d s = t 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B
56 55 eqeq2d s = t i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B
57 56 rexbidv s = t j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B
58 57 ralbidv s = t i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B
59 58 ralrab t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
60 45 59 sylibr φ t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
61 xp1st k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k 0 ..^ K 1 M + 1
62 elmapi 1 st k 0 ..^ K 1 M + 1 1 st k : 1 M + 1 0 ..^ K
63 61 62 syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k : 1 M + 1 0 ..^ K
64 fzssp1 1 M 1 M + 1
65 fssres 1 st k : 1 M + 1 0 ..^ K 1 M 1 M + 1 1 st k 1 M : 1 M 0 ..^ K
66 63 64 65 sylancl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k 1 M : 1 M 0 ..^ K
67 ovex 0 ..^ K V
68 ovex 1 M V
69 67 68 elmap 1 st k 1 M 0 ..^ K 1 M 1 st k 1 M : 1 M 0 ..^ K
70 66 69 sylibr k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k 1 M 0 ..^ K 1 M
71 70 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 1 st k 1 M 0 ..^ K 1 M
72 xp2nd k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k f | f : 1 M + 1 1-1 onto 1 M + 1
73 fvex 2 nd k V
74 f1oeq1 f = 2 nd k f : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 1-1 onto 1 M + 1
75 73 74 elab 2 nd k f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 1-1 onto 1 M + 1
76 72 75 sylib k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 1-1 onto 1 M + 1
77 f1of1 2 nd k : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 1-1 1 M + 1
78 76 77 syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 1-1 1 M + 1
79 f1ores 2 nd k : 1 M + 1 1-1 1 M + 1 1 M 1 M + 1 2 nd k 1 M : 1 M 1-1 onto 2 nd k 1 M
80 78 64 79 sylancl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 M : 1 M 1-1 onto 2 nd k 1 M
81 80 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M : 1 M 1-1 onto 2 nd k 1 M
82 dff1o3 2 nd k : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 onto 1 M + 1 Fun 2 nd k -1
83 82 simprbi 2 nd k : 1 M + 1 1-1 onto 1 M + 1 Fun 2 nd k -1
84 imadif Fun 2 nd k -1 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M + 1 2 nd k M + 1
85 76 83 84 3syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M + 1 2 nd k M + 1
86 85 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M + 1 2 nd k M + 1
87 f1ofo 2 nd k : 1 M + 1 1-1 onto 1 M + 1 2 nd k : 1 M + 1 onto 1 M + 1
88 foima 2 nd k : 1 M + 1 onto 1 M + 1 2 nd k 1 M + 1 = 1 M + 1
89 76 87 88 3syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 M + 1 = 1 M + 1
90 89 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 = 1 M + 1
91 f1ofn 2 nd k : 1 M + 1 1-1 onto 1 M + 1 2 nd k Fn 1 M + 1
92 76 91 syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k Fn 1 M + 1
93 nn0p1nn M 0 M + 1
94 3 93 syl φ M + 1
95 elfz1end M + 1 M + 1 1 M + 1
96 94 95 sylib φ M + 1 1 M + 1
97 fnsnfv 2 nd k Fn 1 M + 1 M + 1 1 M + 1 2 nd k M + 1 = 2 nd k M + 1
98 92 96 97 syl2anr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = 2 nd k M + 1
99 sneq 2 nd k M + 1 = M + 1 2 nd k M + 1 = M + 1
100 98 99 sylan9req φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k M + 1 = M + 1
101 90 100 difeq12d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 2 nd k M + 1 = 1 M + 1 M + 1
102 86 101 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 M + 1 = 1 M + 1 M + 1
103 1z 1
104 nn0uz 0 = 0
105 1m1e0 1 1 = 0
106 105 fveq2i 1 1 = 0
107 104 106 eqtr4i 0 = 1 1
108 3 107 eleqtrdi φ M 1 1
109 fzsuc2 1 M 1 1 1 M + 1 = 1 M M + 1
110 103 108 109 sylancr φ 1 M + 1 = 1 M M + 1
111 110 difeq1d φ 1 M + 1 M + 1 = 1 M M + 1 M + 1
112 difun2 1 M M + 1 M + 1 = 1 M M + 1
113 111 112 eqtrdi φ 1 M + 1 M + 1 = 1 M M + 1
114 3 nn0red φ M
115 ltp1 M M < M + 1
116 peano2re M M + 1
117 ltnle M M + 1 M < M + 1 ¬ M + 1 M
118 116 117 mpdan M M < M + 1 ¬ M + 1 M
119 115 118 mpbid M ¬ M + 1 M
120 114 119 syl φ ¬ M + 1 M
121 elfzle2 M + 1 1 M M + 1 M
122 120 121 nsyl φ ¬ M + 1 1 M
123 difsn ¬ M + 1 1 M 1 M M + 1 = 1 M
124 122 123 syl φ 1 M M + 1 = 1 M
125 113 124 eqtrd φ 1 M + 1 M + 1 = 1 M
126 125 imaeq2d φ 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M
127 126 ad2antrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M
128 125 ad2antrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 1 M + 1 M + 1 = 1 M
129 102 127 128 3eqtr3d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M = 1 M
130 129 f1oeq3d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M : 1 M 1-1 onto 2 nd k 1 M 2 nd k 1 M : 1 M 1-1 onto 1 M
131 81 130 mpbid φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M : 1 M 1-1 onto 1 M
132 73 resex 2 nd k 1 M V
133 f1oeq1 f = 2 nd k 1 M f : 1 M 1-1 onto 1 M 2 nd k 1 M : 1 M 1-1 onto 1 M
134 132 133 elab 2 nd k 1 M f | f : 1 M 1-1 onto 1 M 2 nd k 1 M : 1 M 1-1 onto 1 M
135 131 134 sylibr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M f | f : 1 M 1-1 onto 1 M
136 71 135 opelxpd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 1 st k 1 M 2 nd k 1 M 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M
137 136 3ad2antr3 φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 1 st k 1 M 2 nd k 1 M 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M
138 3anass i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1
139 138 biancomi i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
140 94 nnzd φ M + 1
141 uzid M + 1 M + 1 M + 1
142 peano2uz M + 1 M + 1 M + 1 + 1 M + 1
143 140 141 142 3syl φ M + 1 + 1 M + 1
144 3 nn0zd φ M
145 1 nnzd φ N
146 zltp1le M N M < N M + 1 N
147 peano2z M M + 1
148 eluz M + 1 N N M + 1 M + 1 N
149 147 148 sylan M N N M + 1 M + 1 N
150 146 149 bitr4d M N M < N N M + 1
151 144 145 150 syl2anc φ M < N N M + 1
152 4 151 mpbid φ N M + 1
153 fzsplit2 M + 1 + 1 M + 1 N M + 1 M + 1 N = M + 1 M + 1 M + 1 + 1 N
154 143 152 153 syl2anc φ M + 1 N = M + 1 M + 1 M + 1 + 1 N
155 fzsn M + 1 M + 1 M + 1 = M + 1
156 140 155 syl φ M + 1 M + 1 = M + 1
157 156 uneq1d φ M + 1 M + 1 M + 1 + 1 N = M + 1 M + 1 + 1 N
158 154 157 eqtrd φ M + 1 N = M + 1 M + 1 + 1 N
159 158 xpeq1d φ M + 1 N × 0 = M + 1 M + 1 + 1 N × 0
160 159 uneq2d φ n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 M + 1 + 1 N × 0
161 xpundir M + 1 M + 1 + 1 N × 0 = M + 1 × 0 M + 1 + 1 N × 0
162 ovex M + 1 V
163 c0ex 0 V
164 162 163 xpsn M + 1 × 0 = M + 1 0
165 164 uneq1i M + 1 × 0 M + 1 + 1 N × 0 = M + 1 0 M + 1 + 1 N × 0
166 161 165 eqtri M + 1 M + 1 + 1 N × 0 = M + 1 0 M + 1 + 1 N × 0
167 166 uneq2i n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 M + 1 + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0
168 unass n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0
169 167 168 eqtr4i n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 M + 1 + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0
170 160 169 eqtrdi φ n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0
171 170 ad3antrrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0
172 162 a1i φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M M + 1 V
173 163 a1i φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 0 V
174 110 eqcomd φ 1 M M + 1 = 1 M + 1
175 174 ad3antrrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 M M + 1 = 1 M + 1
176 fveq2 n = M + 1 1 st k n = 1 st k M + 1
177 fveq2 n = M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1
178 176 177 oveq12d n = M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 1 st k M + 1 + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1
179 simplrl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k M + 1 = 0
180 imain Fun 2 nd k -1 2 nd k 1 j j + 1 M + 1 = 2 nd k 1 j 2 nd k j + 1 M + 1
181 76 83 180 3syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 j j + 1 M + 1 = 2 nd k 1 j 2 nd k j + 1 M + 1
182 181 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 j j + 1 M + 1 = 2 nd k 1 j 2 nd k j + 1 M + 1
183 elfznn0 j 0 M j 0
184 183 nn0red j 0 M j
185 184 ltp1d j 0 M j < j + 1
186 fzdisj j < j + 1 1 j j + 1 M + 1 =
187 185 186 syl j 0 M 1 j j + 1 M + 1 =
188 187 imaeq2d j 0 M 2 nd k 1 j j + 1 M + 1 = 2 nd k
189 ima0 2 nd k =
190 188 189 eqtrdi j 0 M 2 nd k 1 j j + 1 M + 1 =
191 182 190 sylan9req φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j 2 nd k j + 1 M + 1 =
192 simplr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k M + 1 = M + 1
193 92 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k Fn 1 M + 1
194 nn0p1nn j 0 j + 1
195 nnuz = 1
196 194 195 eleqtrdi j 0 j + 1 1
197 fzss1 j + 1 1 j + 1 M + 1 1 M + 1
198 183 196 197 3syl j 0 M j + 1 M + 1 1 M + 1
199 elfzuz3 j 0 M M j
200 eluzp1p1 M j M + 1 j + 1
201 eluzfz2 M + 1 j + 1 M + 1 j + 1 M + 1
202 199 200 201 3syl j 0 M M + 1 j + 1 M + 1
203 198 202 jca j 0 M j + 1 M + 1 1 M + 1 M + 1 j + 1 M + 1
204 fnfvima 2 nd k Fn 1 M + 1 j + 1 M + 1 1 M + 1 M + 1 j + 1 M + 1 2 nd k M + 1 2 nd k j + 1 M + 1
205 204 3expb 2 nd k Fn 1 M + 1 j + 1 M + 1 1 M + 1 M + 1 j + 1 M + 1 2 nd k M + 1 2 nd k j + 1 M + 1
206 193 203 205 syl2an φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k M + 1 2 nd k j + 1 M + 1
207 192 206 eqeltrrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M M + 1 2 nd k j + 1 M + 1
208 1ex 1 V
209 fnconstg 1 V 2 nd k 1 j × 1 Fn 2 nd k 1 j
210 208 209 ax-mp 2 nd k 1 j × 1 Fn 2 nd k 1 j
211 fnconstg 0 V 2 nd k j + 1 M + 1 × 0 Fn 2 nd k j + 1 M + 1
212 163 211 ax-mp 2 nd k j + 1 M + 1 × 0 Fn 2 nd k j + 1 M + 1
213 fvun2 2 nd k 1 j × 1 Fn 2 nd k 1 j 2 nd k j + 1 M + 1 × 0 Fn 2 nd k j + 1 M + 1 2 nd k 1 j 2 nd k j + 1 M + 1 = M + 1 2 nd k j + 1 M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 2 nd k j + 1 M + 1 × 0 M + 1
214 210 212 213 mp3an12 2 nd k 1 j 2 nd k j + 1 M + 1 = M + 1 2 nd k j + 1 M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 2 nd k j + 1 M + 1 × 0 M + 1
215 191 207 214 syl2anc φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 2 nd k j + 1 M + 1 × 0 M + 1
216 163 fvconst2 M + 1 2 nd k j + 1 M + 1 2 nd k j + 1 M + 1 × 0 M + 1 = 0
217 207 216 syl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k j + 1 M + 1 × 0 M + 1 = 0
218 215 217 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 0
219 218 adantlrl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 0
220 179 219 oveq12d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k M + 1 + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 0 + 0
221 00id 0 + 0 = 0
222 220 221 eqtrdi φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k M + 1 + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 = 0
223 178 222 sylan9eqr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M n = M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 0
224 172 173 175 223 fmptapd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n
225 224 uneq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 0 M + 1 + 1 N × 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 + 1 N × 0
226 171 225 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 + 1 N × 0
227 elmapfn 1 st k 0 ..^ K 1 M + 1 1 st k Fn 1 M + 1
228 61 227 syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k Fn 1 M + 1
229 fnssres 1 st k Fn 1 M + 1 1 M 1 M + 1 1 st k 1 M Fn 1 M
230 228 64 229 sylancl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k 1 M Fn 1 M
231 230 ad3antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 st k 1 M Fn 1 M
232 fnconstg 0 V 2 nd k j + 1 M × 0 Fn 2 nd k j + 1 M
233 163 232 ax-mp 2 nd k j + 1 M × 0 Fn 2 nd k j + 1 M
234 210 233 pm3.2i 2 nd k 1 j × 1 Fn 2 nd k 1 j 2 nd k j + 1 M × 0 Fn 2 nd k j + 1 M
235 imain Fun 2 nd k -1 2 nd k 1 j j + 1 M = 2 nd k 1 j 2 nd k j + 1 M
236 76 83 235 3syl k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 j j + 1 M = 2 nd k 1 j 2 nd k j + 1 M
237 fzdisj j < j + 1 1 j j + 1 M =
238 185 237 syl j 0 M 1 j j + 1 M =
239 238 imaeq2d j 0 M 2 nd k 1 j j + 1 M = 2 nd k
240 239 189 eqtrdi j 0 M 2 nd k 1 j j + 1 M =
241 236 240 sylan9req k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j 2 nd k j + 1 M =
242 fnun 2 nd k 1 j × 1 Fn 2 nd k 1 j 2 nd k j + 1 M × 0 Fn 2 nd k j + 1 M 2 nd k 1 j 2 nd k j + 1 M = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 2 nd k 1 j 2 nd k j + 1 M
243 234 241 242 sylancr k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 2 nd k 1 j 2 nd k j + 1 M
244 243 ad4ant24 φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 2 nd k 1 j 2 nd k j + 1 M
245 101 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M + 1 2 nd k M + 1 = 1 M + 1 M + 1
246 85 ad3antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M + 1 2 nd k M + 1
247 183 194 syl j 0 M j + 1
248 247 195 eleqtrdi j 0 M j + 1 1
249 fzsplit2 j + 1 1 M j 1 M = 1 j j + 1 M
250 248 199 249 syl2anc j 0 M 1 M = 1 j j + 1 M
251 128 250 sylan9eq φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M + 1 M + 1 = 1 j j + 1 M
252 251 imaeq2d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M + 1 M + 1 = 2 nd k 1 j j + 1 M
253 246 252 eqtr3d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M + 1 2 nd k M + 1 = 2 nd k 1 j j + 1 M
254 125 ad3antrrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M + 1 M + 1 = 1 M
255 245 253 254 3eqtr3rd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M = 2 nd k 1 j j + 1 M
256 imaundi 2 nd k 1 j j + 1 M = 2 nd k 1 j 2 nd k j + 1 M
257 255 256 eqtrdi φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M = 2 nd k 1 j 2 nd k j + 1 M
258 257 fneq2d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 2 nd k 1 j 2 nd k j + 1 M
259 244 258 mpbird φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M
260 fzss2 M j 1 j 1 M
261 resima2 1 j 1 M 2 nd k 1 M 1 j = 2 nd k 1 j
262 199 260 261 3syl j 0 M 2 nd k 1 M 1 j = 2 nd k 1 j
263 262 xpeq1d j 0 M 2 nd k 1 M 1 j × 1 = 2 nd k 1 j × 1
264 183 196 syl j 0 M j + 1 1
265 fzss1 j + 1 1 j + 1 M 1 M
266 resima2 j + 1 M 1 M 2 nd k 1 M j + 1 M = 2 nd k j + 1 M
267 264 265 266 3syl j 0 M 2 nd k 1 M j + 1 M = 2 nd k j + 1 M
268 267 xpeq1d j 0 M 2 nd k 1 M j + 1 M × 0 = 2 nd k j + 1 M × 0
269 263 268 uneq12d j 0 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0
270 269 adantl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0
271 270 fneq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 Fn 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M
272 259 271 mpbird φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 Fn 1 M
273 fzfid φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M Fin
274 inidm 1 M 1 M = 1 M
275 fvres n 1 M 1 st k 1 M n = 1 st k n
276 275 adantl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M n 1 M 1 st k 1 M n = 1 st k n
277 disjsn 1 M M + 1 = ¬ M + 1 1 M
278 122 277 sylibr φ 1 M M + 1 =
279 278 ad3antrrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 M M + 1 =
280 259 279 jca φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M 1 M M + 1 =
281 fnconstg 0 V M + 1 × 0 Fn M + 1
282 163 281 ax-mp M + 1 × 0 Fn M + 1
283 fvun1 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M M + 1 × 0 Fn M + 1 1 M M + 1 = n 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
284 282 283 mp3an2 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M 1 M M + 1 = n 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
285 284 anassrs 2 nd k 1 j × 1 2 nd k j + 1 M × 0 Fn 1 M 1 M M + 1 = n 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
286 280 285 sylan φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M n 1 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
287 247 nnzd j 0 M j + 1
288 183 nn0cnd j 0 M j
289 pncan1 j j + 1 - 1 = j
290 288 289 syl j 0 M j + 1 - 1 = j
291 290 fveq2d j 0 M j + 1 - 1 = j
292 199 291 eleqtrrd j 0 M M j + 1 - 1
293 fzsuc2 j + 1 M j + 1 - 1 j + 1 M + 1 = j + 1 M M + 1
294 287 292 293 syl2anc j 0 M j + 1 M + 1 = j + 1 M M + 1
295 294 imaeq2d j 0 M 2 nd k j + 1 M + 1 = 2 nd k j + 1 M M + 1
296 imaundi 2 nd k j + 1 M M + 1 = 2 nd k j + 1 M 2 nd k M + 1
297 295 296 eqtrdi j 0 M 2 nd k j + 1 M + 1 = 2 nd k j + 1 M 2 nd k M + 1
298 297 xpeq1d j 0 M 2 nd k j + 1 M + 1 × 0 = 2 nd k j + 1 M 2 nd k M + 1 × 0
299 xpundir 2 nd k j + 1 M 2 nd k M + 1 × 0 = 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
300 298 299 eqtrdi j 0 M 2 nd k j + 1 M + 1 × 0 = 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
301 300 uneq2d j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
302 unass 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
303 301 302 eqtr4di j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
304 303 adantl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
305 98 xpeq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 × 0 = 2 nd k M + 1 × 0
306 305 uneq2d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
307 306 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
308 304 307 eqtr4d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0
309 99 xpeq1d 2 nd k M + 1 = M + 1 2 nd k M + 1 × 0 = M + 1 × 0
310 309 uneq2d 2 nd k M + 1 = M + 1 2 nd k 1 j × 1 2 nd k j + 1 M × 0 2 nd k M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0
311 308 310 sylan9eq φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k M + 1 = M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0
312 311 an32s φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0
313 312 fveq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n
314 313 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M n 1 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 M + 1 × 0 n
315 269 fveq1d j 0 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
316 315 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M n 1 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M × 0 n
317 286 314 316 3eqtr4rd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M n 1 M 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n
318 231 272 273 273 274 276 317 offval φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n
319 318 uneq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 j 0 M 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0
320 319 adantlrl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 = n 1 M 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 N × 0
321 228 adantr k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 1 st k Fn 1 M + 1
322 210 212 pm3.2i 2 nd k 1 j × 1 Fn 2 nd k 1 j 2 nd k j + 1 M + 1 × 0 Fn 2 nd k j + 1 M + 1
323 181 190 sylan9req k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j 2 nd k j + 1 M + 1 =
324 fnun 2 nd k 1 j × 1 Fn 2 nd k 1 j 2 nd k j + 1 M + 1 × 0 Fn 2 nd k j + 1 M + 1 2 nd k 1 j 2 nd k j + 1 M + 1 = 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 Fn 2 nd k 1 j 2 nd k j + 1 M + 1
325 322 323 324 sylancr k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 Fn 2 nd k 1 j 2 nd k j + 1 M + 1
326 peano2uz M j M + 1 j
327 199 326 syl j 0 M M + 1 j
328 fzsplit2 j + 1 1 M + 1 j 1 M + 1 = 1 j j + 1 M + 1
329 264 327 328 syl2anc j 0 M 1 M + 1 = 1 j j + 1 M + 1
330 329 imaeq2d j 0 M 2 nd k 1 M + 1 = 2 nd k 1 j j + 1 M + 1
331 imaundi 2 nd k 1 j j + 1 M + 1 = 2 nd k 1 j 2 nd k j + 1 M + 1
332 330 331 eqtr2di j 0 M 2 nd k 1 j 2 nd k j + 1 M + 1 = 2 nd k 1 M + 1
333 332 89 sylan9eqr k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j 2 nd k j + 1 M + 1 = 1 M + 1
334 333 fneq2d k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 Fn 2 nd k 1 j 2 nd k j + 1 M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 Fn 1 M + 1
335 325 334 mpbid k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 Fn 1 M + 1
336 fzfid k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 1 M + 1 Fin
337 inidm 1 M + 1 1 M + 1 = 1 M + 1
338 eqidd k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M n 1 M + 1 1 st k n = 1 st k n
339 eqidd k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M n 1 M + 1 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n = 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n
340 321 335 336 336 337 338 339 offval k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n
341 340 uneq1d k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 j 0 M 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 + 1 N × 0
342 341 ad4ant24 φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 = n 1 M + 1 1 st k n + 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 n M + 1 + 1 N × 0
343 226 320 342 3eqtr4rd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0
344 343 csbeq1d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
345 344 eqeq2d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
346 345 rexbidva φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
347 346 ralbidv φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
348 347 biimpd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
349 348 impr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
350 139 349 sylan2b φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
351 1st2nd2 k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 k = 1 st k 2 nd k
352 351 ad2antlr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 k = 1 st k 2 nd k
353 fnsnsplit 1 st k Fn 1 M + 1 M + 1 1 M + 1 1 st k = 1 st k 1 M + 1 M + 1 M + 1 1 st k M + 1
354 228 96 353 syl2anr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k = 1 st k 1 M + 1 M + 1 M + 1 1 st k M + 1
355 354 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 1 st k = 1 st k 1 M + 1 M + 1 M + 1 1 st k M + 1
356 125 reseq2d φ 1 st k 1 M + 1 M + 1 = 1 st k 1 M
357 356 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k 1 M + 1 M + 1 = 1 st k 1 M
358 opeq2 1 st k M + 1 = 0 M + 1 1 st k M + 1 = M + 1 0
359 358 sneqd 1 st k M + 1 = 0 M + 1 1 st k M + 1 = M + 1 0
360 uneq12 1 st k 1 M + 1 M + 1 = 1 st k 1 M M + 1 1 st k M + 1 = M + 1 0 1 st k 1 M + 1 M + 1 M + 1 1 st k M + 1 = 1 st k 1 M M + 1 0
361 357 359 360 syl2an φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 1 st k 1 M + 1 M + 1 M + 1 1 st k M + 1 = 1 st k 1 M M + 1 0
362 355 361 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 1 st k = 1 st k 1 M M + 1 0
363 362 adantrr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 1 st k = 1 st k 1 M M + 1 0
364 fnsnsplit 2 nd k Fn 1 M + 1 M + 1 1 M + 1 2 nd k = 2 nd k 1 M + 1 M + 1 M + 1 2 nd k M + 1
365 92 96 364 syl2anr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k = 2 nd k 1 M + 1 M + 1 M + 1 2 nd k M + 1
366 365 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k = 2 nd k 1 M + 1 M + 1 M + 1 2 nd k M + 1
367 125 reseq2d φ 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M
368 367 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M
369 opeq2 2 nd k M + 1 = M + 1 M + 1 2 nd k M + 1 = M + 1 M + 1
370 369 sneqd 2 nd k M + 1 = M + 1 M + 1 2 nd k M + 1 = M + 1 M + 1
371 uneq12 2 nd k 1 M + 1 M + 1 = 2 nd k 1 M M + 1 2 nd k M + 1 = M + 1 M + 1 2 nd k 1 M + 1 M + 1 M + 1 2 nd k M + 1 = 2 nd k 1 M M + 1 M + 1
372 368 370 371 syl2an φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k 1 M + 1 M + 1 M + 1 2 nd k M + 1 = 2 nd k 1 M M + 1 M + 1
373 366 372 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 2 nd k M + 1 = M + 1 2 nd k = 2 nd k 1 M M + 1 M + 1
374 373 adantrl φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 2 nd k = 2 nd k 1 M M + 1 M + 1
375 363 374 opeq12d φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 1 st k 2 nd k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
376 352 375 eqtrd φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
377 376 3adantr1 φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
378 fvex 1 st k V
379 378 resex 1 st k 1 M V
380 379 132 op1std t = 1 st k 1 M 2 nd k 1 M 1 st t = 1 st k 1 M
381 379 132 op2ndd t = 1 st k 1 M 2 nd k 1 M 2 nd t = 2 nd k 1 M
382 381 imaeq1d t = 1 st k 1 M 2 nd k 1 M 2 nd t 1 j = 2 nd k 1 M 1 j
383 382 xpeq1d t = 1 st k 1 M 2 nd k 1 M 2 nd t 1 j × 1 = 2 nd k 1 M 1 j × 1
384 381 imaeq1d t = 1 st k 1 M 2 nd k 1 M 2 nd t j + 1 M = 2 nd k 1 M j + 1 M
385 384 xpeq1d t = 1 st k 1 M 2 nd k 1 M 2 nd t j + 1 M × 0 = 2 nd k 1 M j + 1 M × 0
386 383 385 uneq12d t = 1 st k 1 M 2 nd k 1 M 2 nd t 1 j × 1 2 nd t j + 1 M × 0 = 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0
387 380 386 oveq12d t = 1 st k 1 M 2 nd k 1 M 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0
388 387 uneq1d t = 1 st k 1 M 2 nd k 1 M 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0
389 388 csbeq1d t = 1 st k 1 M 2 nd k 1 M 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
390 389 eqeq2d t = 1 st k 1 M 2 nd k 1 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
391 390 rexbidv t = 1 st k 1 M 2 nd k 1 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
392 391 ralbidv t = 1 st k 1 M 2 nd k 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B
393 380 uneq1d t = 1 st k 1 M 2 nd k 1 M 1 st t M + 1 0 = 1 st k 1 M M + 1 0
394 381 uneq1d t = 1 st k 1 M 2 nd k 1 M 2 nd t M + 1 M + 1 = 2 nd k 1 M M + 1 M + 1
395 393 394 opeq12d t = 1 st k 1 M 2 nd k 1 M 1 st t M + 1 0 2 nd t M + 1 M + 1 = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
396 395 eqeq2d t = 1 st k 1 M 2 nd k 1 M k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
397 392 396 anbi12d t = 1 st k 1 M 2 nd k 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1
398 397 rspcev 1 st k 1 M 2 nd k 1 M 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st k 1 M + f 2 nd k 1 M 1 j × 1 2 nd k 1 M j + 1 M × 0 M + 1 N × 0 / p B k = 1 st k 1 M M + 1 0 2 nd k 1 M M + 1 M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
399 137 350 377 398 syl12anc φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
400 399 ex φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
401 elrabi t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M
402 elrabi n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M
403 401 402 anim12i t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M
404 eqtr2 k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 1 st t M + 1 0 2 nd t M + 1 M + 1 = 1 st n M + 1 0 2 nd n M + 1 M + 1
405 22 24 opth 1 st t M + 1 0 2 nd t M + 1 M + 1 = 1 st n M + 1 0 2 nd n M + 1 M + 1 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
406 difeq1 1 st t M + 1 0 = 1 st n M + 1 0 1 st t M + 1 0 M + 1 0 = 1 st n M + 1 0 M + 1 0
407 difun2 1 st t M + 1 0 M + 1 0 = 1 st t M + 1 0
408 difun2 1 st n M + 1 0 M + 1 0 = 1 st n M + 1 0
409 406 407 408 3eqtr3g 1 st t M + 1 0 = 1 st n M + 1 0 1 st t M + 1 0 = 1 st n M + 1 0
410 difeq1 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 2 nd t M + 1 M + 1 M + 1 M + 1 = 2 nd n M + 1 M + 1 M + 1 M + 1
411 difun2 2 nd t M + 1 M + 1 M + 1 M + 1 = 2 nd t M + 1 M + 1
412 difun2 2 nd n M + 1 M + 1 M + 1 M + 1 = 2 nd n M + 1 M + 1
413 410 411 412 3eqtr3g 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
414 409 413 anim12i 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
415 405 414 sylbi 1 st t M + 1 0 2 nd t M + 1 M + 1 = 1 st n M + 1 0 2 nd n M + 1 M + 1 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
416 404 415 syl k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
417 elmapfn 1 st t 0 ..^ K 1 M 1 st t Fn 1 M
418 fnop 1 st t Fn 1 M M + 1 0 1 st t M + 1 1 M
419 418 ex 1 st t Fn 1 M M + 1 0 1 st t M + 1 1 M
420 9 417 419 3syl t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M + 1 0 1 st t M + 1 1 M
421 420 122 nsyli t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ ¬ M + 1 0 1 st t
422 421 impcom φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M ¬ M + 1 0 1 st t
423 difsn ¬ M + 1 0 1 st t 1 st t M + 1 0 = 1 st t
424 422 423 syl φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t M + 1 0 = 1 st t
425 xp1st n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st n 0 ..^ K 1 M
426 elmapfn 1 st n 0 ..^ K 1 M 1 st n Fn 1 M
427 fnop 1 st n Fn 1 M M + 1 0 1 st n M + 1 1 M
428 427 ex 1 st n Fn 1 M M + 1 0 1 st n M + 1 1 M
429 425 426 428 3syl n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M + 1 0 1 st n M + 1 1 M
430 429 122 nsyli n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ ¬ M + 1 0 1 st n
431 430 impcom φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M ¬ M + 1 0 1 st n
432 difsn ¬ M + 1 0 1 st n 1 st n M + 1 0 = 1 st n
433 431 432 syl φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st n M + 1 0 = 1 st n
434 424 433 eqeqan12d φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t M + 1 0 = 1 st n M + 1 0 1 st t = 1 st n
435 434 anandis φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t M + 1 0 = 1 st n M + 1 0 1 st t = 1 st n
436 f1ofn 2 nd t : 1 M 1-1 onto 1 M 2 nd t Fn 1 M
437 fnop 2 nd t Fn 1 M M + 1 M + 1 2 nd t M + 1 1 M
438 437 ex 2 nd t Fn 1 M M + 1 M + 1 2 nd t M + 1 1 M
439 17 436 438 3syl t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M + 1 M + 1 2 nd t M + 1 1 M
440 439 122 nsyli t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ ¬ M + 1 M + 1 2 nd t
441 440 impcom φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M ¬ M + 1 M + 1 2 nd t
442 difsn ¬ M + 1 M + 1 2 nd t 2 nd t M + 1 M + 1 = 2 nd t
443 441 442 syl φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t M + 1 M + 1 = 2 nd t
444 xp2nd n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd n f | f : 1 M 1-1 onto 1 M
445 fvex 2 nd n V
446 f1oeq1 f = 2 nd n f : 1 M 1-1 onto 1 M 2 nd n : 1 M 1-1 onto 1 M
447 445 446 elab 2 nd n f | f : 1 M 1-1 onto 1 M 2 nd n : 1 M 1-1 onto 1 M
448 444 447 sylib n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd n : 1 M 1-1 onto 1 M
449 f1ofn 2 nd n : 1 M 1-1 onto 1 M 2 nd n Fn 1 M
450 fnop 2 nd n Fn 1 M M + 1 M + 1 2 nd n M + 1 1 M
451 450 ex 2 nd n Fn 1 M M + 1 M + 1 2 nd n M + 1 1 M
452 448 449 451 3syl n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M M + 1 M + 1 2 nd n M + 1 1 M
453 452 122 nsyli n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ ¬ M + 1 M + 1 2 nd n
454 453 impcom φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M ¬ M + 1 M + 1 2 nd n
455 difsn ¬ M + 1 M + 1 2 nd n 2 nd n M + 1 M + 1 = 2 nd n
456 454 455 syl φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd n M + 1 M + 1 = 2 nd n
457 443 456 eqeqan12d φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M φ n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 2 nd t = 2 nd n
458 457 anandis φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 2 nd t = 2 nd n
459 435 458 anbi12d φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 1 st t = 1 st n 2 nd t = 2 nd n
460 xpopth t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t = 1 st n 2 nd t = 2 nd n t = n
461 460 adantl φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t = 1 st n 2 nd t = 2 nd n t = n
462 459 461 bitrd φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M 1 st t M + 1 0 = 1 st n M + 1 0 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1 t = n
463 416 462 syl5ib φ t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M n 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
464 403 463 sylan2 φ t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
465 464 ralrimivva φ t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
466 465 adantr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
467 400 466 jctird φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
468 fveq2 t = n 1 st t = 1 st n
469 468 uneq1d t = n 1 st t M + 1 0 = 1 st n M + 1 0
470 fveq2 t = n 2 nd t = 2 nd n
471 470 uneq1d t = n 2 nd t M + 1 M + 1 = 2 nd n M + 1 M + 1
472 469 471 opeq12d t = n 1 st t M + 1 0 2 nd t M + 1 M + 1 = 1 st n M + 1 0 2 nd n M + 1 M + 1
473 472 eqeq2d t = n k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1
474 473 reu4 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
475 58 rexrab t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
476 475 anbi1i t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
477 474 476 bitri ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M i 0 M j 0 M i = 1 st t + f 2 nd t 1 j × 1 2 nd t j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B n s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k = 1 st n M + 1 0 2 nd n M + 1 M + 1 t = n
478 467 477 syl6ibr φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
479 478 ralrimiva φ k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
480 fveq2 s = k 1 st s = 1 st k
481 fveq2 s = k 2 nd s = 2 nd k
482 481 imaeq1d s = k 2 nd s 1 j = 2 nd k 1 j
483 482 xpeq1d s = k 2 nd s 1 j × 1 = 2 nd k 1 j × 1
484 481 imaeq1d s = k 2 nd s j + 1 M + 1 = 2 nd k j + 1 M + 1
485 484 xpeq1d s = k 2 nd s j + 1 M + 1 × 0 = 2 nd k j + 1 M + 1 × 0
486 483 485 uneq12d s = k 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 = 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0
487 480 486 oveq12d s = k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0
488 487 uneq1d s = k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0
489 488 csbeq1d s = k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
490 489 eqeq2d s = k i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
491 490 rexbidv s = k j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
492 491 ralbidv s = k i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B
493 480 fveq1d s = k 1 st s M + 1 = 1 st k M + 1
494 493 eqeq1d s = k 1 st s M + 1 = 0 1 st k M + 1 = 0
495 481 fveq1d s = k 2 nd s M + 1 = 2 nd k M + 1
496 495 eqeq1d s = k 2 nd s M + 1 = M + 1 2 nd k M + 1 = M + 1
497 492 494 496 3anbi123d s = k i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1
498 497 ralrab k s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1 k 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 i 0 M j 0 M i = 1 st k + f 2 nd k 1 j × 1 2 nd k j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st k M + 1 = 0 2 nd k M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
499 479 498 sylibr φ k s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
500 eqid t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 = t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1
501 500 f1ompt t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 : s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1-1 onto s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 k s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 ∃! t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B k = 1 st t M + 1 0 2 nd t M + 1 M + 1
502 60 499 501 sylanbrc φ t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 : s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1-1 onto s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
503 ovex 0 ..^ K 1 M V
504 ovex 1 M 1 M V
505 f1of f : 1 M 1-1 onto 1 M f : 1 M 1 M
506 505 ss2abi f | f : 1 M 1-1 onto 1 M f | f : 1 M 1 M
507 68 68 mapval 1 M 1 M = f | f : 1 M 1 M
508 506 507 sseqtrri f | f : 1 M 1-1 onto 1 M 1 M 1 M
509 504 508 ssexi f | f : 1 M 1-1 onto 1 M V
510 503 509 xpex 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M V
511 510 rabex s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B V
512 511 f1oen t s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1 st t M + 1 0 2 nd t M + 1 M + 1 : s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B 1-1 onto s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1 s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1
513 502 512 syl φ s 0 ..^ K 1 M × f | f : 1 M 1-1 onto 1 M | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M × 0 M + 1 N × 0 / p B s 0 ..^ K 1 M + 1 × f | f : 1 M + 1 1-1 onto 1 M + 1 | i 0 M j 0 M i = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 M + 1 × 0 M + 1 + 1 N × 0 / p B 1 st s M + 1 = 0 2 nd s M + 1 = M + 1