Metamath Proof Explorer


Theorem dvnmul

Description: Function-builder for the N -th derivative, product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmul.s φS
dvnmul.x φXTopOpenfld𝑡S
dvnmul.a φxXA
dvnmul.cc φxXB
dvnmul.n φN0
dvnmulf F=xXA
dvnmul.f G=xXB
dvnmul.dvnf φk0NSDnFk:X
dvnmul.dvng φk0NSDnGk:X
dvnmul.c C=k0NSDnFk
dvnmul.d D=k0NSDnGk
Assertion dvnmul φSDnxXABN=xXk=0N(Nk)CkxDNkx

Proof

Step Hyp Ref Expression
1 dvnmul.s φS
2 dvnmul.x φXTopOpenfld𝑡S
3 dvnmul.a φxXA
4 dvnmul.cc φxXB
5 dvnmul.n φN0
6 dvnmulf F=xXA
7 dvnmul.f G=xXB
8 dvnmul.dvnf φk0NSDnFk:X
9 dvnmul.dvng φk0NSDnGk:X
10 dvnmul.c C=k0NSDnFk
11 dvnmul.d D=k0NSDnGk
12 id φφ
13 nn0uz 0=0
14 5 13 eleqtrdi φN0
15 eluzfz2 N0N0N
16 14 15 syl φN0N
17 eleq1 n=Nn0NN0N
18 fveq2 n=NSDnxXABn=SDnxXABN
19 oveq2 n=N0n=0N
20 19 sumeq1d n=Nk=0n(nk)CkxDnkx=k=0N(nk)CkxDnkx
21 oveq1 n=N(nk)=(Nk)
22 fvoveq1 n=NDnk=DNk
23 22 fveq1d n=NDnkx=DNkx
24 23 oveq2d n=NCkxDnkx=CkxDNkx
25 21 24 oveq12d n=N(nk)CkxDnkx=(Nk)CkxDNkx
26 25 sumeq2sdv n=Nk=0N(nk)CkxDnkx=k=0N(Nk)CkxDNkx
27 20 26 eqtrd n=Nk=0n(nk)CkxDnkx=k=0N(Nk)CkxDNkx
28 27 mpteq2dv n=NxXk=0n(nk)CkxDnkx=xXk=0N(Nk)CkxDNkx
29 18 28 eqeq12d n=NSDnxXABn=xXk=0n(nk)CkxDnkxSDnxXABN=xXk=0N(Nk)CkxDNkx
30 29 imbi2d n=NφSDnxXABn=xXk=0n(nk)CkxDnkxφSDnxXABN=xXk=0N(Nk)CkxDNkx
31 17 30 imbi12d n=Nn0NφSDnxXABn=xXk=0n(nk)CkxDnkxN0NφSDnxXABN=xXk=0N(Nk)CkxDNkx
32 fveq2 m=0SDnxXABm=SDnxXAB0
33 simpl m=0xXm=0
34 33 oveq2d m=0xX0m=00
35 simpll m=0xXk00m=0
36 35 oveq1d m=0xXk00(mk)=(0k)
37 35 fvoveq1d m=0xXk00Dmk=D0k
38 37 fveq1d m=0xXk00Dmkx=D0kx
39 38 oveq2d m=0xXk00CkxDmkx=CkxD0kx
40 36 39 oveq12d m=0xXk00(mk)CkxDmkx=(0k)CkxD0kx
41 34 40 sumeq12rdv m=0xXk=0m(mk)CkxDmkx=k=00(0k)CkxD0kx
42 41 mpteq2dva m=0xXk=0m(mk)CkxDmkx=xXk=00(0k)CkxD0kx
43 32 42 eqeq12d m=0SDnxXABm=xXk=0m(mk)CkxDmkxSDnxXAB0=xXk=00(0k)CkxD0kx
44 43 imbi2d m=0φSDnxXABm=xXk=0m(mk)CkxDmkxφSDnxXAB0=xXk=00(0k)CkxD0kx
45 fveq2 m=iSDnxXABm=SDnxXABi
46 simpl m=ixXm=i
47 46 oveq2d m=ixX0m=0i
48 simpll m=ixXk0im=i
49 48 oveq1d m=ixXk0i(mk)=(ik)
50 48 fvoveq1d m=ixXk0iDmk=Dik
51 50 fveq1d m=ixXk0iDmkx=Dikx
52 51 oveq2d m=ixXk0iCkxDmkx=CkxDikx
53 49 52 oveq12d m=ixXk0i(mk)CkxDmkx=(ik)CkxDikx
54 47 53 sumeq12rdv m=ixXk=0m(mk)CkxDmkx=k=0i(ik)CkxDikx
55 54 mpteq2dva m=ixXk=0m(mk)CkxDmkx=xXk=0i(ik)CkxDikx
56 45 55 eqeq12d m=iSDnxXABm=xXk=0m(mk)CkxDmkxSDnxXABi=xXk=0i(ik)CkxDikx
57 56 imbi2d m=iφSDnxXABm=xXk=0m(mk)CkxDmkxφSDnxXABi=xXk=0i(ik)CkxDikx
58 fveq2 m=i+1SDnxXABm=SDnxXABi+1
59 simpl m=i+1xXm=i+1
60 59 oveq2d m=i+1xX0m=0i+1
61 simpll m=i+1xXk0i+1m=i+1
62 61 oveq1d m=i+1xXk0i+1(mk)=(i+1k)
63 61 fvoveq1d m=i+1xXk0i+1Dmk=Di+1-k
64 63 fveq1d m=i+1xXk0i+1Dmkx=Di+1-kx
65 64 oveq2d m=i+1xXk0i+1CkxDmkx=CkxDi+1-kx
66 62 65 oveq12d m=i+1xXk0i+1(mk)CkxDmkx=(i+1k)CkxDi+1-kx
67 60 66 sumeq12rdv m=i+1xXk=0m(mk)CkxDmkx=k=0i+1(i+1k)CkxDi+1-kx
68 67 mpteq2dva m=i+1xXk=0m(mk)CkxDmkx=xXk=0i+1(i+1k)CkxDi+1-kx
69 58 68 eqeq12d m=i+1SDnxXABm=xXk=0m(mk)CkxDmkxSDnxXABi+1=xXk=0i+1(i+1k)CkxDi+1-kx
70 69 imbi2d m=i+1φSDnxXABm=xXk=0m(mk)CkxDmkxφSDnxXABi+1=xXk=0i+1(i+1k)CkxDi+1-kx
71 fveq2 m=nSDnxXABm=SDnxXABn
72 simpl m=nxXm=n
73 72 oveq2d m=nxX0m=0n
74 simpll m=nxXk0nm=n
75 74 oveq1d m=nxXk0n(mk)=(nk)
76 74 fvoveq1d m=nxXk0nDmk=Dnk
77 76 fveq1d m=nxXk0nDmkx=Dnkx
78 77 oveq2d m=nxXk0nCkxDmkx=CkxDnkx
79 75 78 oveq12d m=nxXk0n(mk)CkxDmkx=(nk)CkxDnkx
80 73 79 sumeq12rdv m=nxXk=0m(mk)CkxDmkx=k=0n(nk)CkxDnkx
81 80 mpteq2dva m=nxXk=0m(mk)CkxDmkx=xXk=0n(nk)CkxDnkx
82 71 81 eqeq12d m=nSDnxXABm=xXk=0m(mk)CkxDmkxSDnxXABn=xXk=0n(nk)CkxDnkx
83 82 imbi2d m=nφSDnxXABm=xXk=0m(mk)CkxDmkxφSDnxXABn=xXk=0n(nk)CkxDnkx
84 recnprss SS
85 1 84 syl φS
86 3 4 mulcld φxXAB
87 restsspw TopOpenfld𝑡S𝒫S
88 87 2 sselid φX𝒫S
89 elpwi X𝒫SXS
90 88 89 syl φXS
91 cnex V
92 91 a1i φV
93 86 90 92 1 mptelpm φxXAB𝑝𝑚S
94 dvn0 SxXAB𝑝𝑚SSDnxXAB0=xXAB
95 85 93 94 syl2anc φSDnxXAB0=xXAB
96 0z 0
97 fzsn 000=0
98 96 97 ax-mp 00=0
99 98 sumeq1i k=00(0k)CkxD0kx=k0(0k)CkxD0kx
100 99 a1i φxXk=00(0k)CkxD0kx=k0(0k)CkxD0kx
101 nfcvd φxX_kAB
102 nfv kφxX
103 oveq2 k=0(0k)=(00)
104 0nn0 00
105 bcn0 00(00)=1
106 104 105 ax-mp (00)=1
107 106 a1i k=0(00)=1
108 103 107 eqtrd k=0(0k)=1
109 108 adantl φxXk=0(0k)=1
110 fveq2 k=0Ck=C0
111 110 adantl φk=0Ck=C0
112 fveq2 k=nSDnFk=SDnFn
113 112 cbvmptv k0NSDnFk=n0NSDnFn
114 10 113 eqtri C=n0NSDnFn
115 fveq2 n=0SDnFn=SDnF0
116 eluzfz1 N000N
117 14 116 syl φ00N
118 fvexd φSDnF0V
119 114 115 117 118 fvmptd3 φC0=SDnF0
120 119 adantr φk=0C0=SDnF0
121 111 120 eqtrd φk=0Ck=SDnF0
122 3 90 92 1 mptelpm φxXA𝑝𝑚S
123 6 122 eqeltrid φF𝑝𝑚S
124 dvn0 SF𝑝𝑚SSDnF0=F
125 85 123 124 syl2anc φSDnF0=F
126 125 adantr φk=0SDnF0=F
127 121 126 eqtrd φk=0Ck=F
128 127 fveq1d φk=0Ckx=Fx
129 128 adantlr φxXk=0Ckx=Fx
130 simpr φxXxX
131 6 fvmpt2 xXAFx=A
132 130 3 131 syl2anc φxXFx=A
133 132 adantr φxXk=0Fx=A
134 129 133 eqtrd φxXk=0Ckx=A
135 oveq2 k=00k=00
136 0m0e0 00=0
137 136 a1i k=000=0
138 135 137 eqtrd k=00k=0
139 138 fveq2d k=0D0k=D0
140 139 fveq1d k=0D0kx=D0x
141 140 adantl φk=0D0kx=D0x
142 141 adantlr φxXk=0D0kx=D0x
143 fveq2 k=nSDnGk=SDnGn
144 143 cbvmptv k0NSDnGk=n0NSDnGn
145 11 144 eqtri D=n0NSDnGn
146 145 fveq1i D0=n0NSDnGn0
147 146 a1i φD0=n0NSDnGn0
148 eqidd φn0NSDnGn=n0NSDnGn
149 fveq2 n=0SDnGn=SDnG0
150 149 adantl φn=0SDnGn=SDnG0
151 4 90 92 1 mptelpm φxXB𝑝𝑚S
152 7 151 eqeltrid φG𝑝𝑚S
153 dvn0 SG𝑝𝑚SSDnG0=G
154 85 152 153 syl2anc φSDnG0=G
155 154 adantr φn=0SDnG0=G
156 150 155 eqtrd φn=0SDnGn=G
157 7 a1i φG=xXB
158 mptexg X𝒫SxXBV
159 88 158 syl φxXBV
160 157 159 eqeltrd φGV
161 148 156 117 160 fvmptd φn0NSDnGn0=G
162 147 161 eqtrd φD0=G
163 162 fveq1d φD0x=Gx
164 163 ad2antrr φxXk=0D0x=Gx
165 157 4 fvmpt2d φxXGx=B
166 165 adantr φxXk=0Gx=B
167 142 164 166 3eqtrd φxXk=0D0kx=B
168 134 167 oveq12d φxXk=0CkxD0kx=AB
169 109 168 oveq12d φxXk=0(0k)CkxD0kx=1AB
170 86 mullidd φxX1AB=AB
171 170 adantr φxXk=01AB=AB
172 169 171 eqtrd φxXk=0(0k)CkxD0kx=AB
173 0re 0
174 173 a1i φxX0
175 101 102 172 174 86 sumsnd φxXk0(0k)CkxD0kx=AB
176 100 175 eqtr2d φxXAB=k=00(0k)CkxD0kx
177 176 mpteq2dva φxXAB=xXk=00(0k)CkxD0kx
178 95 177 eqtrd φSDnxXAB0=xXk=00(0k)CkxD0kx
179 178 a1i N0φSDnxXAB0=xXk=00(0k)CkxD0kx
180 simp3 i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφφ
181 simp1 i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφi0..^N
182 simp2 i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφφSDnxXABi=xXk=0i(ik)CkxDikx
183 pm3.35 φφSDnxXABi=xXk=0i(ik)CkxDikxSDnxXABi=xXk=0i(ik)CkxDikx
184 180 182 183 syl2anc i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφSDnxXABi=xXk=0i(ik)CkxDikx
185 85 adantr φi0..^NS
186 93 adantr φi0..^NxXAB𝑝𝑚S
187 elfzonn0 i0..^Ni0
188 187 adantl φi0..^Ni0
189 dvnp1 SxXAB𝑝𝑚Si0SDnxXABi+1=SDSDnxXABi
190 185 186 188 189 syl3anc φi0..^NSDnxXABi+1=SDSDnxXABi
191 190 adantr φi0..^NSDnxXABi=xXk=0i(ik)CkxDikxSDnxXABi+1=SDSDnxXABi
192 simpr φi0..^NSDnxXABi=xXk=0i(ik)CkxDikxSDnxXABi=xXk=0i(ik)CkxDikx
193 192 oveq2d φi0..^NSDnxXABi=xXk=0i(ik)CkxDikxSDSDnxXABi=dxXk=0i(ik)CkxDikxdSx
194 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
195 eqid TopOpenfld=TopOpenfld
196 1 adantr φi0..^NS
197 2 adantr φi0..^NXTopOpenfld𝑡S
198 fzfid φi0..^N0iFin
199 187 adantr i0..^Nk0ii0
200 elfzelz k0ik
201 200 adantl i0..^Nk0ik
202 199 201 bccld i0..^Nk0i(ik)0
203 202 nn0cnd i0..^Nk0i(ik)
204 203 adantll φi0..^Nk0i(ik)
205 204 3adant3 φi0..^Nk0ixX(ik)
206 simpll φi0..^Nk0iφ
207 0zd i0..^Nk0i0
208 elfzoel2 i0..^NN
209 208 adantr i0..^Nk0iN
210 elfzle1 k0i0k
211 210 adantl i0..^Nk0i0k
212 201 zred i0..^Nk0ik
213 208 zred i0..^NN
214 213 adantr i0..^Nk0iN
215 187 nn0red i0..^Ni
216 215 adantr i0..^Nk0ii
217 elfzle2 k0iki
218 217 adantl i0..^Nk0iki
219 elfzolt2 i0..^Ni<N
220 219 adantr i0..^Nk0ii<N
221 212 216 214 218 220 lelttrd i0..^Nk0ik<N
222 212 214 221 ltled i0..^Nk0ikN
223 207 209 201 211 222 elfzd i0..^Nk0ik0N
224 223 adantll φi0..^Nk0ik0N
225 10 a1i φC=k0NSDnFk
226 fvexd φk0NSDnFkV
227 225 226 fvmpt2d φk0NCk=SDnFk
228 227 feq1d φk0NCk:XSDnFk:X
229 8 228 mpbird φk0NCk:X
230 206 224 229 syl2anc φi0..^Nk0iCk:X
231 230 3adant3 φi0..^Nk0ixXCk:X
232 simp3 φi0..^Nk0ixXxX
233 231 232 ffvelcdmd φi0..^Nk0ixXCkx
234 187 nn0zd i0..^Ni
235 234 adantr i0..^Nk0ii
236 235 201 zsubcld i0..^Nk0iik
237 elfzel2 k0ii
238 237 zred k0ii
239 200 zred k0ik
240 238 239 subge0d k0i0ikki
241 217 240 mpbird k0i0ik
242 241 adantl i0..^Nk0i0ik
243 216 212 resubcld i0..^Nk0iik
244 214 212 resubcld i0..^Nk0iNk
245 173 a1i i0..^Nk0i0
246 214 245 jca i0..^Nk0iN0
247 resubcl N0N0
248 246 247 syl i0..^Nk0iN0
249 216 214 212 220 ltsub1dd i0..^Nk0iik<Nk
250 245 212 214 211 lesub2dd i0..^Nk0iNkN0
251 243 244 248 249 250 ltletrd i0..^Nk0iik<N0
252 213 recnd i0..^NN
253 252 subid1d i0..^NN0=N
254 253 adantr i0..^Nk0iN0=N
255 251 254 breqtrd i0..^Nk0iik<N
256 243 214 255 ltled i0..^Nk0iikN
257 207 209 236 242 256 elfzd i0..^Nk0iik0N
258 257 adantll φi0..^Nk0iik0N
259 ovex ikV
260 eleq1 j=ikj0Nik0N
261 260 anbi2d j=ikφj0Nφik0N
262 fveq2 j=ikSDnGj=SDnGik
263 262 feq1d j=ikSDnGj:XSDnGik:X
264 261 263 imbi12d j=ikφj0NSDnGj:Xφik0NSDnGik:X
265 nfv kφj0NSDnGj:X
266 eleq1 k=jk0Nj0N
267 266 anbi2d k=jφk0Nφj0N
268 fveq2 k=jSDnGk=SDnGj
269 268 feq1d k=jSDnGk:XSDnGj:X
270 267 269 imbi12d k=jφk0NSDnGk:Xφj0NSDnGj:X
271 265 270 9 chvarfv φj0NSDnGj:X
272 259 264 271 vtocl φik0NSDnGik:X
273 206 258 272 syl2anc φi0..^Nk0iSDnGik:X
274 fveq2 n=ikSDnGn=SDnGik
275 fvexd i0..^Nk0iSDnGikV
276 145 274 257 275 fvmptd3 i0..^Nk0iDik=SDnGik
277 276 adantll φi0..^Nk0iDik=SDnGik
278 277 feq1d φi0..^Nk0iDik:XSDnGik:X
279 273 278 mpbird φi0..^Nk0iDik:X
280 279 3adant3 φi0..^Nk0ixXDik:X
281 280 232 ffvelcdmd φi0..^Nk0ixXDikx
282 233 281 mulcld φi0..^Nk0ixXCkxDikx
283 205 282 mulcld φi0..^Nk0ixX(ik)CkxDikx
284 205 3expa φi0..^Nk0ixX(ik)
285 235 peano2zd i0..^Nk0ii+1
286 285 201 zsubcld i0..^Nk0ii+1-k
287 peano2re ii+1
288 238 287 syl k0ii+1
289 peano2re kk+1
290 239 289 syl k0ik+1
291 239 ltp1d k0ik<k+1
292 1red k0i1
293 239 238 292 217 leadd1dd k0ik+1i+1
294 239 290 288 291 293 ltletrd k0ik<i+1
295 239 288 294 ltled k0iki+1
296 295 adantl i0..^Nk0iki+1
297 216 287 syl i0..^Nk0ii+1
298 297 212 subge0d i0..^Nk0i0i+1-kki+1
299 296 298 mpbird i0..^Nk0i0i+1-k
300 297 212 resubcld i0..^Nk0ii+1-k
301 elfzop1le2 i0..^Ni+1N
302 301 adantr i0..^Nk0ii+1N
303 297 214 212 302 lesub1dd i0..^Nk0ii+1-kNk
304 250 254 breqtrd i0..^Nk0iNkN
305 300 244 214 303 304 letrd i0..^Nk0ii+1-kN
306 207 209 286 299 305 elfzd i0..^Nk0ii+1-k0N
307 306 adantll φi0..^Nk0ii+1-k0N
308 ovex i+1-kV
309 eleq1 j=i+1-kj0Ni+1-k0N
310 309 anbi2d j=i+1-kφj0Nφi+1-k0N
311 fveq2 j=i+1-kSDnGj=SDnGi+1-k
312 311 feq1d j=i+1-kSDnGj:XSDnGi+1-k:X
313 310 312 imbi12d j=i+1-kφj0NSDnGj:Xφi+1-k0NSDnGi+1-k:X
314 308 313 271 vtocl φi+1-k0NSDnGi+1-k:X
315 206 307 314 syl2anc φi0..^Nk0iSDnGi+1-k:X
316 145 a1i φi0..^Nk0iD=n0NSDnGn
317 simpr φi0..^Nk0in=i+1-kn=i+1-k
318 317 fveq2d φi0..^Nk0in=i+1-kSDnGn=SDnGi+1-k
319 fvexd φi0..^Nk0iSDnGi+1-kV
320 316 318 307 319 fvmptd φi0..^Nk0iDi+1-k=SDnGi+1-k
321 320 feq1d φi0..^Nk0iDi+1-k:XSDnGi+1-k:X
322 315 321 mpbird φi0..^Nk0iDi+1-k:X
323 322 ffvelcdmda φi0..^Nk0ixXDi+1-kx
324 233 3expa φi0..^Nk0ixXCkx
325 323 324 mulcomd φi0..^Nk0ixXDi+1-kxCkx=CkxDi+1-kx
326 325 oveq2d φi0..^Nk0ixXCk+1xDikx+Di+1-kxCkx=Ck+1xDikx+CkxDi+1-kx
327 201 peano2zd i0..^Nk0ik+1
328 173 a1i k0i0
329 328 239 290 210 291 lelttrd k0i0<k+1
330 328 290 329 ltled k0i0k+1
331 330 adantl i0..^Nk0i0k+1
332 212 289 syl i0..^Nk0ik+1
333 293 adantl i0..^Nk0ik+1i+1
334 332 297 214 333 302 letrd i0..^Nk0ik+1N
335 207 209 327 331 334 elfzd i0..^Nk0ik+10N
336 335 adantll φi0..^Nk0ik+10N
337 ovex k+1V
338 eleq1 j=k+1j0Nk+10N
339 338 anbi2d j=k+1φj0Nφk+10N
340 fveq2 j=k+1Cj=Ck+1
341 340 feq1d j=k+1Cj:XCk+1:X
342 339 341 imbi12d j=k+1φj0NCj:Xφk+10NCk+1:X
343 nfv kφj0N
344 nfmpt1 _kk0NSDnFk
345 10 344 nfcxfr _kC
346 nfcv _kj
347 345 346 nffv _kCj
348 nfcv _kX
349 nfcv _k
350 347 348 349 nff kCj:X
351 343 350 nfim kφj0NCj:X
352 fveq2 k=jCk=Cj
353 352 feq1d k=jCk:XCj:X
354 267 353 imbi12d k=jφk0NCk:Xφj0NCj:X
355 351 354 229 chvarfv φj0NCj:X
356 337 342 355 vtocl φk+10NCk+1:X
357 206 336 356 syl2anc φi0..^Nk0iCk+1:X
358 357 ffvelcdmda φi0..^Nk0ixXCk+1x
359 281 3expa φi0..^Nk0ixXDikx
360 358 359 mulcld φi0..^Nk0ixXCk+1xDikx
361 323 324 mulcld φi0..^Nk0ixXDi+1-kxCkx
362 360 361 addcld φi0..^Nk0ixXCk+1xDikx+Di+1-kxCkx
363 326 362 eqeltrrd φi0..^Nk0ixXCk+1xDikx+CkxDi+1-kx
364 284 363 mulcld φi0..^Nk0ixX(ik)Ck+1xDikx+CkxDi+1-kx
365 364 3impa φi0..^Nk0ixX(ik)Ck+1xDikx+CkxDi+1-kx
366 206 1 syl φi0..^Nk0iS
367 173 a1i φi0..^Nk0ixX0
368 206 2 syl φi0..^Nk0iXTopOpenfld𝑡S
369 366 368 204 dvmptconst φi0..^Nk0idxX(ik)dSx=xX0
370 282 3expa φi0..^Nk0ixXCkxDikx
371 206 224 227 syl2anc φi0..^Nk0iCk=SDnFk
372 371 eqcomd φi0..^Nk0iSDnFk=Ck
373 230 feqmptd φi0..^Nk0iCk=xXCkx
374 372 373 eqtr2d φi0..^Nk0ixXCkx=SDnFk
375 374 oveq2d φi0..^Nk0idxXCkxdSx=SDSDnFk
376 366 84 syl φi0..^Nk0iS
377 206 123 syl φi0..^Nk0iF𝑝𝑚S
378 elfznn0 k0ik0
379 378 adantl φi0..^Nk0ik0
380 dvnp1 SF𝑝𝑚Sk0SDnFk+1=SDSDnFk
381 376 377 379 380 syl3anc φi0..^Nk0iSDnFk+1=SDSDnFk
382 381 eqcomd φi0..^Nk0iSDSDnFk=SDnFk+1
383 fveq2 n=k+1SDnFn=SDnFk+1
384 fvexd φi0..^Nk0iSDnFk+1V
385 114 383 336 384 fvmptd3 φi0..^Nk0iCk+1=SDnFk+1
386 385 eqcomd φi0..^Nk0iSDnFk+1=Ck+1
387 357 feqmptd φi0..^Nk0iCk+1=xXCk+1x
388 386 387 eqtrd φi0..^Nk0iSDnFk+1=xXCk+1x
389 375 382 388 3eqtrd φi0..^Nk0idxXCkxdSx=xXCk+1x
390 277 eqcomd φi0..^Nk0iSDnGik=Dik
391 279 feqmptd φi0..^Nk0iDik=xXDikx
392 390 391 eqtr2d φi0..^Nk0ixXDikx=SDnGik
393 392 oveq2d φi0..^Nk0idxXDikxdSx=SDSDnGik
394 206 152 syl φi0..^Nk0iG𝑝𝑚S
395 fznn0sub k0iik0
396 395 adantl φi0..^Nk0iik0
397 dvnp1 SG𝑝𝑚Sik0SDnGi-k+1=SDSDnGik
398 376 394 396 397 syl3anc φi0..^Nk0iSDnGi-k+1=SDSDnGik
399 398 eqcomd φi0..^Nk0iSDSDnGik=SDnGi-k+1
400 216 recnd i0..^Nk0ii
401 1cnd i0..^Nk0i1
402 212 recnd i0..^Nk0ik
403 400 401 402 addsubd i0..^Nk0ii+1-k=i-k+1
404 403 eqcomd i0..^Nk0ii-k+1=i+1-k
405 404 fveq2d i0..^Nk0iSDnGi-k+1=SDnGi+1-k
406 405 adantll φi0..^Nk0iSDnGi-k+1=SDnGi+1-k
407 320 eqcomd φi0..^Nk0iSDnGi+1-k=Di+1-k
408 322 feqmptd φi0..^Nk0iDi+1-k=xXDi+1-kx
409 406 407 408 3eqtrd φi0..^Nk0iSDnGi-k+1=xXDi+1-kx
410 393 399 409 3eqtrd φi0..^Nk0idxXDikxdSx=xXDi+1-kx
411 366 324 358 389 359 323 410 dvmptmul φi0..^Nk0idxXCkxDikxdSx=xXCk+1xDikx+Di+1-kxCkx
412 366 284 367 369 370 362 411 dvmptmul φi0..^Nk0idxX(ik)CkxDikxdSx=xX0CkxDikx+Ck+1xDikx+Di+1-kxCkx(ik)
413 370 mul02d φi0..^Nk0ixX0CkxDikx=0
414 326 oveq1d φi0..^Nk0ixXCk+1xDikx+Di+1-kxCkx(ik)=Ck+1xDikx+CkxDi+1-kx(ik)
415 363 284 mulcomd φi0..^Nk0ixXCk+1xDikx+CkxDi+1-kx(ik)=(ik)Ck+1xDikx+CkxDi+1-kx
416 414 415 eqtrd φi0..^Nk0ixXCk+1xDikx+Di+1-kxCkx(ik)=(ik)Ck+1xDikx+CkxDi+1-kx
417 413 416 oveq12d φi0..^Nk0ixX0CkxDikx+Ck+1xDikx+Di+1-kxCkx(ik)=0+(ik)Ck+1xDikx+CkxDi+1-kx
418 364 addlidd φi0..^Nk0ixX0+(ik)Ck+1xDikx+CkxDi+1-kx=(ik)Ck+1xDikx+CkxDi+1-kx
419 417 418 eqtrd φi0..^Nk0ixX0CkxDikx+Ck+1xDikx+Di+1-kxCkx(ik)=(ik)Ck+1xDikx+CkxDi+1-kx
420 419 mpteq2dva φi0..^Nk0ixX0CkxDikx+Ck+1xDikx+Di+1-kxCkx(ik)=xX(ik)Ck+1xDikx+CkxDi+1-kx
421 412 420 eqtrd φi0..^Nk0idxX(ik)CkxDikxdSx=xX(ik)Ck+1xDikx+CkxDi+1-kx
422 194 195 196 197 198 283 365 421 dvmptfsum φi0..^NdxXk=0i(ik)CkxDikxdSx=xXk=0i(ik)Ck+1xDikx+CkxDi+1-kx
423 204 adantlr φi0..^NxXk0i(ik)
424 360 an32s φi0..^NxXk0iCk+1xDikx
425 anass φi0..^Nk0ixXφi0..^Nk0ixX
426 ancom k0ixXxXk0i
427 426 anbi2i φi0..^Nk0ixXφi0..^NxXk0i
428 anass φi0..^NxXk0iφi0..^NxXk0i
429 428 bicomi φi0..^NxXk0iφi0..^NxXk0i
430 427 429 bitri φi0..^Nk0ixXφi0..^NxXk0i
431 425 430 bitri φi0..^Nk0ixXφi0..^NxXk0i
432 431 imbi1i φi0..^Nk0ixXCkxφi0..^NxXk0iCkx
433 324 432 mpbi φi0..^NxXk0iCkx
434 431 imbi1i φi0..^Nk0ixXDi+1-kxφi0..^NxXk0iDi+1-kx
435 323 434 mpbi φi0..^NxXk0iDi+1-kx
436 433 435 mulcld φi0..^NxXk0iCkxDi+1-kx
437 423 424 436 adddid φi0..^NxXk0i(ik)Ck+1xDikx+CkxDi+1-kx=(ik)Ck+1xDikx+(ik)CkxDi+1-kx
438 437 sumeq2dv φi0..^NxXk=0i(ik)Ck+1xDikx+CkxDi+1-kx=k=0i(ik)Ck+1xDikx+(ik)CkxDi+1-kx
439 198 adantr φi0..^NxX0iFin
440 423 424 mulcld φi0..^NxXk0i(ik)Ck+1xDikx
441 423 436 mulcld φi0..^NxXk0i(ik)CkxDi+1-kx
442 439 440 441 fsumadd φi0..^NxXk=0i(ik)Ck+1xDikx+(ik)CkxDi+1-kx=k=0i(ik)Ck+1xDikx+k=0i(ik)CkxDi+1-kx
443 oveq2 k=h(ik)=(ih)
444 fvoveq1 k=hCk+1=Ch+1
445 444 fveq1d k=hCk+1x=Ch+1x
446 oveq2 k=hik=ih
447 446 fveq2d k=hDik=Dih
448 447 fveq1d k=hDikx=Dihx
449 445 448 oveq12d k=hCk+1xDikx=Ch+1xDihx
450 443 449 oveq12d k=h(ik)Ck+1xDikx=(ih)Ch+1xDihx
451 nfcv _h0i
452 nfcv _k0i
453 nfcv _h(ik)Ck+1xDikx
454 nfcv _k(ih)
455 nfcv _k×
456 nfcv _kh+1
457 345 456 nffv _kCh+1
458 nfcv _kx
459 457 458 nffv _kCh+1x
460 nfmpt1 _kk0NSDnGk
461 11 460 nfcxfr _kD
462 nfcv _kih
463 461 462 nffv _kDih
464 463 458 nffv _kDihx
465 459 455 464 nfov _kCh+1xDihx
466 454 455 465 nfov _k(ih)Ch+1xDihx
467 450 451 452 453 466 cbvsum k=0i(ik)Ck+1xDikx=h=0i(ih)Ch+1xDihx
468 467 a1i φi0..^NxXk=0i(ik)Ck+1xDikx=h=0i(ih)Ch+1xDihx
469 1zzd φi0..^NxX1
470 96 a1i φi0..^NxX0
471 234 ad2antlr φi0..^NxXi
472 nfv kφi0..^NxX
473 nfcv _kh
474 473 452 nfel kh0i
475 472 474 nfan kφi0..^NxXh0i
476 466 349 nfel k(ih)Ch+1xDihx
477 475 476 nfim kφi0..^NxXh0i(ih)Ch+1xDihx
478 eleq1 k=hk0ih0i
479 478 anbi2d k=hφi0..^NxXk0iφi0..^NxXh0i
480 450 eleq1d k=h(ik)Ck+1xDikx(ih)Ch+1xDihx
481 479 480 imbi12d k=hφi0..^NxXk0i(ik)Ck+1xDikxφi0..^NxXh0i(ih)Ch+1xDihx
482 477 481 440 chvarfv φi0..^NxXh0i(ih)Ch+1xDihx
483 oveq2 h=j1(ih)=(ij1)
484 fvoveq1 h=j1Ch+1=Cj-1+1
485 484 fveq1d h=j1Ch+1x=Cj-1+1x
486 oveq2 h=j1ih=ij1
487 486 fveq2d h=j1Dih=Dij1
488 487 fveq1d h=j1Dihx=Dij1x
489 485 488 oveq12d h=j1Ch+1xDihx=Cj-1+1xDij1x
490 483 489 oveq12d h=j1(ih)Ch+1xDihx=(ij1)Cj-1+1xDij1x
491 469 470 471 482 490 fsumshft φi0..^NxXh=0i(ih)Ch+1xDihx=j=0+1i+1(ij1)Cj-1+1xDij1x
492 468 491 eqtrd φi0..^NxXk=0i(ik)Ck+1xDikx=j=0+1i+1(ij1)Cj-1+1xDij1x
493 0p1e1 0+1=1
494 493 oveq1i 0+1i+1=1i+1
495 494 sumeq1i j=0+1i+1(ij1)Cj-1+1xDij1x=j=1i+1(ij1)Cj-1+1xDij1x
496 495 a1i φi0..^NxXj=0+1i+1(ij1)Cj-1+1xDij1x=j=1i+1(ij1)Cj-1+1xDij1x
497 elfzelz j1i+1j
498 497 zcnd j1i+1j
499 1cnd j1i+11
500 498 499 npcand j1i+1j-1+1=j
501 500 fveq2d j1i+1Cj-1+1=Cj
502 501 fveq1d j1i+1Cj-1+1x=Cjx
503 502 adantl i0..^Nj1i+1Cj-1+1x=Cjx
504 215 recnd i0..^Ni
505 504 adantr i0..^Nj1i+1i
506 498 adantl i0..^Nj1i+1j
507 499 adantl i0..^Nj1i+11
508 505 506 507 subsub3d i0..^Nj1i+1ij1=i+1-j
509 508 fveq2d i0..^Nj1i+1Dij1=Di+1-j
510 509 fveq1d i0..^Nj1i+1Dij1x=Di+1-jx
511 503 510 oveq12d i0..^Nj1i+1Cj-1+1xDij1x=CjxDi+1-jx
512 511 oveq2d i0..^Nj1i+1(ij1)Cj-1+1xDij1x=(ij1)CjxDi+1-jx
513 512 sumeq2dv i0..^Nj=1i+1(ij1)Cj-1+1xDij1x=j=1i+1(ij1)CjxDi+1-jx
514 513 ad2antlr φi0..^NxXj=1i+1(ij1)Cj-1+1xDij1x=j=1i+1(ij1)CjxDi+1-jx
515 nfv jφi0..^NxX
516 nfcv _j(ii+1-1)Ci+1xDi+1-i+1x
517 fzfid φi0..^NxX1i+1Fin
518 187 adantr i0..^Nj1i+1i0
519 497 adantl i0..^Nj1i+1j
520 1zzd i0..^Nj1i+11
521 519 520 zsubcld i0..^Nj1i+1j1
522 518 521 bccld i0..^Nj1i+1(ij1)0
523 522 nn0cnd i0..^Nj1i+1(ij1)
524 523 adantll φi0..^Nj1i+1(ij1)
525 524 adantlr φi0..^NxXj1i+1(ij1)
526 12 ad2antrr φi0..^Nj1i+1φ
527 0zd i0..^Nj1i+10
528 208 adantr i0..^Nj1i+1N
529 173 a1i j1i+10
530 497 zred j1i+1j
531 1red j1i+11
532 0lt1 0<1
533 532 a1i j1i+10<1
534 elfzle1 j1i+11j
535 529 531 530 533 534 ltletrd j1i+10<j
536 529 530 535 ltled j1i+10j
537 536 adantl i0..^Nj1i+10j
538 530 adantl i0..^Nj1i+1j
539 215 adantr i0..^Nj1i+1i
540 1red i0..^Nj1i+11
541 539 540 readdcld i0..^Nj1i+1i+1
542 213 adantr i0..^Nj1i+1N
543 elfzle2 j1i+1ji+1
544 543 adantl i0..^Nj1i+1ji+1
545 301 adantr i0..^Nj1i+1i+1N
546 538 541 542 544 545 letrd i0..^Nj1i+1jN
547 527 528 519 537 546 elfzd i0..^Nj1i+1j0N
548 547 adantll φi0..^Nj1i+1j0N
549 526 548 355 syl2anc φi0..^Nj1i+1Cj:X
550 549 adantlr φi0..^NxXj1i+1Cj:X
551 simplr φi0..^NxXj1i+1xX
552 550 551 ffvelcdmd φi0..^NxXj1i+1Cjx
553 234 adantr i0..^Nj1i+1i
554 553 peano2zd i0..^Nj1i+1i+1
555 554 519 zsubcld i0..^Nj1i+1i+1-j
556 541 538 subge0d i0..^Nj1i+10i+1-jji+1
557 544 556 mpbird i0..^Nj1i+10i+1-j
558 541 538 resubcld i0..^Nj1i+1i+1-j
559 558 leidd i0..^Nj1i+1i+1-ji+1-j
560 530 535 elrpd j1i+1j+
561 560 adantl i0..^Nj1i+1j+
562 541 561 ltsubrpd i0..^Nj1i+1i+1-j<i+1
563 558 541 542 562 545 ltletrd i0..^Nj1i+1i+1-j<N
564 558 558 542 559 563 lelttrd i0..^Nj1i+1i+1-j<N
565 558 542 564 ltled i0..^Nj1i+1i+1-jN
566 527 528 555 557 565 elfzd i0..^Nj1i+1i+1-j0N
567 566 adantll φi0..^Nj1i+1i+1-j0N
568 nfv kφi+1-j0N
569 nfcv _ki+1-j
570 461 569 nffv _kDi+1-j
571 570 348 349 nff kDi+1-j:X
572 568 571 nfim kφi+1-j0NDi+1-j:X
573 ovex i+1-jV
574 eleq1 k=i+1-jk0Ni+1-j0N
575 574 anbi2d k=i+1-jφk0Nφi+1-j0N
576 fveq2 k=i+1-jDk=Di+1-j
577 576 feq1d k=i+1-jDk:XDi+1-j:X
578 575 577 imbi12d k=i+1-jφk0NDk:Xφi+1-j0NDi+1-j:X
579 11 a1i φD=k0NSDnGk
580 fvexd φk0NSDnGkV
581 579 580 fvmpt2d φk0NDk=SDnGk
582 581 feq1d φk0NDk:XSDnGk:X
583 9 582 mpbird φk0NDk:X
584 572 573 578 583 vtoclf φi+1-j0NDi+1-j:X
585 526 567 584 syl2anc φi0..^Nj1i+1Di+1-j:X
586 585 adantlr φi0..^NxXj1i+1Di+1-j:X
587 586 551 ffvelcdmd φi0..^NxXj1i+1Di+1-jx
588 552 587 mulcld φi0..^NxXj1i+1CjxDi+1-jx
589 525 588 mulcld φi0..^NxXj1i+1(ij1)CjxDi+1-jx
590 1zzd i0..^N1
591 234 peano2zd i0..^Ni+1
592 493 eqcomi 1=0+1
593 592 a1i i0..^N1=0+1
594 173 a1i i0..^N0
595 1red i0..^N1
596 187 nn0ge0d i0..^N0i
597 594 215 595 596 leadd1dd i0..^N0+1i+1
598 593 597 eqbrtrd i0..^N1i+1
599 590 591 598 3jca i0..^N1i+11i+1
600 eluz2 i+111i+11i+1
601 599 600 sylibr i0..^Ni+11
602 eluzfz2 i+11i+11i+1
603 601 602 syl i0..^Ni+11i+1
604 603 ad2antlr φi0..^NxXi+11i+1
605 oveq1 j=i+1j1=i+1-1
606 605 oveq2d j=i+1(ij1)=(ii+1-1)
607 fveq2 j=i+1Cj=Ci+1
608 607 fveq1d j=i+1Cjx=Ci+1x
609 oveq2 j=i+1i+1-j=i+1-i+1
610 609 fveq2d j=i+1Di+1-j=Di+1-i+1
611 610 fveq1d j=i+1Di+1-jx=Di+1-i+1x
612 608 611 oveq12d j=i+1CjxDi+1-jx=Ci+1xDi+1-i+1x
613 606 612 oveq12d j=i+1(ij1)CjxDi+1-jx=(ii+1-1)Ci+1xDi+1-i+1x
614 515 516 517 589 604 613 fsumsplit1 φi0..^NxXj=1i+1(ij1)CjxDi+1-jx=(ii+1-1)Ci+1xDi+1-i+1x+j1i+1i+1(ij1)CjxDi+1-jx
615 1cnd i0..^N1
616 504 615 pncand i0..^Ni+1-1=i
617 616 oveq2d i0..^N(ii+1-1)=(ii)
618 bcnn i0(ii)=1
619 187 618 syl i0..^N(ii)=1
620 617 619 eqtrd i0..^N(ii+1-1)=1
621 504 615 addcld i0..^Ni+1
622 621 subidd i0..^Ni+1-i+1=0
623 622 fveq2d i0..^NDi+1-i+1=D0
624 623 fveq1d i0..^NDi+1-i+1x=D0x
625 624 oveq2d i0..^NCi+1xDi+1-i+1x=Ci+1xD0x
626 620 625 oveq12d i0..^N(ii+1-1)Ci+1xDi+1-i+1x=1Ci+1xD0x
627 626 ad2antlr φi0..^NxX(ii+1-1)Ci+1xDi+1-i+1x=1Ci+1xD0x
628 simpl φi0..^Nφ
629 fzofzp1 i0..^Ni+10N
630 629 adantl φi0..^Ni+10N
631 nfv kφi+10N
632 nfcv _ki+1
633 345 632 nffv _kCi+1
634 633 348 349 nff kCi+1:X
635 631 634 nfim kφi+10NCi+1:X
636 ovex i+1V
637 eleq1 k=i+1k0Ni+10N
638 637 anbi2d k=i+1φk0Nφi+10N
639 fveq2 k=i+1Ck=Ci+1
640 639 feq1d k=i+1Ck:XCi+1:X
641 638 640 imbi12d k=i+1φk0NCk:Xφi+10NCi+1:X
642 635 636 641 229 vtoclf φi+10NCi+1:X
643 628 630 642 syl2anc φi0..^NCi+1:X
644 643 ffvelcdmda φi0..^NxXCi+1x
645 nfv kφ00N
646 nfcv _k0
647 461 646 nffv _kD0
648 647 348 349 nff kD0:X
649 645 648 nfim kφ00ND0:X
650 c0ex 0V
651 eleq1 k=0k0N00N
652 651 anbi2d k=0φk0Nφ00N
653 fveq2 k=0Dk=D0
654 653 feq1d k=0Dk:XD0:X
655 652 654 imbi12d k=0φk0NDk:Xφ00ND0:X
656 649 650 655 583 vtoclf φ00ND0:X
657 12 117 656 syl2anc φD0:X
658 657 adantr φi0..^ND0:X
659 658 ffvelcdmda φi0..^NxXD0x
660 644 659 mulcld φi0..^NxXCi+1xD0x
661 660 mullidd φi0..^NxX1Ci+1xD0x=Ci+1xD0x
662 627 661 eqtrd φi0..^NxX(ii+1-1)Ci+1xDi+1-i+1x=Ci+1xD0x
663 1m1e0 11=0
664 663 fveq2i 11=0
665 13 eqcomi 0=0
666 664 665 eqtr2i 0=11
667 666 a1i i0..^N0=11
668 187 667 eleqtrd i0..^Ni11
669 fzdifsuc2 i111i=1i+1i+1
670 668 669 syl i0..^N1i=1i+1i+1
671 670 eqcomd i0..^N1i+1i+1=1i
672 671 sumeq1d i0..^Nj1i+1i+1(ij1)CjxDi+1-jx=j=1i(ij1)CjxDi+1-jx
673 672 ad2antlr φi0..^NxXj1i+1i+1(ij1)CjxDi+1-jx=j=1i(ij1)CjxDi+1-jx
674 662 673 oveq12d φi0..^NxX(ii+1-1)Ci+1xDi+1-i+1x+j1i+1i+1(ij1)CjxDi+1-jx=Ci+1xD0x+j=1i(ij1)CjxDi+1-jx
675 514 614 674 3eqtrd φi0..^NxXj=1i+1(ij1)Cj-1+1xDij1x=Ci+1xD0x+j=1i(ij1)CjxDi+1-jx
676 492 496 675 3eqtrd φi0..^NxXk=0i(ik)Ck+1xDikx=Ci+1xD0x+j=1i(ij1)CjxDi+1-jx
677 nfcv _k(i0)
678 345 646 nffv _kC0
679 678 458 nffv _kC0x
680 nfcv _ki+1-0
681 461 680 nffv _kDi+1-0
682 681 458 nffv _kDi+1-0x
683 679 455 682 nfov _kC0xDi+1-0x
684 677 455 683 nfov _k(i0)C0xDi+1-0x
685 665 a1i i0..^N0=0
686 187 685 eleqtrrd i0..^Ni0
687 eluzfz1 i000i
688 686 687 syl i0..^N00i
689 688 ad2antlr φi0..^NxX00i
690 oveq2 k=0(ik)=(i0)
691 110 fveq1d k=0Ckx=C0x
692 oveq2 k=0i+1-k=i+1-0
693 692 fveq2d k=0Di+1-k=Di+1-0
694 693 fveq1d k=0Di+1-kx=Di+1-0x
695 691 694 oveq12d k=0CkxDi+1-kx=C0xDi+1-0x
696 690 695 oveq12d k=0(ik)CkxDi+1-kx=(i0)C0xDi+1-0x
697 472 684 439 441 689 696 fsumsplit1 φi0..^NxXk=0i(ik)CkxDi+1-kx=(i0)C0xDi+1-0x+k0i0(ik)CkxDi+1-kx
698 621 subid1d i0..^Ni+1-0=i+1
699 698 fveq2d i0..^NDi+1-0=Di+1
700 699 fveq1d i0..^NDi+1-0x=Di+1x
701 700 oveq2d i0..^NC0xDi+1-0x=C0xDi+1x
702 701 oveq2d i0..^N(i0)C0xDi+1-0x=(i0)C0xDi+1x
703 702 oveq1d i0..^N(i0)C0xDi+1-0x+k0i0(ik)CkxDi+1-kx=(i0)C0xDi+1x+k0i0(ik)CkxDi+1-kx
704 703 ad2antlr φi0..^NxX(i0)C0xDi+1-0x+k0i0(ik)CkxDi+1-kx=(i0)C0xDi+1x+k0i0(ik)CkxDi+1-kx
705 bcn0 i0(i0)=1
706 187 705 syl i0..^N(i0)=1
707 706 oveq1d i0..^N(i0)C0xDi+1x=1C0xDi+1x
708 707 ad2antlr φi0..^NxX(i0)C0xDi+1x=1C0xDi+1x
709 678 348 349 nff kC0:X
710 645 709 nfim kφ00NC0:X
711 110 feq1d k=0Ck:XC0:X
712 652 711 imbi12d k=0φk0NCk:Xφ00NC0:X
713 710 650 712 229 vtoclf φ00NC0:X
714 12 117 713 syl2anc φC0:X
715 714 adantr φi0..^NC0:X
716 715 ffvelcdmda φi0..^NxXC0x
717 461 632 nffv _kDi+1
718 717 348 349 nff kDi+1:X
719 631 718 nfim kφi+10NDi+1:X
720 fveq2 k=i+1Dk=Di+1
721 720 feq1d k=i+1Dk:XDi+1:X
722 638 721 imbi12d k=i+1φk0NDk:Xφi+10NDi+1:X
723 719 636 722 583 vtoclf φi+10NDi+1:X
724 628 630 723 syl2anc φi0..^NDi+1:X
725 724 ffvelcdmda φi0..^NxXDi+1x
726 716 725 mulcld φi0..^NxXC0xDi+1x
727 726 mullidd φi0..^NxX1C0xDi+1x=C0xDi+1x
728 708 727 eqtrd φi0..^NxX(i0)C0xDi+1x=C0xDi+1x
729 nfv ji0..^N
730 1zzd i0..^Nj0i01
731 234 adantr i0..^Nj0i0i
732 eldifi j0i0j0i
733 elfzelz j0ij
734 732 733 syl j0i0j
735 734 adantl i0..^Nj0i0j
736 elfznn0 j0ij0
737 732 736 syl j0i0j0
738 eldifsni j0i0j0
739 737 738 jca j0i0j0j0
740 elnnne0 jj0j0
741 739 740 sylibr j0i0j
742 nnge1 j1j
743 741 742 syl j0i01j
744 743 adantl i0..^Nj0i01j
745 elfzle2 j0iji
746 732 745 syl j0i0ji
747 746 adantl i0..^Nj0i0ji
748 730 731 735 744 747 elfzd i0..^Nj0i0j1i
749 748 ex i0..^Nj0i0j1i
750 0zd j1i0
751 elfzel2 j1ii
752 elfzelz j1ij
753 173 a1i j1i0
754 752 zred j1ij
755 1red j1i1
756 532 a1i j1i0<1
757 elfzle1 j1i1j
758 753 755 754 756 757 ltletrd j1i0<j
759 753 754 758 ltled j1i0j
760 elfzle2 j1iji
761 750 751 752 759 760 elfzd j1ij0i
762 753 758 gtned j1ij0
763 nelsn j0¬j0
764 762 763 syl j1i¬j0
765 761 764 eldifd j1ij0i0
766 765 adantl i0..^Nj1ij0i0
767 766 ex i0..^Nj1ij0i0
768 749 767 impbid i0..^Nj0i0j1i
769 729 768 alrimi i0..^Njj0i0j1i
770 dfcleq 0i0=1ijj0i0j1i
771 769 770 sylibr i0..^N0i0=1i
772 771 sumeq1d i0..^Nk0i0(ik)CkxDi+1-kx=k=1i(ik)CkxDi+1-kx
773 772 ad2antlr φi0..^NxXk0i0(ik)CkxDi+1-kx=k=1i(ik)CkxDi+1-kx
774 728 773 oveq12d φi0..^NxX(i0)C0xDi+1x+k0i0(ik)CkxDi+1-kx=C0xDi+1x+k=1i(ik)CkxDi+1-kx
775 697 704 774 3eqtrd φi0..^NxXk=0i(ik)CkxDi+1-kx=C0xDi+1x+k=1i(ik)CkxDi+1-kx
776 676 775 oveq12d φi0..^NxXk=0i(ik)Ck+1xDikx+k=0i(ik)CkxDi+1-kx=Ci+1xD0x+j=1i(ij1)CjxDi+1-jx+C0xDi+1x+k=1i(ik)CkxDi+1-kx
777 fzfid φi0..^NxX1iFin
778 187 adantr i0..^Nj1ii0
779 766 734 syl i0..^Nj1ij
780 1zzd i0..^Nj1i1
781 779 780 zsubcld i0..^Nj1ij1
782 778 781 bccld i0..^Nj1i(ij1)0
783 782 nn0cnd i0..^Nj1i(ij1)
784 783 adantll φi0..^Nj1i(ij1)
785 784 adantlr φi0..^NxXj1i(ij1)
786 simpl φi0..^NxXj1iφi0..^NxX
787 fzelp1 j1ij1i+1
788 787 adantl φi0..^NxXj1ij1i+1
789 786 788 552 syl2anc φi0..^NxXj1iCjx
790 788 587 syldan φi0..^NxXj1iDi+1-jx
791 789 790 mulcld φi0..^NxXj1iCjxDi+1-jx
792 785 791 mulcld φi0..^NxXj1i(ij1)CjxDi+1-jx
793 777 792 fsumcl φi0..^NxXj=1i(ij1)CjxDi+1-jx
794 187 adantr i0..^Nk1ii0
795 elfzelz k1ik
796 795 adantl i0..^Nk1ik
797 794 796 bccld i0..^Nk1i(ik)0
798 797 nn0cnd i0..^Nk1i(ik)
799 798 adantll φi0..^Nk1i(ik)
800 799 adantlr φi0..^NxXk1i(ik)
801 simpll φi0..^NxXk1iφi0..^N
802 simplr φi0..^NxXk1ixX
803 761 ssriv 1i0i
804 id k1ik1i
805 803 804 sselid k1ik0i
806 805 adantl φi0..^NxXk1ik0i
807 801 802 806 433 syl21anc φi0..^NxXk1iCkx
808 806 435 syldan φi0..^NxXk1iDi+1-kx
809 807 808 mulcld φi0..^NxXk1iCkxDi+1-kx
810 800 809 mulcld φi0..^NxXk1i(ik)CkxDi+1-kx
811 777 810 fsumcl φi0..^NxXk=1i(ik)CkxDi+1-kx
812 660 793 726 811 add4d φi0..^NxXCi+1xD0x+j=1i(ij1)CjxDi+1-jx+C0xDi+1x+k=1i(ik)CkxDi+1-kx=Ci+1xD0x+C0xDi+1x+j=1i(ij1)CjxDi+1-jx+k=1i(ik)CkxDi+1-kx
813 oveq1 j=kj1=k1
814 813 oveq2d j=k(ij1)=(ik1)
815 fveq2 j=kCj=Ck
816 815 fveq1d j=kCjx=Ckx
817 oveq2 j=ki+1-j=i+1-k
818 817 fveq2d j=kDi+1-j=Di+1-k
819 818 fveq1d j=kDi+1-jx=Di+1-kx
820 816 819 oveq12d j=kCjxDi+1-jx=CkxDi+1-kx
821 814 820 oveq12d j=k(ij1)CjxDi+1-jx=(ik1)CkxDi+1-kx
822 nfcv _k1i
823 nfcv _j1i
824 nfcv _k(ij1)
825 347 458 nffv _kCjx
826 570 458 nffv _kDi+1-jx
827 825 455 826 nfov _kCjxDi+1-jx
828 824 455 827 nfov _k(ij1)CjxDi+1-jx
829 nfcv _j(ik1)CkxDi+1-kx
830 821 822 823 828 829 cbvsum j=1i(ij1)CjxDi+1-jx=k=1i(ik1)CkxDi+1-kx
831 830 a1i φi0..^NxXj=1i(ij1)CjxDi+1-jx=k=1i(ik1)CkxDi+1-kx
832 831 oveq1d φi0..^NxXj=1i(ij1)CjxDi+1-jx+k=1i(ik)CkxDi+1-kx=k=1i(ik1)CkxDi+1-kx+k=1i(ik)CkxDi+1-kx
833 peano2zm kk1
834 796 833 syl i0..^Nk1ik1
835 794 834 bccld i0..^Nk1i(ik1)0
836 835 nn0cnd i0..^Nk1i(ik1)
837 836 adantll φi0..^Nk1i(ik1)
838 837 adantlr φi0..^NxXk1i(ik1)
839 838 809 mulcld φi0..^NxXk1i(ik1)CkxDi+1-kx
840 777 839 810 fsumadd φi0..^NxXk=1i(ik1)CkxDi+1-kx+(ik)CkxDi+1-kx=k=1i(ik1)CkxDi+1-kx+k=1i(ik)CkxDi+1-kx
841 840 eqcomd φi0..^NxXk=1i(ik1)CkxDi+1-kx+k=1i(ik)CkxDi+1-kx=k=1i(ik1)CkxDi+1-kx+(ik)CkxDi+1-kx
842 836 798 addcomd i0..^Nk1i(ik1)+(ik)=(ik)+(ik1)
843 bcpasc i0k(ik)+(ik1)=(i+1k)
844 794 796 843 syl2anc i0..^Nk1i(ik)+(ik1)=(i+1k)
845 842 844 eqtr2d i0..^Nk1i(i+1k)=(ik1)+(ik)
846 845 oveq1d i0..^Nk1i(i+1k)CkxDi+1-kx=(ik1)+(ik)CkxDi+1-kx
847 846 adantll φi0..^Nk1i(i+1k)CkxDi+1-kx=(ik1)+(ik)CkxDi+1-kx
848 847 adantlr φi0..^NxXk1i(i+1k)CkxDi+1-kx=(ik1)+(ik)CkxDi+1-kx
849 838 800 809 adddird φi0..^NxXk1i(ik1)+(ik)CkxDi+1-kx=(ik1)CkxDi+1-kx+(ik)CkxDi+1-kx
850 848 849 eqtr2d φi0..^NxXk1i(ik1)CkxDi+1-kx+(ik)CkxDi+1-kx=(i+1k)CkxDi+1-kx
851 850 sumeq2dv φi0..^NxXk=1i(ik1)CkxDi+1-kx+(ik)CkxDi+1-kx=k=1i(i+1k)CkxDi+1-kx
852 832 841 851 3eqtrd φi0..^NxXj=1i(ij1)CjxDi+1-jx+k=1i(ik)CkxDi+1-kx=k=1i(i+1k)CkxDi+1-kx
853 852 oveq2d φi0..^NxXCi+1xD0x+C0xDi+1x+j=1i(ij1)CjxDi+1-jx+k=1i(ik)CkxDi+1-kx=Ci+1xD0x+C0xDi+1x+k=1i(i+1k)CkxDi+1-kx
854 peano2nn0 i0i+10
855 794 854 syl i0..^Nk1ii+10
856 855 796 bccld i0..^Nk1i(i+1k)0
857 856 nn0cnd i0..^Nk1i(i+1k)
858 857 adantll φi0..^Nk1i(i+1k)
859 858 adantlr φi0..^NxXk1i(i+1k)
860 859 809 mulcld φi0..^NxXk1i(i+1k)CkxDi+1-kx
861 777 860 fsumcl φi0..^NxXk=1i(i+1k)CkxDi+1-kx
862 660 726 861 addassd φi0..^NxXCi+1xD0x+C0xDi+1x+k=1i(i+1k)CkxDi+1-kx=Ci+1xD0x+C0xDi+1x+k=1i(i+1k)CkxDi+1-kx
863 187 854 syl i0..^Ni+10
864 bcn0 i+10(i+10)=1
865 863 864 syl i0..^N(i+10)=1
866 865 701 oveq12d i0..^N(i+10)C0xDi+1-0x=1C0xDi+1x
867 866 ad2antlr φi0..^NxX(i+10)C0xDi+1-0x=1C0xDi+1x
868 867 727 eqtr2d φi0..^NxXC0xDi+1x=(i+10)C0xDi+1-0x
869 771 ad2antlr φi0..^NxX0i0=1i
870 869 eqcomd φi0..^NxX1i=0i0
871 870 sumeq1d φi0..^NxXk=1i(i+1k)CkxDi+1-kx=k0i0(i+1k)CkxDi+1-kx
872 868 871 oveq12d φi0..^NxXC0xDi+1x+k=1i(i+1k)CkxDi+1-kx=(i+10)C0xDi+1-0x+k0i0(i+1k)CkxDi+1-kx
873 nfcv _k(i+10)
874 873 455 683 nfov _k(i+10)C0xDi+1-0x
875 199 854 syl i0..^Nk0ii+10
876 875 201 bccld i0..^Nk0i(i+1k)0
877 876 nn0cnd i0..^Nk0i(i+1k)
878 877 adantll φi0..^Nk0i(i+1k)
879 878 adantlr φi0..^NxXk0i(i+1k)
880 879 436 mulcld φi0..^NxXk0i(i+1k)CkxDi+1-kx
881 oveq2 k=0(i+1k)=(i+10)
882 881 695 oveq12d k=0(i+1k)CkxDi+1-kx=(i+10)C0xDi+1-0x
883 472 874 439 880 689 882 fsumsplit1 φi0..^NxXk=0i(i+1k)CkxDi+1-kx=(i+10)C0xDi+1-0x+k0i0(i+1k)CkxDi+1-kx
884 883 eqcomd φi0..^NxX(i+10)C0xDi+1-0x+k0i0(i+1k)CkxDi+1-kx=k=0i(i+1k)CkxDi+1-kx
885 872 884 eqtrd φi0..^NxXC0xDi+1x+k=1i(i+1k)CkxDi+1-kx=k=0i(i+1k)CkxDi+1-kx
886 885 oveq2d φi0..^NxXCi+1xD0x+C0xDi+1x+k=1i(i+1k)CkxDi+1-kx=Ci+1xD0x+k=0i(i+1k)CkxDi+1-kx
887 bcnn i+10(i+1i+1)=1
888 863 887 syl i0..^N(i+1i+1)=1
889 888 ad2antlr φi0..^NxX(i+1i+1)=1
890 889 oveq1d φi0..^NxX(i+1i+1)Ci+1xDi+1-i+1x=1Ci+1xDi+1-i+1x
891 623 adantl φi0..^NDi+1-i+1=D0
892 891 feq1d φi0..^NDi+1-i+1:XD0:X
893 658 892 mpbird φi0..^NDi+1-i+1:X
894 893 adantr φi0..^NxXDi+1-i+1:X
895 simpr φi0..^NxXxX
896 894 895 ffvelcdmd φi0..^NxXDi+1-i+1x
897 644 896 mulcld φi0..^NxXCi+1xDi+1-i+1x
898 897 mullidd φi0..^NxX1Ci+1xDi+1-i+1x=Ci+1xDi+1-i+1x
899 625 ad2antlr φi0..^NxXCi+1xDi+1-i+1x=Ci+1xD0x
900 890 898 899 3eqtrrd φi0..^NxXCi+1xD0x=(i+1i+1)Ci+1xDi+1-i+1x
901 fzdifsuc i00i=0i+1i+1
902 686 901 syl i0..^N0i=0i+1i+1
903 902 sumeq1d i0..^Nk=0i(i+1k)CkxDi+1-kx=k0i+1i+1(i+1k)CkxDi+1-kx
904 903 ad2antlr φi0..^NxXk=0i(i+1k)CkxDi+1-kx=k0i+1i+1(i+1k)CkxDi+1-kx
905 900 904 oveq12d φi0..^NxXCi+1xD0x+k=0i(i+1k)CkxDi+1-kx=(i+1i+1)Ci+1xDi+1-i+1x+k0i+1i+1(i+1k)CkxDi+1-kx
906 nfcv _k(i+1i+1)
907 633 458 nffv _kCi+1x
908 nfcv _ki+1-i+1
909 461 908 nffv _kDi+1-i+1
910 909 458 nffv _kDi+1-i+1x
911 907 455 910 nfov _kCi+1xDi+1-i+1x
912 906 455 911 nfov _k(i+1i+1)Ci+1xDi+1-i+1x
913 fzfid φi0..^NxX0i+1Fin
914 863 adantr i0..^Nk0i+1i+10
915 elfzelz k0i+1k
916 915 adantl i0..^Nk0i+1k
917 914 916 bccld i0..^Nk0i+1(i+1k)0
918 917 nn0cnd i0..^Nk0i+1(i+1k)
919 918 adantll φi0..^Nk0i+1(i+1k)
920 919 adantlr φi0..^NxXk0i+1(i+1k)
921 628 adantr φi0..^Nk0i+1φ
922 96 a1i i0..^Nk0i+10
923 208 adantr i0..^Nk0i+1N
924 elfzle1 k0i+10k
925 924 adantl i0..^Nk0i+10k
926 916 zred i0..^Nk0i+1k
927 914 nn0red i0..^Nk0i+1i+1
928 213 adantr i0..^Nk0i+1N
929 elfzle2 k0i+1ki+1
930 929 adantl i0..^Nk0i+1ki+1
931 301 adantr i0..^Nk0i+1i+1N
932 926 927 928 930 931 letrd i0..^Nk0i+1kN
933 922 923 916 925 932 elfzd i0..^Nk0i+1k0N
934 933 adantll φi0..^Nk0i+1k0N
935 921 934 229 syl2anc φi0..^Nk0i+1Ck:X
936 935 adantlr φi0..^NxXk0i+1Ck:X
937 simplr φi0..^NxXk0i+1xX
938 936 937 ffvelcdmd φi0..^NxXk0i+1Ckx
939 921 adantlr φi0..^NxXk0i+1φ
940 591 adantr i0..^Nk0i+1i+1
941 940 916 zsubcld i0..^Nk0i+1i+1-k
942 927 926 subge0d i0..^Nk0i+10i+1-kki+1
943 930 942 mpbird i0..^Nk0i+10i+1-k
944 927 926 resubcld i0..^Nk0i+1i+1-k
945 928 926 resubcld i0..^Nk0i+1Nk
946 928 173 247 sylancl i0..^Nk0i+1N0
947 927 928 926 931 lesub1dd i0..^Nk0i+1i+1-kNk
948 173 a1i i0..^Nk0i+10
949 948 926 928 925 lesub2dd i0..^Nk0i+1NkN0
950 944 945 946 947 949 letrd i0..^Nk0i+1i+1-kN0
951 253 adantr i0..^Nk0i+1N0=N
952 950 951 breqtrd i0..^Nk0i+1i+1-kN
953 922 923 941 943 952 elfzd i0..^Nk0i+1i+1-k0N
954 953 adantll φi0..^Nk0i+1i+1-k0N
955 954 adantlr φi0..^NxXk0i+1i+1-k0N
956 fveq2 j=i+1-kDj=Di+1-k
957 956 feq1d j=i+1-kDj:XDi+1-k:X
958 310 957 imbi12d j=i+1-kφj0NDj:Xφi+1-k0NDi+1-k:X
959 461 346 nffv _kDj
960 959 348 349 nff kDj:X
961 343 960 nfim kφj0NDj:X
962 fveq2 k=jDk=Dj
963 962 feq1d k=jDk:XDj:X
964 267 963 imbi12d k=jφk0NDk:Xφj0NDj:X
965 961 964 583 chvarfv φj0NDj:X
966 308 958 965 vtocl φi+1-k0NDi+1-k:X
967 939 955 966 syl2anc φi0..^NxXk0i+1Di+1-k:X
968 967 937 ffvelcdmd φi0..^NxXk0i+1Di+1-kx
969 938 968 mulcld φi0..^NxXk0i+1CkxDi+1-kx
970 920 969 mulcld φi0..^NxXk0i+1(i+1k)CkxDi+1-kx
971 863 685 eleqtrrd i0..^Ni+10
972 eluzfz2 i+10i+10i+1
973 971 972 syl i0..^Ni+10i+1
974 973 ad2antlr φi0..^NxXi+10i+1
975 oveq2 k=i+1(i+1k)=(i+1i+1)
976 639 fveq1d k=i+1Ckx=Ci+1x
977 oveq2 k=i+1i+1-k=i+1-i+1
978 977 fveq2d k=i+1Di+1-k=Di+1-i+1
979 978 fveq1d k=i+1Di+1-kx=Di+1-i+1x
980 976 979 oveq12d k=i+1CkxDi+1-kx=Ci+1xDi+1-i+1x
981 975 980 oveq12d k=i+1(i+1k)CkxDi+1-kx=(i+1i+1)Ci+1xDi+1-i+1x
982 472 912 913 970 974 981 fsumsplit1 φi0..^NxXk=0i+1(i+1k)CkxDi+1-kx=(i+1i+1)Ci+1xDi+1-i+1x+k0i+1i+1(i+1k)CkxDi+1-kx
983 982 eqcomd φi0..^NxX(i+1i+1)Ci+1xDi+1-i+1x+k0i+1i+1(i+1k)CkxDi+1-kx=k=0i+1(i+1k)CkxDi+1-kx
984 886 905 983 3eqtrd φi0..^NxXCi+1xD0x+C0xDi+1x+k=1i(i+1k)CkxDi+1-kx=k=0i+1(i+1k)CkxDi+1-kx
985 853 862 984 3eqtrd φi0..^NxXCi+1xD0x+C0xDi+1x+j=1i(ij1)CjxDi+1-jx+k=1i(ik)CkxDi+1-kx=k=0i+1(i+1k)CkxDi+1-kx
986 776 812 985 3eqtrd φi0..^NxXk=0i(ik)Ck+1xDikx+k=0i(ik)CkxDi+1-kx=k=0i+1(i+1k)CkxDi+1-kx
987 438 442 986 3eqtrd φi0..^NxXk=0i(ik)Ck+1xDikx+CkxDi+1-kx=k=0i+1(i+1k)CkxDi+1-kx
988 987 mpteq2dva φi0..^NxXk=0i(ik)Ck+1xDikx+CkxDi+1-kx=xXk=0i+1(i+1k)CkxDi+1-kx
989 422 988 eqtrd φi0..^NdxXk=0i(ik)CkxDikxdSx=xXk=0i+1(i+1k)CkxDi+1-kx
990 989 adantr φi0..^NSDnxXABi=xXk=0i(ik)CkxDikxdxXk=0i(ik)CkxDikxdSx=xXk=0i+1(i+1k)CkxDi+1-kx
991 191 193 990 3eqtrd φi0..^NSDnxXABi=xXk=0i(ik)CkxDikxSDnxXABi+1=xXk=0i+1(i+1k)CkxDi+1-kx
992 180 181 184 991 syl21anc i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφSDnxXABi+1=xXk=0i+1(i+1k)CkxDi+1-kx
993 992 3exp i0..^NφSDnxXABi=xXk=0i(ik)CkxDikxφSDnxXABi+1=xXk=0i+1(i+1k)CkxDi+1-kx
994 44 57 70 83 179 993 fzind2 n0NφSDnxXABn=xXk=0n(nk)CkxDnkx
995 31 994 vtoclg N0N0NφSDnxXABN=xXk=0N(Nk)CkxDNkx
996 5 16 995 sylc φφSDnxXABN=xXk=0N(Nk)CkxDNkx
997 12 996 mpd φSDnxXABN=xXk=0N(Nk)CkxDNkx