Metamath Proof Explorer


Theorem fourierdlem75

Description: Given a piecewise smooth function F , the derived function H has a limit at the lower bound of each interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem75.xre φX
fourierdlem75.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem75.f φF:
fourierdlem75.x φXranV
fourierdlem75.y φYFX+∞limX
fourierdlem75.w φW
fourierdlem75.h H=sππifs=00FX+sif0<sYWs
fourierdlem75.m φM
fourierdlem75.v φVPM
fourierdlem75.r φi0..^MRFViVi+1limVi
fourierdlem75.q Q=i0MViX
fourierdlem75.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem75.g G=DF
fourierdlem75.gcn φi0..^MGViVi+1:ViVi+1
fourierdlem75.e φEGX+∞limX
fourierdlem75.a A=ifVi=XERifVi<XWYQi
Assertion fourierdlem75 φi0..^MAHQiQi+1limQi

Proof

Step Hyp Ref Expression
1 fourierdlem75.xre φX
2 fourierdlem75.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
3 fourierdlem75.f φF:
4 fourierdlem75.x φXranV
5 fourierdlem75.y φYFX+∞limX
6 fourierdlem75.w φW
7 fourierdlem75.h H=sππifs=00FX+sif0<sYWs
8 fourierdlem75.m φM
9 fourierdlem75.v φVPM
10 fourierdlem75.r φi0..^MRFViVi+1limVi
11 fourierdlem75.q Q=i0MViX
12 fourierdlem75.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
13 fourierdlem75.g G=DF
14 fourierdlem75.gcn φi0..^MGViVi+1:ViVi+1
15 fourierdlem75.e φEGX+∞limX
16 fourierdlem75.a A=ifVi=XERifVi<XWYQi
17 1 ad2antrr φi0..^MVi=XX
18 2 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
19 8 18 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
20 9 19 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
21 20 simpld φV0M
22 elmapi V0MV:0M
23 21 22 syl φV:0M
24 23 adantr φi0..^MV:0M
25 fzofzp1 i0..^Mi+10M
26 25 adantl φi0..^Mi+10M
27 24 26 ffvelcdmd φi0..^MVi+1
28 27 adantr φi0..^MVi=XVi+1
29 eqcom Vi=XX=Vi
30 29 biimpi Vi=XX=Vi
31 30 adantl φi0..^MVi=XX=Vi
32 20 simprrd φi0..^MVi<Vi+1
33 32 r19.21bi φi0..^MVi<Vi+1
34 33 adantr φi0..^MVi=XVi<Vi+1
35 31 34 eqbrtrd φi0..^MVi=XX<Vi+1
36 3 adantr φi0..^MF:
37 ioossre XVi+1
38 37 a1i φi0..^MXVi+1
39 36 38 fssresd φi0..^MFXVi+1:XVi+1
40 39 adantr φi0..^MVi=XFXVi+1:XVi+1
41 limcresi FX+∞limXFX+∞XVi+1limX
42 41 5 sselid φYFX+∞XVi+1limX
43 42 adantr φi0..^MYFX+∞XVi+1limX
44 pnfxr +∞*
45 44 a1i φi0..^M+∞*
46 27 rexrd φi0..^MVi+1*
47 27 ltpnfd φi0..^MVi+1<+∞
48 46 45 47 xrltled φi0..^MVi+1+∞
49 iooss2 +∞*Vi+1+∞XVi+1X+∞
50 45 48 49 syl2anc φi0..^MXVi+1X+∞
51 50 resabs1d φi0..^MFX+∞XVi+1=FXVi+1
52 51 oveq1d φi0..^MFX+∞XVi+1limX=FXVi+1limX
53 43 52 eleqtrd φi0..^MYFXVi+1limX
54 53 adantr φi0..^MVi=XYFXVi+1limX
55 eqid DFXVi+1=DFXVi+1
56 ax-resscn
57 56 a1i φ
58 3 57 fssd φF:
59 ssid
60 59 a1i φ
61 37 a1i φXVi+1
62 eqid TopOpenfld=TopOpenfld
63 62 tgioo2 topGenran.=TopOpenfld𝑡
64 62 63 dvres F:XVi+1DFXVi+1=FinttopGenran.XVi+1
65 57 58 60 61 64 syl22anc φDFXVi+1=FinttopGenran.XVi+1
66 13 eqcomi DF=G
67 ioontr inttopGenran.XVi+1=XVi+1
68 66 67 reseq12i FinttopGenran.XVi+1=GXVi+1
69 65 68 eqtrdi φDFXVi+1=GXVi+1
70 69 adantr φVi=XDFXVi+1=GXVi+1
71 70 dmeqd φVi=XdomFXVi+1=domGXVi+1
72 71 adantlr φi0..^MVi=XdomFXVi+1=domGXVi+1
73 14 adantr φi0..^MVi=XGViVi+1:ViVi+1
74 oveq1 Vi=XViVi+1=XVi+1
75 74 reseq2d Vi=XGViVi+1=GXVi+1
76 75 feq1d Vi=XGViVi+1:ViVi+1GXVi+1:ViVi+1
77 76 adantl φi0..^MVi=XGViVi+1:ViVi+1GXVi+1:ViVi+1
78 73 77 mpbid φi0..^MVi=XGXVi+1:ViVi+1
79 74 adantl φi0..^MVi=XViVi+1=XVi+1
80 79 feq2d φi0..^MVi=XGXVi+1:ViVi+1GXVi+1:XVi+1
81 78 80 mpbid φi0..^MVi=XGXVi+1:XVi+1
82 fdm GXVi+1:XVi+1domGXVi+1=XVi+1
83 81 82 syl φi0..^MVi=XdomGXVi+1=XVi+1
84 72 83 eqtrd φi0..^MVi=XdomFXVi+1=XVi+1
85 limcresi GX+∞limXGX+∞XVi+1limX
86 85 15 sselid φEGX+∞XVi+1limX
87 86 adantr φi0..^MEGX+∞XVi+1limX
88 50 resabs1d φi0..^MGX+∞XVi+1=GXVi+1
89 69 adantr φi0..^MDFXVi+1=GXVi+1
90 88 89 eqtr4d φi0..^MGX+∞XVi+1=DFXVi+1
91 90 oveq1d φi0..^MGX+∞XVi+1limX=FXVi+1limX
92 87 91 eleqtrd φi0..^MEFXVi+1limX
93 92 adantr φi0..^MVi=XEFXVi+1limX
94 eqid s0Vi+1XFXVi+1X+sYs=s0Vi+1XFXVi+1X+sYs
95 oveq2 x=sX+x=X+s
96 95 fveq2d x=sFXVi+1X+x=FXVi+1X+s
97 96 oveq1d x=sFXVi+1X+xY=FXVi+1X+sY
98 97 cbvmptv x0Vi+1XFXVi+1X+xY=s0Vi+1XFXVi+1X+sY
99 id x=sx=s
100 99 cbvmptv x0Vi+1Xx=s0Vi+1Xs
101 17 28 35 40 54 55 84 93 94 98 100 fourierdlem61 φi0..^MVi=XEs0Vi+1XFXVi+1X+sYslim0
102 iftrue Vi=XifVi=XERifVi<XWYQi=E
103 16 102 eqtrid Vi=XA=E
104 103 adantl φi0..^MVi=XA=E
105 7 reseq1i HQiQi+1=sππifs=00FX+sif0<sYWsQiQi+1
106 105 a1i φi0..^MVi=XHQiQi+1=sππifs=00FX+sif0<sYWsQiQi+1
107 ioossicc QiQi+1QiQi+1
108 pire π
109 108 renegcli π
110 109 rexri π*
111 110 a1i φi0..^Mπ*
112 108 rexri π*
113 112 a1i φi0..^Mπ*
114 109 a1i φi0Mπ
115 108 a1i φi0Mπ
116 109 a1i φπ
117 116 1 readdcld φ-π+X
118 108 a1i φπ
119 118 1 readdcld φπ+X
120 117 119 iccssred φ-π+Xπ+X
121 120 adantr φi0M-π+Xπ+X
122 2 8 9 fourierdlem15 φV:0M-π+Xπ+X
123 122 ffvelcdmda φi0MVi-π+Xπ+X
124 121 123 sseldd φi0MVi
125 1 adantr φi0MX
126 124 125 resubcld φi0MViX
127 116 recnd φπ
128 1 recnd φX
129 127 128 pncand φπ+X-X=π
130 129 eqcomd φπ=π+X-X
131 130 adantr φi0Mπ=π+X-X
132 117 adantr φi0M-π+X
133 119 adantr φi0Mπ+X
134 elicc2 -π+Xπ+XVi-π+Xπ+XVi-π+XViViπ+X
135 132 133 134 syl2anc φi0MVi-π+Xπ+XVi-π+XViViπ+X
136 123 135 mpbid φi0MVi-π+XViViπ+X
137 136 simp2d φi0M-π+XVi
138 132 124 125 137 lesub1dd φi0Mπ+X-XViX
139 131 138 eqbrtrd φi0MπViX
140 136 simp3d φi0MViπ+X
141 124 133 125 140 lesub1dd φi0MViXπ+X-X
142 115 recnd φi0Mπ
143 128 adantr φi0MX
144 142 143 pncand φi0Mπ+X-X=π
145 141 144 breqtrd φi0MViXπ
146 114 115 126 139 145 eliccd φi0MViXππ
147 146 11 fmptd φQ:0Mππ
148 147 adantr φi0..^MQ:0Mππ
149 simpr φi0..^Mi0..^M
150 111 113 148 149 fourierdlem8 φi0..^MQiQi+1ππ
151 107 150 sstrid φi0..^MQiQi+1ππ
152 151 resmptd φi0..^Msππifs=00FX+sif0<sYWsQiQi+1=sQiQi+1ifs=00FX+sif0<sYWs
153 152 adantr φi0..^MVi=Xsππifs=00FX+sif0<sYWsQiQi+1=sQiQi+1ifs=00FX+sif0<sYWs
154 elfzofz i0..^Mi0M
155 simpr φi0Mi0M
156 11 fvmpt2 i0MViXππQi=ViX
157 155 146 156 syl2anc φi0MQi=ViX
158 157 adantr φi0MVi=XQi=ViX
159 oveq1 Vi=XViX=XX
160 159 adantl φi0MVi=XViX=XX
161 128 ad2antrr φi0MVi=XX
162 161 subidd φi0MVi=XXX=0
163 158 160 162 3eqtrd φi0MVi=XQi=0
164 154 163 sylanl2 φi0..^MVi=XQi=0
165 fveq2 i=jVi=Vj
166 165 oveq1d i=jViX=VjX
167 166 cbvmptv i0MViX=j0MVjX
168 11 167 eqtri Q=j0MVjX
169 168 a1i φi0..^MQ=j0MVjX
170 fveq2 j=i+1Vj=Vi+1
171 170 oveq1d j=i+1VjX=Vi+1X
172 171 adantl φi0..^Mj=i+1VjX=Vi+1X
173 1 adantr φi0..^MX
174 27 173 resubcld φi0..^MVi+1X
175 169 172 26 174 fvmptd φi0..^MQi+1=Vi+1X
176 175 adantr φi0..^MVi=XQi+1=Vi+1X
177 164 176 oveq12d φi0..^MVi=XQiQi+1=0Vi+1X
178 simplr φi0..^MsQiQi+1s=0sQiQi+1
179 8 adantr φs=0M
180 116 118 1 2 12 8 9 11 fourierdlem14 φQOM
181 180 adantr φs=0QOM
182 simpr φs=0s=0
183 ffn V:0M-π+Xπ+XVFn0M
184 fvelrnb VFn0MXranVi0MVi=X
185 122 183 184 3syl φXranVi0MVi=X
186 4 185 mpbid φi0MVi=X
187 163 ex φi0MVi=XQi=0
188 187 reximdva φi0MVi=Xi0MQi=0
189 186 188 mpd φi0MQi=0
190 126 11 fmptd φQ:0M
191 ffn Q:0MQFn0M
192 fvelrnb QFn0M0ranQi0MQi=0
193 190 191 192 3syl φ0ranQi0MQi=0
194 189 193 mpbird φ0ranQ
195 194 adantr φs=00ranQ
196 182 195 eqeltrd φs=0sranQ
197 12 179 181 196 fourierdlem12 φs=0i0..^M¬sQiQi+1
198 197 an32s φi0..^Ms=0¬sQiQi+1
199 198 adantlr φi0..^MsQiQi+1s=0¬sQiQi+1
200 178 199 pm2.65da φi0..^MsQiQi+1¬s=0
201 200 adantlr φi0..^MVi=XsQiQi+1¬s=0
202 201 iffalsed φi0..^MVi=XsQiQi+1ifs=00FX+sif0<sYWs=FX+sif0<sYWs
203 164 eqcomd φi0..^MVi=X0=Qi
204 203 adantr φi0..^MVi=XsQiQi+10=Qi
205 elioo3g sQiQi+1Qi*Qi+1*s*Qi<ss<Qi+1
206 205 biimpi sQiQi+1Qi*Qi+1*s*Qi<ss<Qi+1
207 206 simprld sQiQi+1Qi<s
208 207 adantl φi0..^MVi=XsQiQi+1Qi<s
209 204 208 eqbrtrd φi0..^MVi=XsQiQi+10<s
210 209 iftrued φi0..^MVi=XsQiQi+1if0<sYW=Y
211 210 oveq2d φi0..^MVi=XsQiQi+1FX+sif0<sYW=FX+sY
212 211 oveq1d φi0..^MVi=XsQiQi+1FX+sif0<sYWs=FX+sYs
213 1 rexrd φX*
214 213 ad3antrrr φi0..^MVi=XsQiQi+1X*
215 46 ad2antrr φi0..^MVi=XsQiQi+1Vi+1*
216 173 ad2antrr φi0..^MVi=XsQiQi+1X
217 elioore sQiQi+1s
218 217 adantl φi0..^MVi=XsQiQi+1s
219 216 218 readdcld φi0..^MVi=XsQiQi+1X+s
220 218 209 elrpd φi0..^MVi=XsQiQi+1s+
221 216 220 ltaddrpd φi0..^MVi=XsQiQi+1X<X+s
222 217 adantl φi0..^MsQiQi+1s
223 190 adantr φi0..^MQ:0M
224 223 26 ffvelcdmd φi0..^MQi+1
225 224 adantr φi0..^MsQiQi+1Qi+1
226 1 ad2antrr φi0..^MsQiQi+1X
227 206 simprrd sQiQi+1s<Qi+1
228 227 adantl φi0..^MsQiQi+1s<Qi+1
229 222 225 226 228 ltadd2dd φi0..^MsQiQi+1X+s<X+Qi+1
230 175 oveq2d φi0..^MX+Qi+1=X+Vi+1-X
231 128 adantr φi0..^MX
232 27 recnd φi0..^MVi+1
233 231 232 pncan3d φi0..^MX+Vi+1-X=Vi+1
234 230 233 eqtrd φi0..^MX+Qi+1=Vi+1
235 234 adantr φi0..^MsQiQi+1X+Qi+1=Vi+1
236 229 235 breqtrd φi0..^MsQiQi+1X+s<Vi+1
237 236 adantlr φi0..^MVi=XsQiQi+1X+s<Vi+1
238 214 215 219 221 237 eliood φi0..^MVi=XsQiQi+1X+sXVi+1
239 fvres X+sXVi+1FXVi+1X+s=FX+s
240 238 239 syl φi0..^MVi=XsQiQi+1FXVi+1X+s=FX+s
241 240 eqcomd φi0..^MVi=XsQiQi+1FX+s=FXVi+1X+s
242 241 oveq1d φi0..^MVi=XsQiQi+1FX+sY=FXVi+1X+sY
243 242 oveq1d φi0..^MVi=XsQiQi+1FX+sYs=FXVi+1X+sYs
244 202 212 243 3eqtrd φi0..^MVi=XsQiQi+1ifs=00FX+sif0<sYWs=FXVi+1X+sYs
245 177 244 mpteq12dva φi0..^MVi=XsQiQi+1ifs=00FX+sif0<sYWs=s0Vi+1XFXVi+1X+sYs
246 106 153 245 3eqtrd φi0..^MVi=XHQiQi+1=s0Vi+1XFXVi+1X+sYs
247 246 164 oveq12d φi0..^MVi=XHQiQi+1limQi=s0Vi+1XFXVi+1X+sYslim0
248 101 104 247 3eltr4d φi0..^MVi=XAHQiQi+1limQi
249 eqid sQiQi+1FX+sif0<sYW=sQiQi+1FX+sif0<sYW
250 eqid sQiQi+1s=sQiQi+1s
251 eqid sQiQi+1FX+sif0<sYWs=sQiQi+1FX+sif0<sYWs
252 3 adantr φsQiQi+1F:
253 1 adantr φsQiQi+1X
254 217 adantl φsQiQi+1s
255 253 254 readdcld φsQiQi+1X+s
256 252 255 ffvelcdmd φsQiQi+1FX+s
257 256 recnd φsQiQi+1FX+s
258 257 adantlr φi0..^MsQiQi+1FX+s
259 258 3adantl3 φi0..^M¬Vi=XsQiQi+1FX+s
260 limccl FX+∞limX
261 260 5 sselid φY
262 6 recnd φW
263 261 262 ifcld φif0<sYW
264 263 adantr φsQiQi+1if0<sYW
265 264 3ad2antl1 φi0..^M¬Vi=XsQiQi+1if0<sYW
266 259 265 subcld φi0..^M¬Vi=XsQiQi+1FX+sif0<sYW
267 217 recnd sQiQi+1s
268 267 adantl φi0..^M¬Vi=XsQiQi+1s
269 velsn s0s=0
270 200 269 sylnibr φi0..^MsQiQi+1¬s0
271 270 3adantl3 φi0..^M¬Vi=XsQiQi+1¬s0
272 268 271 eldifd φi0..^M¬Vi=XsQiQi+1s0
273 eqid sQiQi+1FX+s=sQiQi+1FX+s
274 eqid sQiQi+1W=sQiQi+1W
275 eqid sQiQi+1FX+sW=sQiQi+1FX+sW
276 262 ad2antrr φi0..^MsQiQi+1W
277 ioossre QiQi+1
278 277 a1i φi0..^MQiQi+1
279 154 124 sylan2 φi0..^MVi
280 279 rexrd φi0..^MVi*
281 280 adantr φi0..^MsQiQi+1Vi*
282 46 adantr φi0..^MsQiQi+1Vi+1*
283 255 adantlr φi0..^MsQiQi+1X+s
284 iccssre ππππ
285 109 108 284 mp2an ππ
286 285 56 sstri ππ
287 157 146 eqeltrd φi0MQiππ
288 154 287 sylan2 φi0..^MQiππ
289 286 288 sselid φi0..^MQi
290 231 289 addcomd φi0..^MX+Qi=Qi+X
291 154 adantl φi0..^Mi0M
292 154 126 sylan2 φi0..^MViX
293 11 fvmpt2 i0MViXQi=ViX
294 291 292 293 syl2anc φi0..^MQi=ViX
295 294 oveq1d φi0..^MQi+X=Vi-X+X
296 279 recnd φi0..^MVi
297 296 231 npcand φi0..^MVi-X+X=Vi
298 290 295 297 3eqtrrd φi0..^MVi=X+Qi
299 298 adantr φi0..^MsQiQi+1Vi=X+Qi
300 294 292 eqeltrd φi0..^MQi
301 300 adantr φi0..^MsQiQi+1Qi
302 207 adantl φi0..^MsQiQi+1Qi<s
303 301 222 226 302 ltadd2dd φi0..^MsQiQi+1X+Qi<X+s
304 299 303 eqbrtrd φi0..^MsQiQi+1Vi<X+s
305 281 282 283 304 236 eliood φi0..^MsQiQi+1X+sViVi+1
306 ioossre ViVi+1
307 306 a1i φi0..^MViVi+1
308 301 302 gtned φi0..^MsQiQi+1sQi
309 298 oveq2d φi0..^MFViVi+1limVi=FViVi+1limX+Qi
310 10 309 eleqtrd φi0..^MRFViVi+1limX+Qi
311 36 173 278 273 305 307 308 310 289 fourierdlem53 φi0..^MRsQiQi+1FX+slimQi
312 ioosscn QiQi+1
313 312 a1i φi0..^MQiQi+1
314 262 adantr φi0..^MW
315 274 313 314 289 constlimc φi0..^MWsQiQi+1WlimQi
316 273 274 275 258 276 311 315 sublimc φi0..^MRWsQiQi+1FX+sWlimQi
317 316 adantr φi0..^MVi<XRWsQiQi+1FX+sWlimQi
318 iftrue Vi<XifVi<XWY=W
319 318 oveq2d Vi<XRifVi<XWY=RW
320 319 adantl φi0..^MVi<XRifVi<XWY=RW
321 217 adantl φi0..^MVi<XsQiQi+1s
322 0red φi0..^MVi<XsQiQi+10
323 224 ad2antrr φi0..^MVi<XsQiQi+1Qi+1
324 227 adantl φi0..^MVi<XsQiQi+1s<Qi+1
325 175 adantr φi0..^MVi<XQi+1=Vi+1X
326 280 ad2antrr φi0..^MVi<X¬Vi+1XVi*
327 46 ad2antrr φi0..^MVi<X¬Vi+1XVi+1*
328 173 ad2antrr φi0..^MVi<X¬Vi+1XX
329 simplr φi0..^MVi<X¬Vi+1XVi<X
330 simpr φi0..^M¬Vi+1X¬Vi+1X
331 1 ad2antrr φi0..^M¬Vi+1XX
332 27 adantr φi0..^M¬Vi+1XVi+1
333 331 332 ltnled φi0..^M¬Vi+1XX<Vi+1¬Vi+1X
334 330 333 mpbird φi0..^M¬Vi+1XX<Vi+1
335 334 adantlr φi0..^MVi<X¬Vi+1XX<Vi+1
336 326 327 328 329 335 eliood φi0..^MVi<X¬Vi+1XXViVi+1
337 2 8 9 4 fourierdlem12 φi0..^M¬XViVi+1
338 337 ad2antrr φi0..^MVi<X¬Vi+1X¬XViVi+1
339 336 338 condan φi0..^MVi<XVi+1X
340 27 adantr φi0..^MVi<XVi+1
341 1 ad2antrr φi0..^MVi<XX
342 340 341 suble0d φi0..^MVi<XVi+1X0Vi+1X
343 339 342 mpbird φi0..^MVi<XVi+1X0
344 325 343 eqbrtrd φi0..^MVi<XQi+10
345 344 adantr φi0..^MVi<XsQiQi+1Qi+10
346 321 323 322 324 345 ltletrd φi0..^MVi<XsQiQi+1s<0
347 321 322 346 ltnsymd φi0..^MVi<XsQiQi+1¬0<s
348 347 iffalsed φi0..^MVi<XsQiQi+1if0<sYW=W
349 348 oveq2d φi0..^MVi<XsQiQi+1FX+sif0<sYW=FX+sW
350 349 mpteq2dva φi0..^MVi<XsQiQi+1FX+sif0<sYW=sQiQi+1FX+sW
351 350 oveq1d φi0..^MVi<XsQiQi+1FX+sif0<sYWlimQi=sQiQi+1FX+sWlimQi
352 317 320 351 3eltr4d φi0..^MVi<XRifVi<XWYsQiQi+1FX+sif0<sYWlimQi
353 352 3adantl3 φi0..^M¬Vi=XVi<XRifVi<XWYsQiQi+1FX+sif0<sYWlimQi
354 eqid sQiQi+1Y=sQiQi+1Y
355 eqid sQiQi+1FX+sY=sQiQi+1FX+sY
356 261 ad2antrr φi0..^MsQiQi+1Y
357 261 adantr φi0..^MY
358 354 313 357 289 constlimc φi0..^MYsQiQi+1YlimQi
359 273 354 355 258 356 311 358 sublimc φi0..^MRYsQiQi+1FX+sYlimQi
360 359 adantr φi0..^M¬Vi<XRYsQiQi+1FX+sYlimQi
361 iffalse ¬Vi<XifVi<XWY=Y
362 361 oveq2d ¬Vi<XRifVi<XWY=RY
363 362 adantl φi0..^M¬Vi<XRifVi<XWY=RY
364 0red φi0..^M¬Vi<XsQiQi+10
365 300 ad2antrr φi0..^M¬Vi<XsQiQi+1Qi
366 217 adantl φi0..^M¬Vi<XsQiQi+1s
367 1 ad2antrr φi0..^M¬Vi<XX
368 279 adantr φi0..^M¬Vi<XVi
369 simpr φi0..^M¬Vi<X¬Vi<X
370 367 368 369 nltled φi0..^M¬Vi<XXVi
371 368 367 subge0d φi0..^M¬Vi<X0ViXXVi
372 370 371 mpbird φi0..^M¬Vi<X0ViX
373 294 eqcomd φi0..^MViX=Qi
374 373 adantr φi0..^M¬Vi<XViX=Qi
375 372 374 breqtrd φi0..^M¬Vi<X0Qi
376 375 adantr φi0..^M¬Vi<XsQiQi+10Qi
377 207 adantl φi0..^M¬Vi<XsQiQi+1Qi<s
378 364 365 366 376 377 lelttrd φi0..^M¬Vi<XsQiQi+10<s
379 378 iftrued φi0..^M¬Vi<XsQiQi+1if0<sYW=Y
380 379 oveq2d φi0..^M¬Vi<XsQiQi+1FX+sif0<sYW=FX+sY
381 380 mpteq2dva φi0..^M¬Vi<XsQiQi+1FX+sif0<sYW=sQiQi+1FX+sY
382 381 oveq1d φi0..^M¬Vi<XsQiQi+1FX+sif0<sYWlimQi=sQiQi+1FX+sYlimQi
383 360 363 382 3eltr4d φi0..^M¬Vi<XRifVi<XWYsQiQi+1FX+sif0<sYWlimQi
384 383 3adantl3 φi0..^M¬Vi=X¬Vi<XRifVi<XWYsQiQi+1FX+sif0<sYWlimQi
385 353 384 pm2.61dan φi0..^M¬Vi=XRifVi<XWYsQiQi+1FX+sif0<sYWlimQi
386 313 250 289 idlimc φi0..^MQisQiQi+1slimQi
387 386 3adant3 φi0..^M¬Vi=XQisQiQi+1slimQi
388 294 3adant3 φi0..^M¬Vi=XQi=ViX
389 296 3adant3 φi0..^M¬Vi=XVi
390 231 3adant3 φi0..^M¬Vi=XX
391 neqne ¬Vi=XViX
392 391 3ad2ant3 φi0..^M¬Vi=XViX
393 389 390 392 subne0d φi0..^M¬Vi=XViX0
394 388 393 eqnetrd φi0..^M¬Vi=XQi0
395 200 3adantl3 φi0..^M¬Vi=XsQiQi+1¬s=0
396 395 neqned φi0..^M¬Vi=XsQiQi+1s0
397 249 250 251 266 272 385 387 394 396 divlimc φi0..^M¬Vi=XRifVi<XWYQisQiQi+1FX+sif0<sYWslimQi
398 iffalse ¬Vi=XifVi=XERifVi<XWYQi=RifVi<XWYQi
399 16 398 eqtrid ¬Vi=XA=RifVi<XWYQi
400 399 3ad2ant3 φi0..^M¬Vi=XA=RifVi<XWYQi
401 ioossre X+∞
402 401 a1i φX+∞
403 3 402 fssresd φFX+∞:X+∞
404 401 57 sstrid φX+∞
405 44 a1i φ+∞*
406 1 ltpnfd φX<+∞
407 62 405 1 406 lptioo1cn φXlimPtTopOpenfldX+∞
408 403 404 407 5 limcrecl φY
409 3 1 408 6 7 fourierdlem9 φH:ππ
410 409 adantr φi0..^MH:ππ
411 410 151 feqresmpt φi0..^MHQiQi+1=sQiQi+1Hs
412 151 sselda φi0..^MsQiQi+1sππ
413 0cnd φi0..^MsQiQi+10
414 263 ad2antrr φi0..^MsQiQi+1if0<sYW
415 258 414 subcld φi0..^MsQiQi+1FX+sif0<sYW
416 267 adantl φi0..^MsQiQi+1s
417 200 neqned φi0..^MsQiQi+1s0
418 415 416 417 divcld φi0..^MsQiQi+1FX+sif0<sYWs
419 413 418 ifcld φi0..^MsQiQi+1ifs=00FX+sif0<sYWs
420 7 fvmpt2 sππifs=00FX+sif0<sYWsHs=ifs=00FX+sif0<sYWs
421 412 419 420 syl2anc φi0..^MsQiQi+1Hs=ifs=00FX+sif0<sYWs
422 200 iffalsed φi0..^MsQiQi+1ifs=00FX+sif0<sYWs=FX+sif0<sYWs
423 421 422 eqtrd φi0..^MsQiQi+1Hs=FX+sif0<sYWs
424 423 mpteq2dva φi0..^MsQiQi+1Hs=sQiQi+1FX+sif0<sYWs
425 411 424 eqtrd φi0..^MHQiQi+1=sQiQi+1FX+sif0<sYWs
426 425 3adant3 φi0..^M¬Vi=XHQiQi+1=sQiQi+1FX+sif0<sYWs
427 426 oveq1d φi0..^M¬Vi=XHQiQi+1limQi=sQiQi+1FX+sif0<sYWslimQi
428 397 400 427 3eltr4d φi0..^M¬Vi=XAHQiQi+1limQi
429 428 3expa φi0..^M¬Vi=XAHQiQi+1limQi
430 248 429 pm2.61dan φi0..^MAHQiQi+1limQi