Metamath Proof Explorer


Theorem taylthlem2

Description: Lemma for taylth . (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses taylth.f φF:A
taylth.a φA
taylth.d φdomDnFN=A
taylth.n φN
taylth.b φBA
taylth.t T=NTaylFB
taylthlem2.m φM1..^N
taylthlem2.i φ0xABDnFNMxDnTNMxxBMlimB
Assertion taylthlem2 φ0xABDnFNM+1xDnTNM+1xxBM+1limB

Proof

Step Hyp Ref Expression
1 taylth.f φF:A
2 taylth.a φA
3 taylth.d φdomDnFN=A
4 taylth.n φN
5 taylth.b φBA
6 taylth.t T=NTaylFB
7 taylthlem2.m φM1..^N
8 taylthlem2.i φ0xABDnFNMxDnTNMxxBMlimB
9 fz1ssfz0 1N0N
10 fzofzp1 M1..^NM+11N
11 7 10 syl φM+11N
12 9 11 sselid φM+10N
13 fznn0sub2 M+10NNM+10N
14 12 13 syl φNM+10N
15 elfznn0 NM+10NNM+10
16 14 15 syl φNM+10
17 dvnfre F:AANM+10DnFNM+1:domDnFNM+1
18 1 2 16 17 syl3anc φDnFNM+1:domDnFNM+1
19 reelprrecn
20 19 a1i φ
21 cnex V
22 21 a1i φV
23 reex V
24 23 a1i φV
25 ax-resscn
26 fss F:AF:A
27 1 25 26 sylancl φF:A
28 elpm2r VVF:AAF𝑝𝑚
29 22 24 27 2 28 syl22anc φF𝑝𝑚
30 dvnbss F𝑝𝑚NM+10domDnFNM+1domF
31 20 29 16 30 syl3anc φdomDnFNM+1domF
32 1 31 fssdmd φdomDnFNM+1A
33 dvn2bss F𝑝𝑚NM+10NdomDnFNdomDnFNM+1
34 20 29 14 33 syl3anc φdomDnFNdomDnFNM+1
35 3 34 eqsstrrd φAdomDnFNM+1
36 32 35 eqssd φdomDnFNM+1=A
37 36 feq2d φDnFNM+1:domDnFNM+1DnFNM+1:A
38 18 37 mpbid φDnFNM+1:A
39 38 ffvelcdmda φyADnFNM+1y
40 2 sselda φyAy
41 fvres yDnTNM+1y=DnTNM+1y
42 41 adantl φyDnTNM+1y=DnTNM+1y
43 resubdrg SubRingfldfldDivRing
44 43 simpli SubRingfld
45 44 a1i φSubRingfld
46 4 nnnn0d φN0
47 5 3 eleqtrrd φBdomDnFN
48 2 5 sseldd φB
49 elfznn0 k0Nk0
50 dvnfre F:AAk0DnFk:domDnFk
51 1 2 49 50 syl2an3an φk0NDnFk:domDnFk
52 simpr φk0Nk0N
53 dvn2bss F𝑝𝑚k0NdomDnFNdomDnFk
54 19 29 52 53 mp3an2ani φk0NdomDnFNdomDnFk
55 47 adantr φk0NBdomDnFN
56 54 55 sseldd φk0NBdomDnFk
57 51 56 ffvelcdmd φk0NDnFkB
58 49 adantl φk0Nk0
59 58 faccld φk0Nk!
60 57 59 nndivred φk0NDnFkBk!
61 20 27 2 46 47 6 45 48 60 taylply2 φTPolydegTN
62 61 simpld φTPoly
63 dvnply2 SubRingfldTPolyNM+10DnTNM+1Poly
64 45 62 16 63 syl3anc φDnTNM+1Poly
65 plyreres DnTNM+1PolyDnTNM+1:
66 64 65 syl φDnTNM+1:
67 66 ffvelcdmda φyDnTNM+1y
68 42 67 eqeltrrd φyDnTNM+1y
69 40 68 syldan φyADnTNM+1y
70 39 69 resubcld φyADnFNM+1yDnTNM+1y
71 70 fmpttd φyADnFNM+1yDnTNM+1y:A
72 48 adantr φyAB
73 40 72 resubcld φyAyB
74 elfzouz M1..^NM1
75 7 74 syl φM1
76 nnuz =1
77 75 76 eleqtrrdi φM
78 77 nnnn0d φM0
79 78 adantr φyAM0
80 1nn0 10
81 80 a1i φyA10
82 79 81 nn0addcld φyAM+10
83 73 82 reexpcld φyAyBM+1
84 83 fmpttd φyAyBM+1:A
85 retop topGenran.Top
86 uniretop =topGenran.
87 86 ntrss2 topGenran.TopAinttopGenran.AA
88 85 2 87 sylancr φinttopGenran.AA
89 4 nncnd φN
90 77 nncnd φM
91 1cnd φ1
92 89 90 91 nppcan2d φN-M+1+1=NM
93 92 fveq2d φDnFN-M+1+1=DnFNM
94 25 a1i φ
95 dvnp1 F𝑝𝑚NM+10DnFN-M+1+1=DDnFNM+1
96 94 29 16 95 syl3anc φDnFN-M+1+1=DDnFNM+1
97 93 96 eqtr3d φDnFNM=DDnFNM+1
98 97 dmeqd φdomDnFNM=domDnFNM+1
99 fzonnsub M1..^NNM
100 7 99 syl φNM
101 100 nnnn0d φNM0
102 dvnbss F𝑝𝑚NM0domDnFNMdomF
103 20 29 101 102 syl3anc φdomDnFNMdomF
104 1 103 fssdmd φdomDnFNMA
105 elfzofz M1..^NM1N
106 7 105 syl φM1N
107 9 106 sselid φM0N
108 fznn0sub2 M0NNM0N
109 107 108 syl φNM0N
110 dvn2bss F𝑝𝑚NM0NdomDnFNdomDnFNM
111 20 29 109 110 syl3anc φdomDnFNdomDnFNM
112 3 111 eqsstrrd φAdomDnFNM
113 104 112 eqssd φdomDnFNM=A
114 98 113 eqtr3d φdomDnFNM+1=A
115 fss DnFNM+1:ADnFNM+1:A
116 38 25 115 sylancl φDnFNM+1:A
117 eqid TopOpenfld=TopOpenfld
118 117 tgioo2 topGenran.=TopOpenfld𝑡
119 94 116 2 118 117 dvbssntr φdomDnFNM+1inttopGenran.A
120 114 119 eqsstrrd φAinttopGenran.A
121 88 120 eqssd φinttopGenran.A=A
122 86 isopn3 topGenran.TopAAtopGenran.inttopGenran.A=A
123 85 2 122 sylancr φAtopGenran.inttopGenran.A=A
124 121 123 mpbird φAtopGenran.
125 eqid AB=AB
126 difss ABA
127 39 recnd φyADnFNM+1y
128 dvnf F𝑝𝑚NM0DnFNM:domDnFNM
129 20 29 101 128 syl3anc φDnFNM:domDnFNM
130 113 feq2d φDnFNM:domDnFNMDnFNM:A
131 129 130 mpbid φDnFNM:A
132 131 ffvelcdmda φyADnFNMy
133 dvnfre F:AANM0DnFNM:domDnFNM
134 1 2 101 133 syl3anc φDnFNM:domDnFNM
135 113 feq2d φDnFNM:domDnFNMDnFNM:A
136 134 135 mpbid φDnFNM:A
137 136 feqmptd φDnFNM=yADnFNMy
138 38 feqmptd φDnFNM+1=yADnFNM+1y
139 138 oveq2d φDDnFNM+1=dyADnFNM+1ydy
140 97 137 139 3eqtr3rd φdyADnFNM+1ydy=yADnFNMy
141 69 recnd φyADnTNM+1y
142 fvexd φyADnTNMyV
143 68 recnd φyDnTNM+1y
144 recn yy
145 dvnply2 SubRingfldTPolyNM0DnTNMPoly
146 45 62 101 145 syl3anc φDnTNMPoly
147 plyf DnTNMPolyDnTNM:
148 146 147 syl φDnTNM:
149 148 ffvelcdmda φyDnTNMy
150 144 149 sylan2 φyDnTNMy
151 117 cnfldtopon TopOpenfldTopOn
152 toponmax TopOpenfldTopOnTopOpenfld
153 151 152 mp1i φTopOpenfld
154 df-ss =
155 94 154 sylib φ=
156 plyf DnTNM+1PolyDnTNM+1:
157 64 156 syl φDnTNM+1:
158 157 ffvelcdmda φyDnTNM+1y
159 92 fveq2d φDnTN-M+1+1=DnTNM
160 ssid
161 160 a1i φ
162 mapsspm 𝑝𝑚
163 plyf TPolyT:
164 62 163 syl φT:
165 21 21 elmap TT:
166 164 165 sylibr φT
167 162 166 sselid φT𝑝𝑚
168 dvnp1 T𝑝𝑚NM+10DnTN-M+1+1=DDnTNM+1
169 161 167 16 168 syl3anc φDnTN-M+1+1=DDnTNM+1
170 159 169 eqtr3d φDnTNM=DDnTNM+1
171 148 feqmptd φDnTNM=yDnTNMy
172 157 feqmptd φDnTNM+1=yDnTNM+1y
173 172 oveq2d φDDnTNM+1=dyDnTNM+1ydy
174 170 171 173 3eqtr3rd φdyDnTNM+1ydy=yDnTNMy
175 117 20 153 155 158 149 174 dvmptres3 φdyDnTNM+1ydy=yDnTNMy
176 20 143 150 175 2 118 117 124 dvmptres φdyADnTNM+1ydy=yADnTNMy
177 20 127 132 140 141 142 176 dvmptsub φdyADnFNM+1yDnTNM+1ydy=yADnFNMyDnTNMy
178 177 dmeqd φdomdyADnFNM+1yDnTNM+1ydy=domyADnFNMyDnTNMy
179 ovex DnFNMyDnTNMyV
180 eqid yADnFNMyDnTNMy=yADnFNMyDnTNMy
181 179 180 dmmpti domyADnFNMyDnTNMy=A
182 178 181 eqtrdi φdomdyADnFNM+1yDnTNM+1ydy=A
183 126 182 sseqtrrid φABdomdyADnFNM+1yDnTNM+1ydy
184 simpr φyy
185 48 adantr φyB
186 185 recnd φyB
187 184 186 subcld φyyB
188 78 adantr φyM0
189 80 a1i φy10
190 188 189 nn0addcld φyM+10
191 187 190 expcld φyyBM+1
192 144 191 sylan2 φyyBM+1
193 90 adantr φyM
194 1cnd φy1
195 193 194 addcld φyM+1
196 187 188 expcld φyyBM
197 195 196 mulcld φyM+1yBM
198 144 197 sylan2 φyM+1yBM
199 21 prid2
200 199 a1i φ
201 simpr φxx
202 elfznn M+11NM+1
203 11 202 syl φM+1
204 203 nnnn0d φM+10
205 204 adantr φxM+10
206 201 205 expcld φxxM+1
207 ovexd φxM+1xMV
208 200 dvmptid φdyydy=y1
209 0cnd φy0
210 48 recnd φB
211 200 210 dvmptc φdyBdy=y0
212 200 184 194 208 186 209 211 dvmptsub φdyyBdy=y10
213 1m0e1 10=1
214 213 mpteq2i y10=y1
215 212 214 eqtrdi φdyyBdy=y1
216 dvexp M+1dxxM+1dx=xM+1xM+1-1
217 203 216 syl φdxxM+1dx=xM+1xM+1-1
218 90 91 pncand φM+1-1=M
219 218 oveq2d φxM+1-1=xM
220 219 oveq2d φM+1xM+1-1=M+1xM
221 220 mpteq2dv φxM+1xM+1-1=xM+1xM
222 217 221 eqtrd φdxxM+1dx=xM+1xM
223 oveq1 x=yBxM+1=yBM+1
224 oveq1 x=yBxM=yBM
225 224 oveq2d x=yBM+1xM=M+1yBM
226 200 200 187 194 206 207 215 222 223 225 dvmptco φdyyBM+1dy=yM+1yBM1
227 197 mulridd φyM+1yBM1=M+1yBM
228 227 mpteq2dva φyM+1yBM1=yM+1yBM
229 226 228 eqtrd φdyyBM+1dy=yM+1yBM
230 117 20 153 155 191 197 229 dvmptres3 φdyyBM+1dy=yM+1yBM
231 20 192 198 230 2 118 117 124 dvmptres φdyAyBM+1dy=yAM+1yBM
232 231 dmeqd φdomdyAyBM+1dy=domyAM+1yBM
233 ovex M+1yBMV
234 eqid yAM+1yBM=yAM+1yBM
235 233 234 dmmpti domyAM+1yBM=A
236 232 235 eqtrdi φdomdyAyBM+1dy=A
237 126 236 sseqtrrid φABdomdyAyBM+1dy
238 20 27 2 14 47 6 dvntaylp0 φDnTNM+1B=DnFNM+1B
239 238 oveq2d φDnFNM+1BDnTNM+1B=DnFNM+1BDnFNM+1B
240 116 5 ffvelcdmd φDnFNM+1B
241 240 subidd φDnFNM+1BDnFNM+1B=0
242 239 241 eqtrd φDnFNM+1BDnTNM+1B=0
243 117 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
244 243 a1i φTopOpenfld×tTopOpenfldCnTopOpenfld
245 dvcn DnFNM+1:AAdomDnFNM+1=ADnFNM+1:Acn
246 94 116 2 114 245 syl31anc φDnFNM+1:Acn
247 138 246 eqeltrrd φyADnFNM+1y:Acn
248 plycn DnTNM+1PolyDnTNM+1:cn
249 64 248 syl φDnTNM+1:cn
250 2 25 sstrdi φA
251 cncfmptid AyAy:Acn
252 250 160 251 sylancl φyAy:Acn
253 249 252 cncfmpt1f φyADnTNM+1y:Acn
254 117 244 247 253 cncfmpt2f φyADnFNM+1yDnTNM+1y:Acn
255 fveq2 y=BDnFNM+1y=DnFNM+1B
256 fveq2 y=BDnTNM+1y=DnTNM+1B
257 255 256 oveq12d y=BDnFNM+1yDnTNM+1y=DnFNM+1BDnTNM+1B
258 254 5 257 cnmptlimc φDnFNM+1BDnTNM+1ByADnFNM+1yDnTNM+1ylimB
259 242 258 eqeltrrd φ0yADnFNM+1yDnTNM+1ylimB
260 210 subidd φBB=0
261 260 oveq1d φBBM+1=0M+1
262 203 0expd φ0M+1=0
263 261 262 eqtrd φBBM+1=0
264 250 sselda φyAy
265 264 191 syldan φyAyBM+1
266 265 fmpttd φyAyBM+1:A
267 dvcn yAyBM+1:AAdomdyAyBM+1dy=AyAyBM+1:Acn
268 94 266 2 236 267 syl31anc φyAyBM+1:Acn
269 oveq1 y=ByB=BB
270 269 oveq1d y=ByBM+1=BBM+1
271 268 5 270 cnmptlimc φBBM+1yAyBM+1limB
272 263 271 eqeltrrd φ0yAyBM+1limB
273 250 ssdifssd φAB
274 273 sselda φyABy
275 210 adantr φyABB
276 274 275 subcld φyAByB
277 eldifsni yAByB
278 277 adantl φyAByB
279 274 275 278 subne0d φyAByB0
280 203 adantr φyABM+1
281 280 nnzd φyABM+1
282 276 279 281 expne0d φyAByBM+10
283 282 necomd φyAB0yBM+1
284 283 neneqd φyAB¬0=yBM+1
285 284 nrexdv φ¬yAB0=yBM+1
286 df-ima yAyBM+1AB=ranyAyBM+1AB
287 286 eleq2i 0yAyBM+1AB0ranyAyBM+1AB
288 resmpt ABAyAyBM+1AB=yAByBM+1
289 126 288 ax-mp yAyBM+1AB=yAByBM+1
290 ovex yBM+1V
291 289 290 elrnmpti 0ranyAyBM+1AByAB0=yBM+1
292 287 291 bitri 0yAyBM+1AByAB0=yBM+1
293 285 292 sylnibr φ¬0yAyBM+1AB
294 90 adantr φyABM
295 1cnd φyAB1
296 294 295 addcld φyABM+1
297 274 196 syldan φyAByBM
298 280 nnne0d φyABM+10
299 77 adantr φyABM
300 299 nnzd φyABM
301 276 279 300 expne0d φyAByBM0
302 296 297 298 301 mulne0d φyABM+1yBM0
303 302 necomd φyAB0M+1yBM
304 303 neneqd φyAB¬0=M+1yBM
305 304 nrexdv φ¬yAB0=M+1yBM
306 231 imaeq1d φdyAyBM+1dyAB=yAM+1yBMAB
307 df-ima yAM+1yBMAB=ranyAM+1yBMAB
308 306 307 eqtrdi φdyAyBM+1dyAB=ranyAM+1yBMAB
309 308 eleq2d φ0dyAyBM+1dyAB0ranyAM+1yBMAB
310 resmpt ABAyAM+1yBMAB=yABM+1yBM
311 126 310 ax-mp yAM+1yBMAB=yABM+1yBM
312 311 233 elrnmpti 0ranyAM+1yBMAByAB0=M+1yBM
313 309 312 bitrdi φ0dyAyBM+1dyAByAB0=M+1yBM
314 305 313 mtbird φ¬0dyAyBM+1dyAB
315 eldifi xABxA
316 131 ffvelcdmda φxADnFNMx
317 315 316 sylan2 φxABDnFNMx
318 2 ssdifssd φAB
319 318 sselda φxABx
320 319 recnd φxABx
321 148 ffvelcdmda φxDnTNMx
322 320 321 syldan φxABDnTNMx
323 317 322 subcld φxABDnFNMxDnTNMx
324 48 adantr φxABB
325 319 324 resubcld φxABxB
326 78 adantr φxABM0
327 325 326 reexpcld φxABxBM
328 327 recnd φxABxBM
329 324 recnd φxABB
330 320 329 subcld φxABxB
331 eldifsni xABxB
332 331 adantl φxABxB
333 320 329 332 subne0d φxABxB0
334 326 nn0zd φxABM
335 330 333 334 expne0d φxABxBM0
336 323 328 335 divcld φxABDnFNMxDnTNMxxBM
337 203 nnrecred φ1M+1
338 337 recnd φ1M+1
339 338 adantr φxAB1M+1
340 txtopon TopOpenfldTopOnTopOpenfldTopOnTopOpenfld×tTopOpenfldTopOn×
341 151 151 340 mp2an TopOpenfld×tTopOpenfldTopOn×
342 341 toponrestid TopOpenfld×tTopOpenfld=TopOpenfld×tTopOpenfld𝑡×
343 limcresi xA1M+1limBxA1M+1ABlimB
344 resmpt ABAxA1M+1AB=xAB1M+1
345 126 344 ax-mp xA1M+1AB=xAB1M+1
346 345 oveq1i xA1M+1ABlimB=xAB1M+1limB
347 343 346 sseqtri xA1M+1limBxAB1M+1limB
348 cncfmptc 1M+1AxA1M+1:Acn
349 337 250 94 348 syl3anc φxA1M+1:Acn
350 eqidd x=B1M+1=1M+1
351 349 5 350 cnmptlimc φ1M+1xA1M+1limB
352 347 351 sselid φ1M+1xAB1M+1limB
353 117 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
354 0cn 0
355 opelxpi 01M+101M+1×
356 354 338 355 sylancr φ01M+1×
357 341 toponunii ×=TopOpenfld×tTopOpenfld
358 357 cncnpi ×TopOpenfld×tTopOpenfldCnTopOpenfld01M+1××TopOpenfld×tTopOpenfldCnPTopOpenfld01M+1
359 353 356 358 sylancr φ×TopOpenfld×tTopOpenfldCnPTopOpenfld01M+1
360 336 339 161 161 117 342 8 352 359 limccnp2 φ01M+1xABDnFNMxDnTNMxxBM1M+1limB
361 338 mul02d φ01M+1=0
362 177 fveq1d φdyADnFNM+1yDnTNM+1ydyx=yADnFNMyDnTNMyx
363 fveq2 y=xDnFNMy=DnFNMx
364 fveq2 y=xDnTNMy=DnTNMx
365 363 364 oveq12d y=xDnFNMyDnTNMy=DnFNMxDnTNMx
366 ovex DnFNMxDnTNMxV
367 365 180 366 fvmpt xAyADnFNMyDnTNMyx=DnFNMxDnTNMx
368 315 367 syl xAByADnFNMyDnTNMyx=DnFNMxDnTNMx
369 362 368 sylan9eq φxABdyADnFNM+1yDnTNM+1ydyx=DnFNMxDnTNMx
370 231 fveq1d φdyAyBM+1dyx=yAM+1yBMx
371 oveq1 y=xyB=xB
372 371 oveq1d y=xyBM=xBM
373 372 oveq2d y=xM+1yBM=M+1xBM
374 ovex M+1xBMV
375 373 234 374 fvmpt xAyAM+1yBMx=M+1xBM
376 315 375 syl xAByAM+1yBMx=M+1xBM
377 370 376 sylan9eq φxABdyAyBM+1dyx=M+1xBM
378 203 adantr φxABM+1
379 378 nncnd φxABM+1
380 379 328 mulcomd φxABM+1xBM=xBMM+1
381 377 380 eqtrd φxABdyAyBM+1dyx=xBMM+1
382 369 381 oveq12d φxABdyADnFNM+1yDnTNM+1ydyxdyAyBM+1dyx=DnFNMxDnTNMxxBMM+1
383 378 nnne0d φxABM+10
384 323 328 379 335 383 divdiv1d φxABDnFNMxDnTNMxxBMM+1=DnFNMxDnTNMxxBMM+1
385 336 379 383 divrecd φxABDnFNMxDnTNMxxBMM+1=DnFNMxDnTNMxxBM1M+1
386 382 384 385 3eqtr2rd φxABDnFNMxDnTNMxxBM1M+1=dyADnFNM+1yDnTNM+1ydyxdyAyBM+1dyx
387 386 mpteq2dva φxABDnFNMxDnTNMxxBM1M+1=xABdyADnFNM+1yDnTNM+1ydyxdyAyBM+1dyx
388 387 oveq1d φxABDnFNMxDnTNMxxBM1M+1limB=xABdyADnFNM+1yDnTNM+1ydyxdyAyBM+1dyxlimB
389 360 361 388 3eltr3d φ0xABdyADnFNM+1yDnTNM+1ydyxdyAyBM+1dyxlimB
390 2 71 84 124 5 125 183 237 259 272 293 314 389 lhop φ0xAByADnFNM+1yDnTNM+1yxyAyBM+1xlimB
391 315 adantl φxABxA
392 fveq2 y=xDnFNM+1y=DnFNM+1x
393 fveq2 y=xDnTNM+1y=DnTNM+1x
394 392 393 oveq12d y=xDnFNM+1yDnTNM+1y=DnFNM+1xDnTNM+1x
395 eqid yADnFNM+1yDnTNM+1y=yADnFNM+1yDnTNM+1y
396 ovex DnFNM+1xDnTNM+1xV
397 394 395 396 fvmpt xAyADnFNM+1yDnTNM+1yx=DnFNM+1xDnTNM+1x
398 391 397 syl φxAByADnFNM+1yDnTNM+1yx=DnFNM+1xDnTNM+1x
399 371 oveq1d y=xyBM+1=xBM+1
400 eqid yAyBM+1=yAyBM+1
401 ovex xBM+1V
402 399 400 401 fvmpt xAyAyBM+1x=xBM+1
403 391 402 syl φxAByAyBM+1x=xBM+1
404 398 403 oveq12d φxAByADnFNM+1yDnTNM+1yxyAyBM+1x=DnFNM+1xDnTNM+1xxBM+1
405 404 mpteq2dva φxAByADnFNM+1yDnTNM+1yxyAyBM+1x=xABDnFNM+1xDnTNM+1xxBM+1
406 405 oveq1d φxAByADnFNM+1yDnTNM+1yxyAyBM+1xlimB=xABDnFNM+1xDnTNM+1xxBM+1limB
407 390 406 eleqtrd φ0xABDnFNM+1xDnTNM+1xxBM+1limB