Metamath Proof Explorer


Theorem amgmwlem

Description: Weighted version of amgmlem . (Contributed by Kunhao Zheng, 19-Jun-2021)

Ref Expression
Hypotheses amgmwlem.0 M=mulGrpfld
amgmwlem.1 φAFin
amgmwlem.2 φA
amgmwlem.3 φF:A+
amgmwlem.4 φW:A+
amgmwlem.5 φfldW=1
Assertion amgmwlem φMFcfWfldF×fW

Proof

Step Hyp Ref Expression
1 amgmwlem.0 M=mulGrpfld
2 amgmwlem.1 φAFin
3 amgmwlem.2 φA
4 amgmwlem.3 φF:A+
5 amgmwlem.4 φW:A+
6 amgmwlem.5 φfldW=1
7 4 ffvelcdmda φkAFk+
8 5 ffvelcdmda φkAWk+
9 8 rpred φkAWk
10 7 9 rpcxpcld φkAFkWk+
11 10 relogcld φkAlogFkWk
12 11 recnd φkAlogFkWk
13 2 12 gsumfsum φfldkAlogFkWk=kAlogFkWk
14 12 negnegd φkAlogFkWk=logFkWk
15 14 sumeq2dv φkAlogFkWk=kAlogFkWk
16 11 renegcld φkAlogFkWk
17 16 recnd φkAlogFkWk
18 2 17 fsumneg φkAlogFkWk=kAlogFkWk
19 7 9 logcxpd φkAlogFkWk=WklogFk
20 19 negeqd φkAlogFkWk=WklogFk
21 20 sumeq2dv φkAlogFkWk=kAWklogFk
22 21 negeqd φkAlogFkWk=kAWklogFk
23 8 rpcnd φkAWk
24 7 relogcld φkAlogFk
25 24 recnd φkAlogFk
26 23 25 mulneg2d φkAWklogFk=WklogFk
27 26 eqcomd φkAWklogFk=WklogFk
28 27 sumeq2dv φkAWklogFk=kAWklogFk
29 28 negeqd φkAWklogFk=kAWklogFk
30 18 22 29 3eqtrd φkAlogFkWk=kAWklogFk
31 13 15 30 3eqtr2rd φkAWklogFk=fldkAlogFkWk
32 negex logFkV
33 32 a1i φkAlogFkV
34 5 feqmptd φW=kAWk
35 eqidd φkAlogFk=kAlogFk
36 2 8 33 34 35 offval2 φW×fkAlogFk=kAWklogFk
37 36 oveq2d φfldW×fkAlogFk=fldkAWklogFk
38 25 negcld φkAlogFk
39 23 38 mulcld φkAWklogFk
40 2 39 gsumfsum φfldkAWklogFk=kAWklogFk
41 37 40 eqtrd φfldW×fkAlogFk=kAWklogFk
42 41 negeqd φfldW×fkAlogFk=kAWklogFk
43 relogf1o log+:+1-1 onto
44 f1of log+:+1-1 ontolog+:+
45 43 44 ax-mp log+:+
46 rpre y+y
47 46 anim2i x+y+x+y
48 47 adantl φx+y+x+y
49 rpcxpcl x+yxy+
50 48 49 syl φx+y+xy+
51 inidm AA=A
52 50 4 5 2 2 51 off φFcfW:A+
53 fcompt log+:+FcfW:A+log+FcfW=kAlog+FcfWk
54 45 52 53 sylancr φlog+FcfW=kAlog+FcfWk
55 52 ffvelcdmda φkAFcfWk+
56 fvres FcfWk+log+FcfWk=logFcfWk
57 55 56 syl φkAlog+FcfWk=logFcfWk
58 4 ffnd φFFnA
59 5 ffnd φWFnA
60 eqidd φkAFk=Fk
61 eqidd φkAWk=Wk
62 58 59 2 2 51 60 61 ofval φkAFcfWk=FkWk
63 62 fveq2d φkAlogFcfWk=logFkWk
64 57 63 eqtrd φkAlog+FcfWk=logFkWk
65 64 mpteq2dva φkAlog+FcfWk=kAlogFkWk
66 54 65 eqtrd φlog+FcfW=kAlogFkWk
67 66 oveq2d φfldlog+FcfW=fldkAlogFkWk
68 31 42 67 3eqtr4d φfldW×fkAlogFk=fldlog+FcfW
69 1 oveq1i M𝑠0=mulGrpfld𝑠0
70 69 rpmsubg +SubGrpM𝑠0
71 subgsubm +SubGrpM𝑠0+SubMndM𝑠0
72 70 71 ax-mp +SubMndM𝑠0
73 cnring fldRing
74 cnfldbas =Basefld
75 cnfld0 0=0fld
76 cndrng fldDivRing
77 74 75 76 drngui 0=Unitfld
78 77 1 unitsubm fldRing0SubMndM
79 eqid M𝑠0=M𝑠0
80 79 subsubm 0SubMndM+SubMndM𝑠0+SubMndM+0
81 73 78 80 mp2b +SubMndM𝑠0+SubMndM+0
82 72 81 mpbi +SubMndM+0
83 82 simpli +SubMndM
84 eqid M𝑠+=M𝑠+
85 84 submbas +SubMndM+=BaseM𝑠+
86 83 85 ax-mp +=BaseM𝑠+
87 cnfld1 1=1fld
88 1 87 ringidval 1=0M
89 eqid 0M=0M
90 84 89 subm0 +SubMndM0M=0M𝑠+
91 83 90 ax-mp 0M=0M𝑠+
92 88 91 eqtri 1=0M𝑠+
93 cncrng fldCRing
94 1 crngmgp fldCRingMCMnd
95 93 94 mp1i φMCMnd
96 84 submmnd +SubMndMM𝑠+Mnd
97 83 96 mp1i φM𝑠+Mnd
98 84 subcmn MCMndM𝑠+MndM𝑠+CMnd
99 95 97 98 syl2anc φM𝑠+CMnd
100 resubdrg SubRingfldfldDivRing
101 100 simpli SubRingfld
102 df-refld fld=fld𝑠
103 102 subrgring SubRingfldfldRing
104 101 103 ax-mp fldRing
105 ringmnd fldRingfldMnd
106 104 105 mp1i φfldMnd
107 1 oveq1i M𝑠+=mulGrpfld𝑠+
108 107 reloggim log+M𝑠+GrpIsofld
109 gimghm log+M𝑠+GrpIsofldlog+M𝑠+GrpHomfld
110 108 109 ax-mp log+M𝑠+GrpHomfld
111 ghmmhm log+M𝑠+GrpHomfldlog+M𝑠+MndHomfld
112 110 111 mp1i φlog+M𝑠+MndHomfld
113 1red φ1
114 52 2 113 fdmfifsupp φfinSupp1FcfW
115 86 92 99 106 2 112 52 114 gsummhm φfldlog+FcfW=log+M𝑠+FcfW
116 subrgsubg SubRingfldSubGrpfld
117 101 116 ax-mp SubGrpfld
118 subgsubm SubGrpfldSubMndfld
119 117 118 ax-mp SubMndfld
120 119 a1i φSubMndfld
121 43 44 mp1i φlog+:+
122 fco log+:+FcfW:A+log+FcfW:A
123 121 52 122 syl2anc φlog+FcfW:A
124 2 120 123 102 gsumsubm φfldlog+FcfW=fldlog+FcfW
125 83 a1i φ+SubMndM
126 2 125 52 84 gsumsubm φMFcfW=M𝑠+FcfW
127 126 fveq2d φlog+MFcfW=log+M𝑠+FcfW
128 115 124 127 3eqtr4d φfldlog+FcfW=log+MFcfW
129 88 95 2 125 52 114 gsumsubmcl φMFcfW+
130 fvres MFcfW+log+MFcfW=logMFcfW
131 129 130 syl φlog+MFcfW=logMFcfW
132 68 128 131 3eqtrd φfldW×fkAlogFk=logMFcfW
133 simprl φx+y+x+
134 133 rpcnd φx+y+x
135 simprr φx+y+y+
136 135 rpcnd φx+y+y
137 134 136 mulcomd φx+y+xy=yx
138 2 5 4 137 caofcom φW×fF=F×fW
139 138 oveq2d φfldW×fF=fldF×fW
140 4 feqmptd φF=kAFk
141 2 8 7 34 140 offval2 φW×fF=kAWkFk
142 141 oveq2d φfldW×fF=fldkAWkFk
143 8 7 rpmulcld φkAWkFk+
144 143 rpcnd φkAWkFk
145 2 144 gsumfsum φfldkAWkFk=kAWkFk
146 142 145 eqtrd φfldW×fF=kAWkFk
147 2 3 143 fsumrpcl φkAWkFk+
148 146 147 eqeltrd φfldW×fF+
149 139 148 eqeltrrd φfldF×fW+
150 149 relogcld φlogfldF×fW
151 ringcmn fldRingfldCMnd
152 73 151 mp1i φfldCMnd
153 remulcl xyxy
154 153 adantl φxyxy
155 rpssre +
156 fss W:A++W:A
157 5 155 156 sylancl φW:A
158 24 renegcld φkAlogFk
159 158 fmpttd φkAlogFk:A
160 154 157 159 2 2 51 off φW×fkAlogFk:A
161 0red φ0
162 160 2 161 fdmfifsupp φfinSupp0W×fkAlogFk
163 75 152 2 120 160 162 gsumsubmcl φfldW×fkAlogFk
164 155 a1i φ+
165 simpr φw+w+
166 165 relogcld φw+logw
167 166 renegcld φw+logw
168 167 fmpttd φw+logw:+
169 simpl a+b+a+
170 ioorp 0+∞=+
171 169 170 eleqtrrdi a+b+a0+∞
172 simpr a+b+b+
173 172 170 eleqtrrdi a+b+b0+∞
174 iccssioo2 a0+∞b0+∞ab0+∞
175 171 173 174 syl2anc a+b+ab0+∞
176 175 170 sseqtrdi a+b+ab+
177 176 adantl φa+b+ab+
178 ioossico 0+∞0+∞
179 170 178 eqsstrri +0+∞
180 fss W:A++0+∞W:A0+∞
181 5 179 180 sylancl φW:A0+∞
182 0lt1 0<1
183 182 6 breqtrrid φ0<fldW
184 logccv x+y+x<yt01tlogx+1tlogy<logtx+1ty
185 184 3adant1 φx+y+x<yt01tlogx+1tlogy<logtx+1ty
186 elioore t01t
187 186 3ad2ant3 φx+y+x<yt01t
188 simp21 φx+y+x<yt01x+
189 188 relogcld φx+y+x<yt01logx
190 187 189 remulcld φx+y+x<yt01tlogx
191 1red t011
192 191 186 resubcld t011t
193 192 3ad2ant3 φx+y+x<yt011t
194 simp22 φx+y+x<yt01y+
195 194 relogcld φx+y+x<yt01logy
196 193 195 remulcld φx+y+x<yt011tlogy
197 190 196 readdcld φx+y+x<yt01tlogx+1tlogy
198 eliooord t010<tt<1
199 198 simpld t010<t
200 186 199 elrpd t01t+
201 200 3ad2ant3 φx+y+x<yt01t+
202 201 188 rpmulcld φx+y+x<yt01tx+
203 0red t010
204 198 simprd t01t<1
205 1m0e1 10=1
206 204 205 breqtrrdi t01t<10
207 186 191 203 206 ltsub13d t010<1t
208 192 207 elrpd t011t+
209 208 3ad2ant3 φx+y+x<yt011t+
210 209 194 rpmulcld φx+y+x<yt011ty+
211 rpaddcl tx+1ty+tx+1ty+
212 202 210 211 syl2anc φx+y+x<yt01tx+1ty+
213 212 relogcld φx+y+x<yt01logtx+1ty
214 197 213 ltnegd φx+y+x<yt01tlogx+1tlogy<logtx+1tylogtx+1ty<tlogx+1tlogy
215 185 214 mpbid φx+y+x<yt01logtx+1ty<tlogx+1tlogy
216 eqidd φx+y+x<yt01w+logw=w+logw
217 fveq2 w=tx+1tylogw=logtx+1ty
218 217 adantl φx+y+x<yt01w=tx+1tylogw=logtx+1ty
219 218 negeqd φx+y+x<yt01w=tx+1tylogw=logtx+1ty
220 negex logtx+1tyV
221 220 a1i φx+y+x<yt01logtx+1tyV
222 216 219 212 221 fvmptd φx+y+x<yt01w+logwtx+1ty=logtx+1ty
223 fveq2 w=xlogw=logx
224 223 negeqd w=xlogw=logx
225 eqid w+logw=w+logw
226 negex logwV
227 224 225 226 fvmpt3i x+w+logwx=logx
228 188 227 syl φx+y+x<yt01w+logwx=logx
229 228 oveq2d φx+y+x<yt01tw+logwx=tlogx
230 187 recnd φx+y+x<yt01t
231 189 recnd φx+y+x<yt01logx
232 230 231 mulneg2d φx+y+x<yt01tlogx=tlogx
233 229 232 eqtrd φx+y+x<yt01tw+logwx=tlogx
234 fveq2 w=ylogw=logy
235 234 negeqd w=ylogw=logy
236 235 225 226 fvmpt3i y+w+logwy=logy
237 194 236 syl φx+y+x<yt01w+logwy=logy
238 237 oveq2d φx+y+x<yt011tw+logwy=1tlogy
239 209 rpcnd φx+y+x<yt011t
240 195 recnd φx+y+x<yt01logy
241 239 240 mulneg2d φx+y+x<yt011tlogy=1tlogy
242 238 241 eqtrd φx+y+x<yt011tw+logwy=1tlogy
243 233 242 oveq12d φx+y+x<yt01tw+logwx+1tw+logwy=-tlogx+1tlogy
244 190 recnd φx+y+x<yt01tlogx
245 196 recnd φx+y+x<yt011tlogy
246 244 245 negdid φx+y+x<yt01tlogx+1tlogy=-tlogx+1tlogy
247 243 246 eqtr4d φx+y+x<yt01tw+logwx+1tw+logwy=tlogx+1tlogy
248 215 222 247 3brtr4d φx+y+x<yt01w+logwtx+1ty<tw+logwx+1tw+logwy
249 164 168 177 248 scvxcvx φu+v+s01w+logwsu+1svsw+logwu+1sw+logwv
250 164 168 177 2 181 4 183 249 jensen φfldW×fFfldW+w+logwfldW×fFfldWfldW×fw+logwFfldW
251 250 simprd φw+logwfldW×fFfldWfldW×fw+logwFfldW
252 6 oveq2d φfldW×fFfldW=fldW×fF1
253 252 fveq2d φw+logwfldW×fFfldW=w+logwfldW×fF1
254 148 rpcnd φfldW×fF
255 254 div1d φfldW×fF1=fldW×fF
256 255 fveq2d φw+logwfldW×fF1=w+logwfldW×fF
257 fveq2 w=fldW×fFlogw=logfldW×fF
258 257 negeqd w=fldW×fFlogw=logfldW×fF
259 258 225 226 fvmpt3i fldW×fF+w+logwfldW×fF=logfldW×fF
260 148 259 syl φw+logwfldW×fF=logfldW×fF
261 139 fveq2d φlogfldW×fF=logfldF×fW
262 261 negeqd φlogfldW×fF=logfldF×fW
263 260 262 eqtrd φw+logwfldW×fF=logfldF×fW
264 253 256 263 3eqtrd φw+logwfldW×fFfldW=logfldF×fW
265 6 oveq2d φfldW×fw+logwFfldW=fldW×fw+logwF1
266 ringmnd fldRingfldMnd
267 73 266 ax-mp fldMnd
268 74 submid fldMndSubMndfld
269 267 268 mp1i φSubMndfld
270 mulcl xyxy
271 270 adantl φxyxy
272 rpcn x+x
273 272 ssriv +
274 273 a1i φ+
275 5 274 fssd φW:A
276 166 recnd φw+logw
277 276 negcld φw+logw
278 277 fmpttd φw+logw:+
279 fco w+logw:+F:A+w+logwF:A
280 278 4 279 syl2anc φw+logwF:A
281 271 275 280 2 2 51 off φW×fw+logwF:A
282 281 2 161 fdmfifsupp φfinSupp0W×fw+logwF
283 75 152 2 269 281 282 gsumsubmcl φfldW×fw+logwF
284 283 div1d φfldW×fw+logwF1=fldW×fw+logwF
285 eqidd φw+logw=w+logw
286 fveq2 w=Fklogw=logFk
287 286 negeqd w=Fklogw=logFk
288 7 140 285 287 fmptco φw+logwF=kAlogFk
289 288 oveq2d φW×fw+logwF=W×fkAlogFk
290 289 oveq2d φfldW×fw+logwF=fldW×fkAlogFk
291 265 284 290 3eqtrd φfldW×fw+logwFfldW=fldW×fkAlogFk
292 251 264 291 3brtr3d φlogfldF×fWfldW×fkAlogFk
293 150 163 292 lenegcon1d φfldW×fkAlogFklogfldF×fW
294 132 293 eqbrtrrd φlogMFcfWlogfldF×fW
295 129 relogcld φlogMFcfW
296 efle logMFcfWlogfldF×fWlogMFcfWlogfldF×fWelogMFcfWelogfldF×fW
297 295 150 296 syl2anc φlogMFcfWlogfldF×fWelogMFcfWelogfldF×fW
298 294 297 mpbid φelogMFcfWelogfldF×fW
299 129 reeflogd φelogMFcfW=MFcfW
300 299 eqcomd φMFcfW=elogMFcfW
301 149 reeflogd φelogfldF×fW=fldF×fW
302 301 eqcomd φfldF×fW=elogfldF×fW
303 298 300 302 3brtr4d φMFcfWfldF×fW