Metamath Proof Explorer


Theorem dvnprodlem1

Description: D is bijective. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnprodlem1.c C=s𝒫Tn0c0ns|tsct=n
dvnprodlem1.j φJ0
dvnprodlem1.d D=cCRZJJcZcR
dvnprodlem1.t φTFin
dvnprodlem1.z φZT
dvnprodlem1.zr φ¬ZR
dvnprodlem1.rzt φRZT
Assertion dvnprodlem1 φD:CRZJ1-1 ontok=0Jk×CRk

Proof

Step Hyp Ref Expression
1 dvnprodlem1.c C=s𝒫Tn0c0ns|tsct=n
2 dvnprodlem1.j φJ0
3 dvnprodlem1.d D=cCRZJJcZcR
4 dvnprodlem1.t φTFin
5 dvnprodlem1.z φZT
6 dvnprodlem1.zr φ¬ZR
7 dvnprodlem1.rzt φRZT
8 eqidd φcCRZJJcZcR=JcZcR
9 0zd φcCRZJ0
10 2 nn0zd φJ
11 10 adantr φcCRZJJ
12 oveq2 s=RZ0ns=0nRZ
13 rabeq 0ns=0nRZc0ns|tsct=n=c0nRZ|tsct=n
14 12 13 syl s=RZc0ns|tsct=n=c0nRZ|tsct=n
15 sumeq1 s=RZtsct=tRZct
16 15 eqeq1d s=RZtsct=ntRZct=n
17 16 rabbidv s=RZc0nRZ|tsct=n=c0nRZ|tRZct=n
18 14 17 eqtrd s=RZc0ns|tsct=n=c0nRZ|tRZct=n
19 18 mpteq2dv s=RZn0c0ns|tsct=n=n0c0nRZ|tRZct=n
20 ssexg RZTTFinRZV
21 7 4 20 syl2anc φRZV
22 elpwg RZVRZ𝒫TRZT
23 21 22 syl φRZ𝒫TRZT
24 7 23 mpbird φRZ𝒫T
25 nn0ex 0V
26 25 mptex n0c0nRZ|tRZct=nV
27 26 a1i φn0c0nRZ|tRZct=nV
28 1 19 24 27 fvmptd3 φCRZ=n0c0nRZ|tRZct=n
29 oveq2 n=J0n=0J
30 29 oveq1d n=J0nRZ=0JRZ
31 rabeq 0nRZ=0JRZc0nRZ|tRZct=n=c0JRZ|tRZct=n
32 30 31 syl n=Jc0nRZ|tRZct=n=c0JRZ|tRZct=n
33 eqeq2 n=JtRZct=ntRZct=J
34 33 rabbidv n=Jc0JRZ|tRZct=n=c0JRZ|tRZct=J
35 32 34 eqtrd n=Jc0nRZ|tRZct=n=c0JRZ|tRZct=J
36 35 adantl φn=Jc0nRZ|tRZct=n=c0JRZ|tRZct=J
37 ovex 0JRZV
38 37 rabex c0JRZ|tRZct=JV
39 38 a1i φc0JRZ|tRZct=JV
40 28 36 2 39 fvmptd φCRZJ=c0JRZ|tRZct=J
41 ssrab2 c0JRZ|tRZct=J0JRZ
42 41 a1i φc0JRZ|tRZct=J0JRZ
43 40 42 eqsstrd φCRZJ0JRZ
44 43 adantr φcCRZJCRZJ0JRZ
45 simpr φcCRZJcCRZJ
46 44 45 sseldd φcCRZJc0JRZ
47 elmapi c0JRZc:RZ0J
48 46 47 syl φcCRZJc:RZ0J
49 snidg ZTZZ
50 5 49 syl φZZ
51 elun2 ZZZRZ
52 50 51 syl φZRZ
53 52 adantr φcCRZJZRZ
54 48 53 ffvelcdmd φcCRZJcZ0J
55 54 elfzelzd φcCRZJcZ
56 11 55 zsubcld φcCRZJJcZ
57 elfzle2 cZ0JcZJ
58 54 57 syl φcCRZJcZJ
59 11 zred φcCRZJJ
60 55 zred φcCRZJcZ
61 59 60 subge0d φcCRZJ0JcZcZJ
62 58 61 mpbird φcCRZJ0JcZ
63 elfzle1 cZ0J0cZ
64 54 63 syl φcCRZJ0cZ
65 59 60 subge02d φcCRZJ0cZJcZJ
66 64 65 mpbid φcCRZJJcZJ
67 9 11 56 62 66 elfzd φcCRZJJcZ0J
68 elmapfn c0JRZcFnRZ
69 46 68 syl φcCRZJcFnRZ
70 ssun1 RRZ
71 70 a1i φcCRZJRRZ
72 fnssres cFnRZRRZcRFnR
73 69 71 72 syl2anc φcCRZJcRFnR
74 nfv tφ
75 nfcv _tc
76 nfcv _t𝒫T
77 nfcv _t0
78 nfcv _ts
79 78 nfsum1 _ttsct
80 nfcv _tn
81 79 80 nfeq ttsct=n
82 nfcv _t0ns
83 81 82 nfrabw _tc0ns|tsct=n
84 77 83 nfmpt _tn0c0ns|tsct=n
85 76 84 nfmpt _ts𝒫Tn0c0ns|tsct=n
86 1 85 nfcxfr _tC
87 nfcv _tRZ
88 86 87 nffv _tCRZ
89 nfcv _tJ
90 88 89 nffv _tCRZJ
91 75 90 nfel tcCRZJ
92 74 91 nfan tφcCRZJ
93 fvres tRcRt=ct
94 93 adantl φcCRZJtRcRt=ct
95 9 adantr φcCRZJtR0
96 56 adantr φcCRZJtRJcZ
97 48 adantr φcCRZJtRc:RZ0J
98 71 sselda φcCRZJtRtRZ
99 97 98 ffvelcdmd φcCRZJtRct0J
100 99 elfzelzd φcCRZJtRct
101 elfzle1 ct0J0ct
102 99 101 syl φcCRZJtR0ct
103 7 unssad φRT
104 ssfi TFinRTRFin
105 4 103 104 syl2anc φRFin
106 105 ad2antrr φcCRZJtRRFin
107 fzssz 0J
108 zssre
109 107 108 sstri 0J
110 109 a1i φcCRZJrR0J
111 48 adantr φcCRZJrRc:RZ0J
112 71 sselda φcCRZJrRrRZ
113 111 112 ffvelcdmd φcCRZJrRcr0J
114 110 113 sseldd φcCRZJrRcr
115 114 adantlr φcCRZJtRrRcr
116 elfzle1 cr0J0cr
117 113 116 syl φcCRZJrR0cr
118 117 adantlr φcCRZJtRrR0cr
119 fveq2 r=tcr=ct
120 simpr φcCRZJtRtR
121 106 115 118 119 120 fsumge1 φcCRZJtRctrRcr
122 105 adantr φcCRZJRFin
123 114 recnd φcCRZJrRcr
124 122 123 fsumcl φcCRZJrRcr
125 60 recnd φcCRZJcZ
126 124 125 pncand φcCRZJrRcr+cZ-cZ=rRcr
127 nfv rφcCRZJ
128 nfcv _rcZ
129 5 adantr φcCRZJZT
130 6 adantr φcCRZJ¬ZR
131 fveq2 r=Zcr=cZ
132 127 128 122 129 130 123 131 125 fsumsplitsn φcCRZJrRZcr=rRcr+cZ
133 132 eqcomd φcCRZJrRcr+cZ=rRZcr
134 119 cbvsumv rRZcr=tRZct
135 134 a1i φcCRZJrRZcr=tRZct
136 40 adantr φcCRZJCRZJ=c0JRZ|tRZct=J
137 45 136 eleqtrd φcCRZJcc0JRZ|tRZct=J
138 rabid cc0JRZ|tRZct=Jc0JRZtRZct=J
139 137 138 sylib φcCRZJc0JRZtRZct=J
140 139 simprd φcCRZJtRZct=J
141 135 140 eqtrd φcCRZJrRZcr=J
142 133 141 eqtrd φcCRZJrRcr+cZ=J
143 142 oveq1d φcCRZJrRcr+cZ-cZ=JcZ
144 126 143 eqtr3d φcCRZJrRcr=JcZ
145 144 adantr φcCRZJtRrRcr=JcZ
146 121 145 breqtrd φcCRZJtRctJcZ
147 95 96 100 102 146 elfzd φcCRZJtRct0JcZ
148 94 147 eqeltrd φcCRZJtRcRt0JcZ
149 148 ex φcCRZJtRcRt0JcZ
150 92 149 ralrimi φcCRZJtRcRt0JcZ
151 73 150 jca φcCRZJcRFnRtRcRt0JcZ
152 ffnfv cR:R0JcZcRFnRtRcRt0JcZ
153 151 152 sylibr φcCRZJcR:R0JcZ
154 ovexd φcCRZJ0JcZV
155 4 103 ssexd φRV
156 155 adantr φcCRZJRV
157 154 156 elmapd φcCRZJcR0JcZRcR:R0JcZ
158 153 157 mpbird φcCRZJcR0JcZR
159 93 a1i φcCRZJtRcRt=ct
160 92 159 ralrimi φcCRZJtRcRt=ct
161 160 sumeq2d φcCRZJtRcRt=tRct
162 119 cbvsumv rRcr=tRct
163 162 eqcomi tRct=rRcr
164 163 a1i φcCRZJtRct=rRcr
165 144 idi φcCRZJrRcr=JcZ
166 161 164 165 3eqtrd φcCRZJtRcRt=JcZ
167 158 166 jca φcCRZJcR0JcZRtRcRt=JcZ
168 eqidd e=cRR=R
169 simpl e=cRtRe=cR
170 169 fveq1d e=cRtRet=cRt
171 168 170 sumeq12rdv e=cRtRet=tRcRt
172 171 eqeq1d e=cRtRet=JcZtRcRt=JcZ
173 172 elrab cRe0JcZR|tRet=JcZcR0JcZRtRcRt=JcZ
174 167 173 sylibr φcCRZJcRe0JcZR|tRet=JcZ
175 oveq2 s=R0ns=0nR
176 rabeq 0ns=0nRc0ns|tsct=n=c0nR|tsct=n
177 175 176 syl s=Rc0ns|tsct=n=c0nR|tsct=n
178 sumeq1 s=Rtsct=tRct
179 178 eqeq1d s=Rtsct=ntRct=n
180 179 rabbidv s=Rc0nR|tsct=n=c0nR|tRct=n
181 177 180 eqtrd s=Rc0ns|tsct=n=c0nR|tRct=n
182 181 mpteq2dv s=Rn0c0ns|tsct=n=n0c0nR|tRct=n
183 elpwg RVR𝒫TRT
184 155 183 syl φR𝒫TRT
185 103 184 mpbird φR𝒫T
186 25 mptex n0c0nR|tRct=nV
187 186 a1i φn0c0nR|tRct=nV
188 1 182 185 187 fvmptd3 φCR=n0c0nR|tRct=n
189 188 adantr φcCRZJCR=n0c0nR|tRct=n
190 oveq2 n=m0n=0m
191 190 oveq1d n=m0nR=0mR
192 rabeq 0nR=0mRc0nR|tRct=n=c0mR|tRct=n
193 191 192 syl n=mc0nR|tRct=n=c0mR|tRct=n
194 eqeq2 n=mtRct=ntRct=m
195 194 rabbidv n=mc0mR|tRct=n=c0mR|tRct=m
196 193 195 eqtrd n=mc0nR|tRct=n=c0mR|tRct=m
197 196 cbvmptv n0c0nR|tRct=n=m0c0mR|tRct=m
198 197 a1i φcCRZJn0c0nR|tRct=n=m0c0mR|tRct=m
199 189 198 eqtrd φcCRZJCR=m0c0mR|tRct=m
200 fveq1 c=ect=et
201 200 sumeq2sdv c=etRct=tRet
202 201 eqeq1d c=etRct=mtRet=m
203 202 cbvrabv c0mR|tRct=m=e0mR|tRet=m
204 203 a1i m=JcZc0mR|tRct=m=e0mR|tRet=m
205 oveq2 m=JcZ0m=0JcZ
206 205 oveq1d m=JcZ0mR=0JcZR
207 rabeq 0mR=0JcZRe0mR|tRet=m=e0JcZR|tRet=m
208 206 207 syl m=JcZe0mR|tRet=m=e0JcZR|tRet=m
209 eqeq2 m=JcZtRet=mtRet=JcZ
210 209 rabbidv m=JcZe0JcZR|tRet=m=e0JcZR|tRet=JcZ
211 204 208 210 3eqtrd m=JcZc0mR|tRct=m=e0JcZR|tRet=JcZ
212 211 adantl φcCRZJm=JcZc0mR|tRct=m=e0JcZR|tRet=JcZ
213 56 62 jca φcCRZJJcZ0JcZ
214 elnn0z JcZ0JcZ0JcZ
215 213 214 sylibr φcCRZJJcZ0
216 ovex 0JcZRV
217 216 rabex e0JcZR|tRet=JcZV
218 217 a1i φcCRZJe0JcZR|tRet=JcZV
219 199 212 215 218 fvmptd φcCRZJCRJcZ=e0JcZR|tRet=JcZ
220 219 eqcomd φcCRZJe0JcZR|tRet=JcZ=CRJcZ
221 174 220 eleqtrd φcCRZJcRCRJcZ
222 67 221 jca φcCRZJJcZ0JcRCRJcZ
223 8 222 jca φcCRZJJcZcR=JcZcRJcZ0JcRCRJcZ
224 ovexd φcCRZJJcZV
225 vex cV
226 225 resex cRV
227 226 a1i φcCRZJcRV
228 opeq12 k=JcZd=cRkd=JcZcR
229 228 eqeq2d k=JcZd=cRJcZcR=kdJcZcR=JcZcR
230 eleq1 k=JcZk0JJcZ0J
231 230 adantr k=JcZd=cRk0JJcZ0J
232 simpr k=JcZd=cRd=cR
233 fveq2 k=JcZCRk=CRJcZ
234 233 adantr k=JcZd=cRCRk=CRJcZ
235 232 234 eleq12d k=JcZd=cRdCRkcRCRJcZ
236 231 235 anbi12d k=JcZd=cRk0JdCRkJcZ0JcRCRJcZ
237 229 236 anbi12d k=JcZd=cRJcZcR=kdk0JdCRkJcZcR=JcZcRJcZ0JcRCRJcZ
238 237 spc2egv JcZVcRVJcZcR=JcZcRJcZ0JcRCRJcZkdJcZcR=kdk0JdCRk
239 224 227 238 syl2anc φcCRZJJcZcR=JcZcRJcZ0JcRCRJcZkdJcZcR=kdk0JdCRk
240 223 239 mpd φcCRZJkdJcZcR=kdk0JdCRk
241 eliunxp JcZcRk=0Jk×CRkkdJcZcR=kdk0JdCRk
242 240 241 sylibr φcCRZJJcZcRk=0Jk×CRk
243 242 3 fmptd φD:CRZJk=0Jk×CRk
244 90 nfcri teCRZJ
245 91 244 nfan tcCRZJeCRZJ
246 74 245 nfan tφcCRZJeCRZJ
247 nfv tDc=De
248 246 247 nfan tφcCRZJeCRZJDc=De
249 94 eqcomd φcCRZJtRct=cRt
250 249 adantlrr φcCRZJeCRZJtRct=cRt
251 250 adantlr φcCRZJeCRZJDc=DetRct=cRt
252 3 a1i φD=cCRZJJcZcR
253 opex JcZcRV
254 253 a1i φcCRZJJcZcRV
255 252 254 fvmpt2d φcCRZJDc=JcZcR
256 255 fveq2d φcCRZJ2ndDc=2ndJcZcR
257 256 fveq1d φcCRZJ2ndDct=2ndJcZcRt
258 ovex JcZV
259 258 226 op2nd 2ndJcZcR=cR
260 259 fveq1i 2ndJcZcRt=cRt
261 260 a1i φcCRZJ2ndJcZcRt=cRt
262 257 261 eqtr2d φcCRZJcRt=2ndDct
263 262 adantrr φcCRZJeCRZJcRt=2ndDct
264 263 ad2antrr φcCRZJeCRZJDc=DetRcRt=2ndDct
265 simpr φeCRZJDc=DeDc=De
266 fveq1 c=ecZ=eZ
267 266 oveq2d c=eJcZ=JeZ
268 reseq1 c=ecR=eR
269 267 268 opeq12d c=eJcZcR=JeZeR
270 simpr φeCRZJeCRZJ
271 opex JeZeRV
272 271 a1i φeCRZJJeZeRV
273 3 269 270 272 fvmptd3 φeCRZJDe=JeZeR
274 273 adantr φeCRZJDc=DeDe=JeZeR
275 265 274 eqtrd φeCRZJDc=DeDc=JeZeR
276 275 fveq2d φeCRZJDc=De2ndDc=2ndJeZeR
277 276 adantlrl φcCRZJeCRZJDc=De2ndDc=2ndJeZeR
278 277 adantr φcCRZJeCRZJDc=DetR2ndDc=2ndJeZeR
279 ovex JeZV
280 vex eV
281 280 resex eRV
282 279 281 op2nd 2ndJeZeR=eR
283 282 a1i φcCRZJeCRZJDc=DetR2ndJeZeR=eR
284 278 283 eqtrd φcCRZJeCRZJDc=DetR2ndDc=eR
285 284 fveq1d φcCRZJeCRZJDc=DetR2ndDct=eRt
286 fvres tReRt=et
287 286 adantl φcCRZJeCRZJDc=DetReRt=et
288 285 287 eqtrd φcCRZJeCRZJDc=DetR2ndDct=et
289 251 264 288 3eqtrd φcCRZJeCRZJDc=DetRct=et
290 289 adantlr φcCRZJeCRZJDc=DetRZtRct=et
291 simpl φcCRZJeCRZJDc=DetRZ¬tRφcCRZJeCRZJDc=DetRZ
292 elunnel1 tRZ¬tRtZ
293 elsni tZt=Z
294 292 293 syl tRZ¬tRt=Z
295 294 adantll φcCRZJeCRZJDc=DetRZ¬tRt=Z
296 simpr φcCRZJeCRZJDc=Det=Zt=Z
297 296 fveq2d φcCRZJeCRZJDc=Det=Zct=cZ
298 2 nn0cnd φJ
299 298 adantr φcCRZJJ
300 299 125 nncand φcCRZJJJcZ=cZ
301 300 eqcomd φcCRZJcZ=JJcZ
302 301 adantrr φcCRZJeCRZJcZ=JJcZ
303 302 adantr φcCRZJeCRZJDc=DecZ=JJcZ
304 255 fveq2d φcCRZJ1stDc=1stJcZcR
305 258 226 op1st 1stJcZcR=JcZ
306 305 a1i φcCRZJ1stJcZcR=JcZ
307 304 306 eqtr2d φcCRZJJcZ=1stDc
308 307 oveq2d φcCRZJJJcZ=J1stDc
309 308 adantrr φcCRZJeCRZJJJcZ=J1stDc
310 309 adantr φcCRZJeCRZJDc=DeJJcZ=J1stDc
311 fveq2 Dc=De1stDc=1stDe
312 311 adantl φeCRZJDc=De1stDc=1stDe
313 273 fveq2d φeCRZJ1stDe=1stJeZeR
314 313 adantr φeCRZJDc=De1stDe=1stJeZeR
315 279 281 op1st 1stJeZeR=JeZ
316 315 a1i φeCRZJDc=De1stJeZeR=JeZ
317 312 314 316 3eqtrd φeCRZJDc=De1stDc=JeZ
318 317 oveq2d φeCRZJDc=DeJ1stDc=JJeZ
319 298 adantr φeCRZJJ
320 zsscn
321 107 320 sstri 0J
322 321 a1i φeCRZJ0J
323 eleq1w c=ecCRZJeCRZJ
324 323 anbi2d c=eφcCRZJφeCRZJ
325 feq1 c=ec:RZ0Je:RZ0J
326 324 325 imbi12d c=eφcCRZJc:RZ0JφeCRZJe:RZ0J
327 326 48 chvarvv φeCRZJe:RZ0J
328 52 adantr φeCRZJZRZ
329 327 328 ffvelcdmd φeCRZJeZ0J
330 322 329 sseldd φeCRZJeZ
331 319 330 nncand φeCRZJJJeZ=eZ
332 331 adantr φeCRZJDc=DeJJeZ=eZ
333 eqidd φeCRZJDc=DeeZ=eZ
334 318 332 333 3eqtrd φeCRZJDc=DeJ1stDc=eZ
335 334 adantlrl φcCRZJeCRZJDc=DeJ1stDc=eZ
336 303 310 335 3eqtrd φcCRZJeCRZJDc=DecZ=eZ
337 336 adantr φcCRZJeCRZJDc=Det=ZcZ=eZ
338 fveq2 t=Zet=eZ
339 338 eqcomd t=ZeZ=et
340 339 adantl φcCRZJeCRZJDc=Det=ZeZ=et
341 297 337 340 3eqtrd φcCRZJeCRZJDc=Det=Zct=et
342 341 adantlr φcCRZJeCRZJDc=DetRZt=Zct=et
343 291 295 342 syl2anc φcCRZJeCRZJDc=DetRZ¬tRct=et
344 290 343 pm2.61dan φcCRZJeCRZJDc=DetRZct=et
345 344 ex φcCRZJeCRZJDc=DetRZct=et
346 248 345 ralrimi φcCRZJeCRZJDc=DetRZct=et
347 69 adantrr φcCRZJeCRZJcFnRZ
348 347 adantr φcCRZJeCRZJDc=DecFnRZ
349 327 ffnd φeCRZJeFnRZ
350 349 adantrl φcCRZJeCRZJeFnRZ
351 350 adantr φcCRZJeCRZJDc=DeeFnRZ
352 eqfnfv cFnRZeFnRZc=etRZct=et
353 348 351 352 syl2anc φcCRZJeCRZJDc=Dec=etRZct=et
354 346 353 mpbird φcCRZJeCRZJDc=Dec=e
355 354 ex φcCRZJeCRZJDc=Dec=e
356 355 ralrimivva φcCRZJeCRZJDc=Dec=e
357 243 356 jca φD:CRZJk=0Jk×CRkcCRZJeCRZJDc=Dec=e
358 dff13 D:CRZJ1-1k=0Jk×CRkD:CRZJk=0Jk×CRkcCRZJeCRZJDc=Dec=e
359 357 358 sylibr φD:CRZJ1-1k=0Jk×CRk
360 eliun pk=0Jk×CRkk0Jpk×CRk
361 360 biimpi pk=0Jk×CRkk0Jpk×CRk
362 361 adantl φpk=0Jk×CRkk0Jpk×CRk
363 nfv kφ
364 nfcv _kp
365 nfiu1 _kk=0Jk×CRk
366 364 365 nfel kpk=0Jk×CRk
367 363 366 nfan kφpk=0Jk×CRk
368 nfv ktRZiftR2ndptJ1stpc0JRZ|tRZct=J
369 nfv tk0J
370 nfcv _tp
371 nfcv _tk
372 nfcv _tR
373 86 372 nffv _tCR
374 nfcv _tk
375 373 374 nffv _tCRk
376 371 375 nfxp _tk×CRk
377 370 376 nfel tpk×CRk
378 74 369 377 nf3an tφk0Jpk×CRk
379 0zd φk0Jpk×CRktRZ0
380 10 adantr φtRZJ
381 380 3ad2antl1 φk0Jpk×CRktRZJ
382 iftrue tRiftR2ndptJ1stp=2ndpt
383 382 adantl φk0Jpk×CRktRZtRiftR2ndptJ1stp=2ndpt
384 simp1 φk0Jpk×CRkφ
385 simp2 φk0Jpk×CRkk0J
386 xp2nd pk×CRk2ndpCRk
387 386 3ad2ant3 φk0Jpk×CRk2ndpCRk
388 188 adantr φk0JCR=n0c0nR|tRct=n
389 oveq2 n=k0n=0k
390 389 oveq1d n=k0nR=0kR
391 rabeq 0nR=0kRc0nR|tRct=n=c0kR|tRct=n
392 390 391 syl n=kc0nR|tRct=n=c0kR|tRct=n
393 eqeq2 n=ktRct=ntRct=k
394 393 rabbidv n=kc0kR|tRct=n=c0kR|tRct=k
395 392 394 eqtrd n=kc0nR|tRct=n=c0kR|tRct=k
396 395 adantl φk0Jn=kc0nR|tRct=n=c0kR|tRct=k
397 elfznn0 k0Jk0
398 397 adantl φk0Jk0
399 ovex 0kRV
400 399 rabex c0kR|tRct=kV
401 400 a1i φk0Jc0kR|tRct=kV
402 388 396 398 401 fvmptd φk0JCRk=c0kR|tRct=k
403 402 3adant3 φk0Jpk×CRkCRk=c0kR|tRct=k
404 387 403 eleqtrd φk0Jpk×CRk2ndpc0kR|tRct=k
405 elrabi 2ndpc0kR|tRct=k2ndp0kR
406 405 3ad2ant3 φk0J2ndpc0kR|tRct=k2ndp0kR
407 384 385 404 406 syl3anc φk0Jpk×CRk2ndp0kR
408 elmapi 2ndp0kR2ndp:R0k
409 407 408 syl φk0Jpk×CRk2ndp:R0k
410 409 adantr φk0Jpk×CRktRZ2ndp:R0k
411 410 ffvelcdmda φk0Jpk×CRktRZtR2ndpt0k
412 411 elfzelzd φk0Jpk×CRktRZtR2ndpt
413 383 412 eqeltrd φk0Jpk×CRktRZtRiftR2ndptJ1stp
414 simpl φk0Jpk×CRktRZ¬tRφk0Jpk×CRktRZ
415 294 adantll φk0Jpk×CRktRZ¬tRt=Z
416 simpr φt=Zt=Z
417 6 adantr φt=Z¬ZR
418 416 417 eqneltrd φt=Z¬tR
419 418 iffalsed φt=ZiftR2ndptJ1stp=J1stp
420 419 3ad2antl1 φk0Jpk×CRkt=ZiftR2ndptJ1stp=J1stp
421 10 adantr φt=ZJ
422 421 3ad2antl1 φk0Jpk×CRkt=ZJ
423 xp1st pk×CRk1stpk
424 elsni 1stpk1stp=k
425 423 424 syl pk×CRk1stp=k
426 425 adantl k0Jpk×CRk1stp=k
427 107 sseli k0Jk
428 427 adantr k0Jpk×CRkk
429 426 428 eqeltrd k0Jpk×CRk1stp
430 429 3adant1 φk0Jpk×CRk1stp
431 430 adantr φk0Jpk×CRkt=Z1stp
432 422 431 zsubcld φk0Jpk×CRkt=ZJ1stp
433 420 432 eqeltrd φk0Jpk×CRkt=ZiftR2ndptJ1stp
434 433 adantlr φk0Jpk×CRktRZt=ZiftR2ndptJ1stp
435 414 415 434 syl2anc φk0Jpk×CRktRZ¬tRiftR2ndptJ1stp
436 413 435 pm2.61dan φk0Jpk×CRktRZiftR2ndptJ1stp
437 409 ffvelcdmda φk0Jpk×CRktR2ndpt0k
438 elfzle1 2ndpt0k02ndpt
439 437 438 syl φk0Jpk×CRktR02ndpt
440 382 eqcomd tR2ndpt=iftR2ndptJ1stp
441 440 adantl φk0Jpk×CRktR2ndpt=iftR2ndptJ1stp
442 439 441 breqtrd φk0Jpk×CRktR0iftR2ndptJ1stp
443 442 adantlr φk0Jpk×CRktRZtR0iftR2ndptJ1stp
444 simpll φk0Jpk×CRktRZ¬tRφk0Jpk×CRk
445 elfzle2 k0JkJ
446 elfzel2 k0JJ
447 446 zred k0JJ
448 109 sseli k0Jk
449 447 448 subge0d k0J0JkkJ
450 445 449 mpbird k0J0Jk
451 450 adantr k0Jt=Z0Jk
452 451 3ad2antl2 φk0Jpk×CRkt=Z0Jk
453 384 418 sylan φk0Jpk×CRkt=Z¬tR
454 453 iffalsed φk0Jpk×CRkt=ZiftR2ndptJ1stp=J1stp
455 426 3adant1 φk0Jpk×CRk1stp=k
456 455 oveq2d φk0Jpk×CRkJ1stp=Jk
457 456 adantr φk0Jpk×CRkt=ZJ1stp=Jk
458 454 457 eqtr2d φk0Jpk×CRkt=ZJk=iftR2ndptJ1stp
459 452 458 breqtrd φk0Jpk×CRkt=Z0iftR2ndptJ1stp
460 444 415 459 syl2anc φk0Jpk×CRktRZ¬tR0iftR2ndptJ1stp
461 443 460 pm2.61dan φk0Jpk×CRktRZ0iftR2ndptJ1stp
462 simpl2 φk0Jpk×CRktRk0J
463 fzssz 0k
464 463 sseli 2ndpt0k2ndpt
465 464 zred 2ndpt0k2ndpt
466 465 adantr 2ndpt0kk0J2ndpt
467 448 adantl 2ndpt0kk0Jk
468 447 adantl 2ndpt0kk0JJ
469 elfzle2 2ndpt0k2ndptk
470 469 adantr 2ndpt0kk0J2ndptk
471 445 adantl 2ndpt0kk0JkJ
472 466 467 468 470 471 letrd 2ndpt0kk0J2ndptJ
473 437 462 472 syl2anc φk0Jpk×CRktR2ndptJ
474 473 adantlr φk0Jpk×CRktRZtR2ndptJ
475 383 474 eqbrtrd φk0Jpk×CRktRZtRiftR2ndptJ1stpJ
476 458 eqcomd φk0Jpk×CRkt=ZiftR2ndptJ1stp=Jk
477 398 nn0ge0d φk0J0k
478 447 adantl φk0JJ
479 448 adantl φk0Jk
480 478 479 subge02d φk0J0kJkJ
481 477 480 mpbid φk0JJkJ
482 481 adantr φk0Jt=ZJkJ
483 482 3adantl3 φk0Jpk×CRkt=ZJkJ
484 476 483 eqbrtrd φk0Jpk×CRkt=ZiftR2ndptJ1stpJ
485 444 415 484 syl2anc φk0Jpk×CRktRZ¬tRiftR2ndptJ1stpJ
486 475 485 pm2.61dan φk0Jpk×CRktRZiftR2ndptJ1stpJ
487 379 381 436 461 486 elfzd φk0Jpk×CRktRZiftR2ndptJ1stp0J
488 eqid tRZiftR2ndptJ1stp=tRZiftR2ndptJ1stp
489 378 487 488 fmptdf φk0Jpk×CRktRZiftR2ndptJ1stp:RZ0J
490 ovexd φk0Jpk×CRk0JV
491 384 21 syl φk0Jpk×CRkRZV
492 490 491 elmapd φk0Jpk×CRktRZiftR2ndptJ1stp0JRZtRZiftR2ndptJ1stp:RZ0J
493 489 492 mpbird φk0Jpk×CRktRZiftR2ndptJ1stp0JRZ
494 eqidd φk0Jpk×CRktRZrRZifrR2ndprJ1stp=rRZifrR2ndprJ1stp
495 eleq1w r=trRtR
496 fveq2 r=t2ndpr=2ndpt
497 495 496 ifbieq1d r=tifrR2ndprJ1stp=iftR2ndptJ1stp
498 497 adantl φk0Jpk×CRktRZr=tifrR2ndprJ1stp=iftR2ndptJ1stp
499 simpr φk0Jpk×CRktRZtRZ
500 494 498 499 436 fvmptd φk0Jpk×CRktRZrRZifrR2ndprJ1stpt=iftR2ndptJ1stp
501 500 ex φk0Jpk×CRktRZrRZifrR2ndprJ1stpt=iftR2ndptJ1stp
502 378 501 ralrimi φk0Jpk×CRktRZrRZifrR2ndprJ1stpt=iftR2ndptJ1stp
503 502 sumeq2d φk0Jpk×CRktRZrRZifrR2ndprJ1stpt=tRZiftR2ndptJ1stp
504 nfcv _tifZR2ndpZJ1stp
505 384 105 syl φk0Jpk×CRkRFin
506 384 5 syl φk0Jpk×CRkZT
507 384 6 syl φk0Jpk×CRk¬ZR
508 382 adantl φk0Jpk×CRktRiftR2ndptJ1stp=2ndpt
509 437 elfzelzd φk0Jpk×CRktR2ndpt
510 509 zcnd φk0Jpk×CRktR2ndpt
511 508 510 eqeltrd φk0Jpk×CRktRiftR2ndptJ1stp
512 eleq1 t=ZtRZR
513 fveq2 t=Z2ndpt=2ndpZ
514 512 513 ifbieq1d t=ZiftR2ndptJ1stp=ifZR2ndpZJ1stp
515 6 adantr φpk×CRk¬ZR
516 515 iffalsed φpk×CRkifZR2ndpZJ1stp=J1stp
517 516 3adant2 φk0Jpk×CRkifZR2ndpZJ1stp=J1stp
518 10 3ad2ant1 φk0Jpk×CRkJ
519 518 430 zsubcld φk0Jpk×CRkJ1stp
520 519 zcnd φk0Jpk×CRkJ1stp
521 517 520 eqeltrd φk0Jpk×CRkifZR2ndpZJ1stp
522 378 504 505 506 507 511 514 521 fsumsplitsn φk0Jpk×CRktRZiftR2ndptJ1stp=tRiftR2ndptJ1stp+ifZR2ndpZJ1stp
523 382 a1i φk0Jpk×CRktRiftR2ndptJ1stp=2ndpt
524 378 523 ralrimi φk0Jpk×CRktRiftR2ndptJ1stp=2ndpt
525 524 sumeq2d φk0Jpk×CRktRiftR2ndptJ1stp=tR2ndpt
526 eqidd c=2ndpR=R
527 simpl c=2ndptRc=2ndp
528 527 fveq1d c=2ndptRct=2ndpt
529 526 528 sumeq12rdv c=2ndptRct=tR2ndpt
530 529 eqeq1d c=2ndptRct=ktR2ndpt=k
531 530 elrab 2ndpc0kR|tRct=k2ndp0kRtR2ndpt=k
532 404 531 sylib φk0Jpk×CRk2ndp0kRtR2ndpt=k
533 532 simprd φk0Jpk×CRktR2ndpt=k
534 525 533 eqtrd φk0Jpk×CRktRiftR2ndptJ1stp=k
535 507 iffalsed φk0Jpk×CRkifZR2ndpZJ1stp=J1stp
536 535 456 eqtrd φk0Jpk×CRkifZR2ndpZJ1stp=Jk
537 534 536 oveq12d φk0Jpk×CRktRiftR2ndptJ1stp+ifZR2ndpZJ1stp=k+J-k
538 321 sseli k0Jk
539 538 3ad2ant2 φk0Jpk×CRkk
540 384 298 syl φk0Jpk×CRkJ
541 539 540 pncan3d φk0Jpk×CRkk+J-k=J
542 537 541 eqtrd φk0Jpk×CRktRiftR2ndptJ1stp+ifZR2ndpZJ1stp=J
543 503 522 542 3eqtrd φk0Jpk×CRktRZrRZifrR2ndprJ1stpt=J
544 493 543 jca φk0Jpk×CRktRZiftR2ndptJ1stp0JRZtRZrRZifrR2ndprJ1stpt=J
545 eleq1w t=rtRrR
546 fveq2 t=r2ndpt=2ndpr
547 545 546 ifbieq1d t=riftR2ndptJ1stp=ifrR2ndprJ1stp
548 547 cbvmptv tRZiftR2ndptJ1stp=rRZifrR2ndprJ1stp
549 548 eqeq2i c=tRZiftR2ndptJ1stpc=rRZifrR2ndprJ1stp
550 549 biimpi c=tRZiftR2ndptJ1stpc=rRZifrR2ndprJ1stp
551 fveq1 c=rRZifrR2ndprJ1stpct=rRZifrR2ndprJ1stpt
552 551 sumeq2sdv c=rRZifrR2ndprJ1stptRZct=tRZrRZifrR2ndprJ1stpt
553 550 552 syl c=tRZiftR2ndptJ1stptRZct=tRZrRZifrR2ndprJ1stpt
554 553 eqeq1d c=tRZiftR2ndptJ1stptRZct=JtRZrRZifrR2ndprJ1stpt=J
555 554 elrab tRZiftR2ndptJ1stpc0JRZ|tRZct=JtRZiftR2ndptJ1stp0JRZtRZrRZifrR2ndprJ1stpt=J
556 544 555 sylibr φk0Jpk×CRktRZiftR2ndptJ1stpc0JRZ|tRZct=J
557 556 3exp φk0Jpk×CRktRZiftR2ndptJ1stpc0JRZ|tRZct=J
558 557 adantr φpk=0Jk×CRkk0Jpk×CRktRZiftR2ndptJ1stpc0JRZ|tRZct=J
559 367 368 558 rexlimd φpk=0Jk×CRkk0Jpk×CRktRZiftR2ndptJ1stpc0JRZ|tRZct=J
560 362 559 mpd φpk=0Jk×CRktRZiftR2ndptJ1stpc0JRZ|tRZct=J
561 40 eqcomd φc0JRZ|tRZct=J=CRZJ
562 561 adantr φpk=0Jk×CRkc0JRZ|tRZct=J=CRZJ
563 560 562 eleqtrd φpk=0Jk×CRktRZiftR2ndptJ1stpCRZJ
564 3 a1i φpk=0Jk×CRkD=cCRZJJcZcR
565 simpr φc=tRZiftR2ndptJ1stpc=tRZiftR2ndptJ1stp
566 548 a1i φc=tRZiftR2ndptJ1stptRZiftR2ndptJ1stp=rRZifrR2ndprJ1stp
567 565 566 eqtrd φc=tRZiftR2ndptJ1stpc=rRZifrR2ndprJ1stp
568 simpr φr=Zr=Z
569 6 adantr φr=Z¬ZR
570 568 569 eqneltrd φr=Z¬rR
571 570 iffalsed φr=ZifrR2ndprJ1stp=J1stp
572 571 adantlr φc=tRZiftR2ndptJ1stpr=ZifrR2ndprJ1stp=J1stp
573 52 adantr φc=tRZiftR2ndptJ1stpZRZ
574 ovexd φc=tRZiftR2ndptJ1stpJ1stpV
575 567 572 573 574 fvmptd φc=tRZiftR2ndptJ1stpcZ=J1stp
576 575 oveq2d φc=tRZiftR2ndptJ1stpJcZ=JJ1stp
577 576 adantlr φpk=0Jk×CRkc=tRZiftR2ndptJ1stpJcZ=JJ1stp
578 298 ad2antrr φpk=0Jk×CRkc=tRZiftR2ndptJ1stpJ
579 nfv k1stp0J
580 simpl k0Jpk×CRkk0J
581 simpr k0J1stp=k1stp=k
582 simpl k0J1stp=kk0J
583 581 582 eqeltrd k0J1stp=k1stp0J
584 580 426 583 syl2anc k0Jpk×CRk1stp0J
585 584 ex k0Jpk×CRk1stp0J
586 585 a1i pk=0Jk×CRkk0Jpk×CRk1stp0J
587 366 579 586 rexlimd pk=0Jk×CRkk0Jpk×CRk1stp0J
588 361 587 mpd pk=0Jk×CRk1stp0J
589 588 elfzelzd pk=0Jk×CRk1stp
590 589 zcnd pk=0Jk×CRk1stp
591 590 ad2antlr φpk=0Jk×CRkc=tRZiftR2ndptJ1stp1stp
592 578 591 nncand φpk=0Jk×CRkc=tRZiftR2ndptJ1stpJJ1stp=1stp
593 577 592 eqtrd φpk=0Jk×CRkc=tRZiftR2ndptJ1stpJcZ=1stp
594 reseq1 c=tRZiftR2ndptJ1stpcR=tRZiftR2ndptJ1stpR
595 594 adantl φpk=0Jk×CRkc=tRZiftR2ndptJ1stpcR=tRZiftR2ndptJ1stpR
596 70 a1i φpk=0Jk×CRkc=tRZiftR2ndptJ1stpRRZ
597 596 resmptd φpk=0Jk×CRkc=tRZiftR2ndptJ1stptRZiftR2ndptJ1stpR=tRiftR2ndptJ1stp
598 nfv ktRiftR2ndptJ1stp=2ndp
599 382 mpteq2ia tRiftR2ndptJ1stp=tR2ndpt
600 599 a1i φk0Jpk×CRktRiftR2ndptJ1stp=tR2ndpt
601 409 feqmptd φk0Jpk×CRk2ndp=tR2ndpt
602 600 601 eqtr4d φk0Jpk×CRktRiftR2ndptJ1stp=2ndp
603 602 3exp φk0Jpk×CRktRiftR2ndptJ1stp=2ndp
604 603 adantr φpk=0Jk×CRkk0Jpk×CRktRiftR2ndptJ1stp=2ndp
605 367 598 604 rexlimd φpk=0Jk×CRkk0Jpk×CRktRiftR2ndptJ1stp=2ndp
606 362 605 mpd φpk=0Jk×CRktRiftR2ndptJ1stp=2ndp
607 606 adantr φpk=0Jk×CRkc=tRZiftR2ndptJ1stptRiftR2ndptJ1stp=2ndp
608 595 597 607 3eqtrd φpk=0Jk×CRkc=tRZiftR2ndptJ1stpcR=2ndp
609 593 608 opeq12d φpk=0Jk×CRkc=tRZiftR2ndptJ1stpJcZcR=1stp2ndp
610 opex 1stp2ndpV
611 610 a1i φpk=0Jk×CRk1stp2ndpV
612 564 609 563 611 fvmptd φpk=0Jk×CRkDtRZiftR2ndptJ1stp=1stp2ndp
613 nfv k1stp2ndp=p
614 1st2nd2 pk×CRkp=1stp2ndp
615 614 eqcomd pk×CRk1stp2ndp=p
616 615 a1i k0Jpk×CRk1stp2ndp=p
617 616 a1i φpk=0Jk×CRkk0Jpk×CRk1stp2ndp=p
618 367 613 617 rexlimd φpk=0Jk×CRkk0Jpk×CRk1stp2ndp=p
619 362 618 mpd φpk=0Jk×CRk1stp2ndp=p
620 612 619 eqtr2d φpk=0Jk×CRkp=DtRZiftR2ndptJ1stp
621 fveq2 c=tRZiftR2ndptJ1stpDc=DtRZiftR2ndptJ1stp
622 621 rspceeqv tRZiftR2ndptJ1stpCRZJp=DtRZiftR2ndptJ1stpcCRZJp=Dc
623 563 620 622 syl2anc φpk=0Jk×CRkcCRZJp=Dc
624 623 ralrimiva φpk=0Jk×CRkcCRZJp=Dc
625 243 624 jca φD:CRZJk=0Jk×CRkpk=0Jk×CRkcCRZJp=Dc
626 dffo3 D:CRZJontok=0Jk×CRkD:CRZJk=0Jk×CRkpk=0Jk×CRkcCRZJp=Dc
627 625 626 sylibr φD:CRZJontok=0Jk×CRk
628 359 627 jca φD:CRZJ1-1k=0Jk×CRkD:CRZJontok=0Jk×CRk
629 df-f1o D:CRZJ1-1 ontok=0Jk×CRkD:CRZJ1-1k=0Jk×CRkD:CRZJontok=0Jk×CRk
630 628 629 sylibr φD:CRZJ1-1 ontok=0Jk×CRk