Metamath Proof Explorer


Theorem esplyind

Description: A recursive formula for the elementary symmetric polynomials. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses esplyind.w W = I mPoly R
esplyind.v V = I mVar R
esplyind.p + ˙ = + W
esplyind.m · ˙ = W
esplyind.d D = h 0 I | finSupp 0 h
esplyind.g No typesetting found for |- G = ( ( I extendVars R ) ` Y ) with typecode |-
esplyind.i φ I Fin
esplyind.r φ R Ring
esplyind.y φ Y I
esplyind.j J = I Y
esplyind.e No typesetting found for |- E = ( J eSymPoly R ) with typecode |-
esplyind.k φ K 1 I
esplyind.1 C = h 0 J | finSupp 0 h
Assertion esplyind Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ( V ` Y ) .x. ( G ` ( E ` ( K - 1 ) ) ) ) .+ ( G ` ( E ` K ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyind.w W = I mPoly R
2 esplyind.v V = I mVar R
3 esplyind.p + ˙ = + W
4 esplyind.m · ˙ = W
5 esplyind.d D = h 0 I | finSupp 0 h
6 esplyind.g Could not format G = ( ( I extendVars R ) ` Y ) : No typesetting found for |- G = ( ( I extendVars R ) ` Y ) with typecode |-
7 esplyind.i φ I Fin
8 esplyind.r φ R Ring
9 esplyind.y φ Y I
10 esplyind.j J = I Y
11 esplyind.e Could not format E = ( J eSymPoly R ) : No typesetting found for |- E = ( J eSymPoly R ) with typecode |-
12 esplyind.k φ K 1 I
13 esplyind.1 C = h 0 J | finSupp 0 h
14 ovif12 if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = if f Y = 0 0 R + R if ran f J 0 1 f J supp 0 = K 1 R 0 R G E K 1 f f 𝟙 I Y + R 0 R
15 eqid Base R = Base R
16 eqid + R = + R
17 eqid 0 R = 0 R
18 8 ringgrpd φ R Grp
19 18 ad2antrr φ f D f Y = 0 R Grp
20 eqid 1 R = 1 R
21 15 20 8 ringidcld φ 1 R Base R
22 21 adantr φ f D 1 R Base R
23 ringgrp R Ring R Grp
24 15 17 grpidcl R Grp 0 R Base R
25 8 23 24 3syl φ 0 R Base R
26 25 adantr φ f D 0 R Base R
27 22 26 ifcld φ f D if ran f J 0 1 f J supp 0 = K 1 R 0 R Base R
28 27 adantr φ f D f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R Base R
29 15 16 17 19 28 grplidd φ f D f Y = 0 0 R + R if ran f J 0 1 f J supp 0 = K 1 R 0 R = if ran f J 0 1 f J supp 0 = K 1 R 0 R
30 snsspr1 0 0 1
31 30 biantru ran f J 0 1 ran f J 0 1 0 0 1
32 unss ran f J 0 1 0 0 1 ran f J 0 0 1
33 31 32 bitri ran f J 0 1 ran f J 0 0 1
34 7 adantr φ f D I Fin
35 nn0ex 0 V
36 35 a1i φ f D 0 V
37 5 ssrab3 D 0 I
38 37 a1i φ D 0 I
39 38 sselda φ f D f 0 I
40 34 36 39 elmaprd φ f D f : I 0
41 40 freld φ f D Rel f
42 40 ffnd φ f D f Fn I
43 42 fndmd φ f D dom f = I
44 10 uneq1i J Y = I Y Y
45 9 snssd φ Y I
46 undifr Y I I Y Y = I
47 45 46 sylib φ I Y Y = I
48 44 47 eqtr2id φ I = J Y
49 48 adantr φ f D I = J Y
50 43 49 eqtrd φ f D dom f = J Y
51 10 ineq1i J Y = I Y Y
52 disjdifr I Y Y =
53 51 52 eqtri J Y =
54 53 a1i φ f D J Y =
55 reldisjun Rel f dom f = J Y J Y = f = f J f Y
56 41 50 54 55 syl3anc φ f D f = f J f Y
57 56 rneqd φ f D ran f = ran f J f Y
58 rnun ran f J f Y = ran f J ran f Y
59 57 58 eqtr2di φ f D ran f J ran f Y = ran f
60 42 fnfund φ f D Fun f
61 9 adantr φ f D Y I
62 61 43 eleqtrrd φ f D Y dom f
63 rnressnsn Fun f Y dom f ran f Y = f Y
64 60 62 63 syl2anc φ f D ran f Y = f Y
65 64 uneq2d φ f D ran f J ran f Y = ran f J f Y
66 59 65 eqtr3d φ f D ran f = ran f J f Y
67 66 adantr φ f D f Y = 0 ran f = ran f J f Y
68 simpr φ f D f Y = 0 f Y = 0
69 68 sneqd φ f D f Y = 0 f Y = 0
70 69 uneq2d φ f D f Y = 0 ran f J f Y = ran f J 0
71 67 70 eqtrd φ f D f Y = 0 ran f = ran f J 0
72 71 sseq1d φ f D f Y = 0 ran f 0 1 ran f J 0 0 1
73 33 72 bitr4id φ f D f Y = 0 ran f J 0 1 ran f 0 1
74 56 oveq1d φ f D f supp 0 = f J f Y supp 0
75 39 resexd φ f D f J V
76 39 resexd φ f D f Y V
77 0nn0 0 0
78 77 a1i φ f D 0 0
79 75 76 78 suppun2 φ f D f J f Y supp 0 = supp 0 f J supp 0 f Y
80 74 79 eqtrd φ f D f supp 0 = supp 0 f J supp 0 f Y
81 80 adantr φ f D f Y = 0 f supp 0 = supp 0 f J supp 0 f Y
82 fnressn f Fn I Y I f Y = Y f Y
83 42 61 82 syl2anc φ f D f Y = Y f Y
84 83 oveq1d φ f D f Y supp 0 = Y f Y supp 0
85 40 61 ffvelcdmd φ f D f Y 0
86 eqid Y f Y = Y f Y
87 86 suppsnop Y I f Y 0 0 0 Y f Y supp 0 = if f Y = 0 Y
88 61 85 78 87 syl3anc φ f D Y f Y supp 0 = if f Y = 0 Y
89 84 88 eqtrd φ f D f Y supp 0 = if f Y = 0 Y
90 89 adantr φ f D f Y = 0 f Y supp 0 = if f Y = 0 Y
91 68 iftrued φ f D f Y = 0 if f Y = 0 Y =
92 90 91 eqtrd φ f D f Y = 0 f Y supp 0 =
93 92 uneq2d φ f D f Y = 0 supp 0 f J supp 0 f Y = supp 0 f J
94 un0 supp 0 f J = f J supp 0
95 93 94 eqtrdi φ f D f Y = 0 supp 0 f J supp 0 f Y = f J supp 0
96 81 95 eqtr2d φ f D f Y = 0 f J supp 0 = f supp 0
97 96 fveqeq2d φ f D f Y = 0 f J supp 0 = K f supp 0 = K
98 73 97 anbi12d φ f D f Y = 0 ran f J 0 1 f J supp 0 = K ran f 0 1 f supp 0 = K
99 98 ifbid φ f D f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
100 29 99 eqtrd φ f D f Y = 0 0 R + R if ran f J 0 1 f J supp 0 = K 1 R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
101 18 ad2antrr φ f D ¬ f Y = 0 R Grp
102 eqid Base W = Base W
103 5 psrbasfsupp D = h 0 I | h -1 Fin
104 6 fveq1i Could not format ( G ` ( E ` ( K - 1 ) ) ) = ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) : No typesetting found for |- ( G ` ( E ` ( K - 1 ) ) ) = ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) with typecode |-
105 eqid Base J mPoly R = Base J mPoly R
106 1 fveq2i Base W = Base I mPoly R
107 5 17 7 8 15 10 105 9 106 extvfvalf Could not format ( ph -> ( ( I extendVars R ) ` Y ) : ( Base ` ( J mPoly R ) ) --> ( Base ` W ) ) : No typesetting found for |- ( ph -> ( ( I extendVars R ) ` Y ) : ( Base ` ( J mPoly R ) ) --> ( Base ` W ) ) with typecode |-
108 11 fveq1i Could not format ( E ` ( K - 1 ) ) = ( ( J eSymPoly R ) ` ( K - 1 ) ) : No typesetting found for |- ( E ` ( K - 1 ) ) = ( ( J eSymPoly R ) ` ( K - 1 ) ) with typecode |-
109 difssd φ I Y I
110 10 109 eqsstrid φ J I
111 7 110 ssfid φ J Fin
112 elfznn K 1 I K
113 nnm1nn0 K K 1 0
114 12 112 113 3syl φ K 1 0
115 13 111 8 114 105 esplympl Could not format ( ph -> ( ( J eSymPoly R ) ` ( K - 1 ) ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` ( K - 1 ) ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
116 108 115 eqeltrid φ E K 1 Base J mPoly R
117 107 116 ffvelcdmd Could not format ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) e. ( Base ` W ) ) with typecode |-
118 104 117 eqeltrid φ G E K 1 Base W
119 1 15 102 103 118 mplelf φ G E K 1 : D Base R
120 119 ad2antrr φ f D ¬ f Y = 0 G E K 1 : D Base R
121 simplr φ f D ¬ f Y = 0 f D
122 indf I Fin Y I 𝟙 I Y : I 0 1
123 7 45 122 syl2anc φ 𝟙 I Y : I 0 1
124 77 a1i φ 0 0
125 1nn0 1 0
126 125 a1i φ 1 0
127 124 126 prssd φ 0 1 0
128 123 127 fssd φ 𝟙 I Y : I 0
129 128 ad2antrr φ f D ¬ f Y = 0 𝟙 I Y : I 0
130 7 ad2antrr φ f D ¬ f Y = 0 I Fin
131 130 ad2antrr φ f D ¬ f Y = 0 x I x = Y I Fin
132 45 ad4antr φ f D ¬ f Y = 0 x I x = Y Y I
133 simpr φ f D ¬ f Y = 0 x I x = Y x = Y
134 velsn x Y x = Y
135 133 134 sylibr φ f D ¬ f Y = 0 x I x = Y x Y
136 ind1 I Fin Y I x Y 𝟙 I Y x = 1
137 131 132 135 136 syl3anc φ f D ¬ f Y = 0 x I x = Y 𝟙 I Y x = 1
138 40 ad3antrrr φ f D ¬ f Y = 0 x I x = Y f : I 0
139 simplr φ f D ¬ f Y = 0 x I x = Y x I
140 138 139 ffvelcdmd φ f D ¬ f Y = 0 x I x = Y f x 0
141 133 fveq2d φ f D ¬ f Y = 0 x I x = Y f x = f Y
142 simpllr φ f D ¬ f Y = 0 x I x = Y ¬ f Y = 0
143 142 neqned φ f D ¬ f Y = 0 x I x = Y f Y 0
144 141 143 eqnetrd φ f D ¬ f Y = 0 x I x = Y f x 0
145 elnnne0 f x f x 0 f x 0
146 140 144 145 sylanbrc φ f D ¬ f Y = 0 x I x = Y f x
147 146 nnge1d φ f D ¬ f Y = 0 x I x = Y 1 f x
148 137 147 eqbrtrd φ f D ¬ f Y = 0 x I x = Y 𝟙 I Y x f x
149 130 ad2antrr φ f D ¬ f Y = 0 x I x Y I Fin
150 45 ad4antr φ f D ¬ f Y = 0 x I x Y Y I
151 simplr φ f D ¬ f Y = 0 x I x Y x I
152 simpr φ f D ¬ f Y = 0 x I x Y x Y
153 151 152 eldifsnd φ f D ¬ f Y = 0 x I x Y x I Y
154 ind0 I Fin Y I x I Y 𝟙 I Y x = 0
155 149 150 153 154 syl3anc φ f D ¬ f Y = 0 x I x Y 𝟙 I Y x = 0
156 40 adantr φ f D ¬ f Y = 0 f : I 0
157 156 ffvelcdmda φ f D ¬ f Y = 0 x I f x 0
158 157 adantr φ f D ¬ f Y = 0 x I x Y f x 0
159 158 nn0ge0d φ f D ¬ f Y = 0 x I x Y 0 f x
160 155 159 eqbrtrd φ f D ¬ f Y = 0 x I x Y 𝟙 I Y x f x
161 148 160 pm2.61dane φ f D ¬ f Y = 0 x I 𝟙 I Y x f x
162 161 ralrimiva φ f D ¬ f Y = 0 x I 𝟙 I Y x f x
163 129 ffnd φ f D ¬ f Y = 0 𝟙 I Y Fn I
164 42 adantr φ f D ¬ f Y = 0 f Fn I
165 inidm I I = I
166 eqidd φ f D ¬ f Y = 0 x I 𝟙 I Y x = 𝟙 I Y x
167 eqidd φ f D ¬ f Y = 0 x I f x = f x
168 163 164 130 130 165 166 167 ofrfval φ f D ¬ f Y = 0 𝟙 I Y f f x I 𝟙 I Y x f x
169 162 168 mpbird φ f D ¬ f Y = 0 𝟙 I Y f f
170 103 psrbagcon f D 𝟙 I Y : I 0 𝟙 I Y f f f f 𝟙 I Y D f f 𝟙 I Y f f
171 170 simpld f D 𝟙 I Y : I 0 𝟙 I Y f f f f 𝟙 I Y D
172 121 129 169 171 syl3anc φ f D ¬ f Y = 0 f f 𝟙 I Y D
173 120 172 ffvelcdmd φ f D ¬ f Y = 0 G E K 1 f f 𝟙 I Y Base R
174 15 16 17 101 173 grpridd φ f D ¬ f Y = 0 G E K 1 f f 𝟙 I Y + R 0 R = G E K 1 f f 𝟙 I Y
175 104 fveq1i Could not format ( ( G ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) : No typesetting found for |- ( ( G ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) with typecode |-
176 175 a1i Could not format ( ( ( ph /\ f e. D ) /\ -. ( f ` Y ) = 0 ) -> ( ( G ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) ) : No typesetting found for |- ( ( ( ph /\ f e. D ) /\ -. ( f ` Y ) = 0 ) -> ( ( G ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) ) with typecode |-
177 8 ad2antrr φ f D ¬ f Y = 0 R Ring
178 9 ad2antrr φ f D ¬ f Y = 0 Y I
179 116 ad2antrr φ f D ¬ f Y = 0 E K 1 Base J mPoly R
180 5 17 130 177 178 10 105 179 172 extvfvv Could not format ( ( ( ph /\ f e. D ) /\ -. ( f ` Y ) = 0 ) -> ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = if ( ( ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ` Y ) = 0 , ( ( E ` ( K - 1 ) ) ` ( ( f oF - ( ( _Ind ` I ) ` { Y } ) ) |` J ) ) , ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( ph /\ f e. D ) /\ -. ( f ` Y ) = 0 ) -> ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K - 1 ) ) ) ` ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ) = if ( ( ( f oF - ( ( _Ind ` I ) ` { Y } ) ) ` Y ) = 0 , ( ( E ` ( K - 1 ) ) ` ( ( f oF - ( ( _Ind ` I ) ` { Y } ) ) |` J ) ) , ( 0g ` R ) ) ) with typecode |-
181 13 111 8 114 17 20 esplyfval3 Could not format ( ph -> ( ( J eSymPoly R ) ` ( K - 1 ) ) = ( z e. C |-> if ( ( ran z C_ { 0 , 1 } /\ ( # ` ( z supp 0 ) ) = ( K - 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` ( K - 1 ) ) = ( z e. C |-> if ( ( ran z C_ { 0 , 1 } /\ ( # ` ( z supp 0 ) ) = ( K - 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) with typecode |-
182 108 181 eqtrid φ E K 1 = z C if ran z 0 1 z supp 0 = K 1 1 R 0 R
183 182 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 E K 1 = z C if ran z 0 1 z supp 0 = K 1 1 R 0 R
184 59 ad4antr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f J ran f Y = ran f
185 simpr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J z = f f 𝟙 I Y J
186 123 ffnd φ 𝟙 I Y Fn I
187 186 adantr φ f D 𝟙 I Y Fn I
188 42 187 34 34 165 offn φ f D f f 𝟙 I Y Fn I
189 188 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J f f 𝟙 I Y Fn I
190 110 ad4antr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J J I
191 189 190 fnssresd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J f f 𝟙 I Y J Fn J
192 fneq1 z = f f 𝟙 I Y J z Fn J f f 𝟙 I Y J Fn J
193 192 biimpar z = f f 𝟙 I Y J f f 𝟙 I Y J Fn J z Fn J
194 185 191 193 syl2anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J z Fn J
195 42 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Fn I
196 110 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 J I
197 195 196 fnssresd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J Fn J
198 197 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J f J Fn J
199 simplr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J z = f f 𝟙 I Y J
200 199 fveq1d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J z x = f f 𝟙 I Y J x
201 simpr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J x J
202 201 fvresd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f f 𝟙 I Y J x = f f 𝟙 I Y x
203 195 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f Fn I
204 163 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 𝟙 I Y Fn I
205 204 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J 𝟙 I Y Fn I
206 34 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 I Fin
207 206 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J I Fin
208 190 sselda φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J x I
209 fnfvof f Fn I 𝟙 I Y Fn I I Fin x I f f 𝟙 I Y x = f x 𝟙 I Y x
210 203 205 207 208 209 syl22anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f f 𝟙 I Y x = f x 𝟙 I Y x
211 45 ad5antr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J Y I
212 201 10 eleqtrdi φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J x I Y
213 207 211 212 154 syl3anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J 𝟙 I Y x = 0
214 213 oveq2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f x 𝟙 I Y x = f x 0
215 156 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f : I 0
216 215 208 ffvelcdmd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f x 0
217 216 nn0cnd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f x
218 217 subid1d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f x 0 = f x
219 201 fvresd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f J x = f x
220 218 219 eqtr4d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f x 0 = f J x
221 210 214 220 3eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J f f 𝟙 I Y x = f J x
222 200 202 221 3eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J x J z x = f J x
223 194 198 222 eqfnfvd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J z = f J
224 223 rneqd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z = ran f J
225 224 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran z = ran f J
226 simpr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran z 0 1
227 225 226 eqsstrrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f J 0 1
228 60 ad4antr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 Fun f
229 62 ad4antr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 Y dom f
230 228 229 63 syl2anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f Y = f Y
231 85 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y 0
232 231 nn0cnd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y
233 123 9 ffvelcdmd φ 𝟙 I Y Y 0 1
234 127 233 sseldd φ 𝟙 I Y Y 0
235 234 nn0cnd φ 𝟙 I Y Y
236 235 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 𝟙 I Y Y
237 178 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 Y I
238 fnfvof f Fn I 𝟙 I Y Fn I I Fin Y I f f 𝟙 I Y Y = f Y 𝟙 I Y Y
239 195 204 206 237 238 syl22anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y Y = f Y 𝟙 I Y Y
240 simpr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y Y = 0
241 239 240 eqtr3d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y 𝟙 I Y Y = 0
242 232 236 241 subeq0d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y = 𝟙 I Y Y
243 snidg Y I Y Y
244 9 243 syl φ Y Y
245 ind1 I Fin Y I Y Y 𝟙 I Y Y = 1
246 7 45 244 245 syl3anc φ 𝟙 I Y Y = 1
247 246 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 𝟙 I Y Y = 1
248 242 247 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y = 1
249 248 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 f Y = 1
250 249 sneqd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 f Y = 1
251 230 250 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f Y = 1
252 snsspr2 1 0 1
253 251 252 eqsstrdi φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f Y 0 1
254 227 253 unssd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f J ran f Y 0 1
255 184 254 eqsstrrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f 0 1
256 223 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran f 0 1 z = f J
257 256 rneqd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran f 0 1 ran z = ran f J
258 rnresss ran f J ran f
259 simpr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran f 0 1 ran f 0 1
260 258 259 sstrid φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran f 0 1 ran f J 0 1
261 257 260 eqsstrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran f 0 1 ran z 0 1
262 255 261 impbida φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 ran f 0 1
263 223 oveq1d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J z supp 0 = f J supp 0
264 263 fveqeq2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J z supp 0 = K 1 f J supp 0 = K 1
265 262 264 anbi12d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J ran z 0 1 z supp 0 = K 1 ran f 0 1 f J supp 0 = K 1
266 265 ifbid φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 z = f f 𝟙 I Y J if ran z 0 1 z supp 0 = K 1 1 R 0 R = if ran f 0 1 f J supp 0 = K 1 1 R 0 R
267 breq1 h = f f 𝟙 I Y J finSupp 0 h finSupp 0 f f 𝟙 I Y J
268 35 a1i φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 0 V
269 206 196 ssexd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 J V
270 37 172 sselid φ f D ¬ f Y = 0 f f 𝟙 I Y 0 I
271 270 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y 0 I
272 206 268 271 elmaprd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y : I 0
273 272 196 fssresd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y J : J 0
274 268 269 273 elmapdd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y J 0 J
275 breq1 h = f f 𝟙 I Y finSupp 0 h finSupp 0 f f 𝟙 I Y
276 172 adantr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y D
277 276 5 eleqtrdi φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y h 0 I | finSupp 0 h
278 275 277 elrabrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 finSupp 0 f f 𝟙 I Y
279 77 a1i φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 0 0
280 278 279 fsuppres φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 finSupp 0 f f 𝟙 I Y J
281 267 274 280 elrabd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y J h 0 J | finSupp 0 h
282 281 13 eleqtrrdi φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f f 𝟙 I Y J C
283 22 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 1 R Base R
284 26 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 0 R Base R
285 283 284 ifcld φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 if ran f 0 1 f J supp 0 = K 1 1 R 0 R Base R
286 183 266 282 285 fvmptd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 E K 1 f f 𝟙 I Y J = if ran f 0 1 f J supp 0 = K 1 1 R 0 R
287 eqcom K 1 = f J supp 0 f J supp 0 = K 1
288 fz1ssfz0 1 I 0 I
289 fz0ssnn0 0 I 0
290 288 289 sstri 1 I 0
291 290 12 sselid φ K 0
292 291 nn0cnd φ K
293 292 ad3antrrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 K
294 1cnd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 1
295 c0ex 0 V
296 295 a1i φ f D 0 V
297 40 34 296 fidmfisupp φ f D finSupp 0 f
298 297 296 fsuppres φ f D finSupp 0 f J
299 298 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 finSupp 0 f J
300 299 fsuppimpd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0 Fin
301 hashcl f J supp 0 Fin f J supp 0 0
302 300 301 syl φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0 0
303 302 nn0cnd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0
304 293 294 303 subadd2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 K 1 = f J supp 0 f J supp 0 + 1 = K
305 287 304 bitr3id φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0 = K 1 f J supp 0 + 1 = K
306 80 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f supp 0 = supp 0 f J supp 0 f Y
307 89 ad2antrr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y supp 0 = if f Y = 0 Y
308 simplr φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 ¬ f Y = 0
309 308 iffalsed φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 if f Y = 0 Y = Y
310 307 309 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f Y supp 0 = Y
311 310 uneq2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 supp 0 f J supp 0 f Y = supp 0 f J Y
312 306 311 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f supp 0 = supp 0 f J Y
313 312 fveq2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f supp 0 = supp 0 f J Y
314 suppssdm f J supp 0 dom f J
315 resdmss dom f J J
316 314 315 sstri f J supp 0 J
317 316 a1i φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0 J
318 10 eqimssi J I Y
319 ssdifsn J I Y J I ¬ Y J
320 318 319 mpbi J I ¬ Y J
321 320 simpri ¬ Y J
322 321 a1i φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 ¬ Y J
323 317 322 ssneldd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 ¬ Y supp 0 f J
324 hashunsng Y I f J supp 0 Fin ¬ Y supp 0 f J supp 0 f J Y = f J supp 0 + 1
325 324 imp Y I f J supp 0 Fin ¬ Y supp 0 f J supp 0 f J Y = f J supp 0 + 1
326 237 300 323 325 syl12anc φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 supp 0 f J Y = f J supp 0 + 1
327 313 326 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f supp 0 = f J supp 0 + 1
328 327 eqeq1d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f supp 0 = K f J supp 0 + 1 = K
329 305 328 bitr4d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 f J supp 0 = K 1 f supp 0 = K
330 329 anbi2d φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 ran f 0 1 f J supp 0 = K 1 ran f 0 1 f supp 0 = K
331 330 ifbid φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 if ran f 0 1 f J supp 0 = K 1 1 R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
332 286 331 eqtrd φ f D ¬ f Y = 0 f f 𝟙 I Y Y = 0 E K 1 f f 𝟙 I Y J = if ran f 0 1 f supp 0 = K 1 R 0 R
333 simpr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ran f 0 1
334 164 ad2antrr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Fn I
335 178 ad2antrr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 Y I
336 334 335 fnfvelrnd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y ran f
337 333 336 sseldd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y 0 1
338 simpllr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ¬ f Y = 0
339 338 neqned φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y 0
340 85 nn0cnd φ f D f Y
341 340 ad3antrrr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y
342 1cnd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 1
343 simplr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ¬ f f 𝟙 I Y Y = 0
344 163 ad2antrr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 𝟙 I Y Fn I
345 130 ad2antrr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 I Fin
346 334 344 345 335 238 syl22anc φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f f 𝟙 I Y Y = f Y 𝟙 I Y Y
347 246 ad4antr φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 𝟙 I Y Y = 1
348 347 oveq2d φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y 𝟙 I Y Y = f Y 1
349 346 348 eqtrd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f f 𝟙 I Y Y = f Y 1
350 349 eqeq1d φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f f 𝟙 I Y Y = 0 f Y 1 = 0
351 343 350 mtbid φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ¬ f Y 1 = 0
352 subeq0 f Y 1 f Y 1 = 0 f Y = 1
353 352 notbid f Y 1 ¬ f Y 1 = 0 ¬ f Y = 1
354 353 biimpa f Y 1 ¬ f Y 1 = 0 ¬ f Y = 1
355 341 342 351 354 syl21anc φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ¬ f Y = 1
356 355 neqned φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 f Y 1
357 339 356 nelprd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ran f 0 1 ¬ f Y 0 1
358 337 357 pm2.65da φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ¬ ran f 0 1
359 358 intnanrd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 ¬ ran f 0 1 f supp 0 = K
360 359 iffalsed φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 if ran f 0 1 f supp 0 = K 1 R 0 R = 0 R
361 360 eqcomd φ f D ¬ f Y = 0 ¬ f f 𝟙 I Y Y = 0 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
362 332 361 ifeqda φ f D ¬ f Y = 0 if f f 𝟙 I Y Y = 0 E K 1 f f 𝟙 I Y J 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
363 176 180 362 3eqtrd φ f D ¬ f Y = 0 G E K 1 f f 𝟙 I Y = if ran f 0 1 f supp 0 = K 1 R 0 R
364 174 363 eqtrd φ f D ¬ f Y = 0 G E K 1 f f 𝟙 I Y + R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
365 100 364 ifeqda φ f D if f Y = 0 0 R + R if ran f J 0 1 f J supp 0 = K 1 R 0 R G E K 1 f f 𝟙 I Y + R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
366 14 365 eqtrid φ f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = if ran f 0 1 f supp 0 = K 1 R 0 R
367 366 mpteq2dva φ f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = f D if ran f 0 1 f supp 0 = K 1 R 0 R
368 1 7 8 mplringd φ W Ring
369 1 2 102 7 8 9 mvrcl φ V Y Base W
370 102 4 368 369 118 ringcld φ V Y · ˙ G E K 1 Base W
371 6 fveq1i Could not format ( G ` ( E ` K ) ) = ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) : No typesetting found for |- ( G ` ( E ` K ) ) = ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) with typecode |-
372 11 fveq1i Could not format ( E ` K ) = ( ( J eSymPoly R ) ` K ) : No typesetting found for |- ( E ` K ) = ( ( J eSymPoly R ) ` K ) with typecode |-
373 13 111 8 291 105 esplympl Could not format ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
374 372 373 eqeltrid φ E K Base J mPoly R
375 107 374 ffvelcdmd Could not format ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) e. ( Base ` W ) ) with typecode |-
376 371 375 eqeltrid φ G E K Base W
377 1 102 16 3 370 376 mpladd φ V Y · ˙ G E K 1 + ˙ G E K = V Y · ˙ G E K 1 + R f G E K
378 2 fveq1i V Y = I mVar R Y
379 eqid 𝟙 I Y = 𝟙 I Y
380 1 378 102 4 17 5 379 7 9 8 118 mplmulmvr φ V Y · ˙ G E K 1 = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y
381 6 a1i Could not format ( ph -> G = ( ( I extendVars R ) ` Y ) ) : No typesetting found for |- ( ph -> G = ( ( I extendVars R ) ` Y ) ) with typecode |-
382 13 111 8 291 17 20 esplyfval3 Could not format ( ph -> ( ( J eSymPoly R ) ` K ) = ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` K ) = ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) with typecode |-
383 372 382 eqtrid φ E K = g C if ran g 0 1 g supp 0 = K 1 R 0 R
384 381 383 fveq12d Could not format ( ph -> ( G ` ( E ` K ) ) = ( ( ( I extendVars R ) ` Y ) ` ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) : No typesetting found for |- ( ph -> ( G ` ( E ` K ) ) = ( ( ( I extendVars R ) ` Y ) ` ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) with typecode |-
385 382 373 eqeltrrd φ g C if ran g 0 1 g supp 0 = K 1 R 0 R Base J mPoly R
386 5 17 7 8 9 10 105 385 extvfv Could not format ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( f e. D |-> if ( ( f ` Y ) = 0 , ( ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ` ( f |` J ) ) , ( 0g ` R ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( f e. D |-> if ( ( f ` Y ) = 0 , ( ( g e. C |-> if ( ( ran g C_ { 0 , 1 } /\ ( # ` ( g supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ` ( f |` J ) ) , ( 0g ` R ) ) ) ) with typecode |-
387 rneq g = f J ran g = ran f J
388 387 sseq1d g = f J ran g 0 1 ran f J 0 1
389 oveq1 g = f J g supp 0 = f J supp 0
390 389 fveqeq2d g = f J g supp 0 = K f J supp 0 = K
391 388 390 anbi12d g = f J ran g 0 1 g supp 0 = K ran f J 0 1 f J supp 0 = K
392 391 ifbid g = f J if ran g 0 1 g supp 0 = K 1 R 0 R = if ran f J 0 1 f J supp 0 = K 1 R 0 R
393 eqidd φ f D f Y = 0 g C if ran g 0 1 g supp 0 = K 1 R 0 R = g C if ran g 0 1 g supp 0 = K 1 R 0 R
394 breq1 h = f J finSupp 0 h finSupp 0 f J
395 35 a1i φ f D f Y = 0 0 V
396 111 ad2antrr φ f D f Y = 0 J Fin
397 40 adantr φ f D f Y = 0 f : I 0
398 110 ad2antrr φ f D f Y = 0 J I
399 397 398 fssresd φ f D f Y = 0 f J : J 0
400 395 396 399 elmapdd φ f D f Y = 0 f J 0 J
401 298 adantr φ f D f Y = 0 finSupp 0 f J
402 394 400 401 elrabd φ f D f Y = 0 f J h 0 J | finSupp 0 h
403 402 13 eleqtrrdi φ f D f Y = 0 f J C
404 fvexd φ f D f Y = 0 1 R V
405 fvexd φ f D f Y = 0 0 R V
406 404 405 ifcld φ f D f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R V
407 392 393 403 406 fvmptd4 φ f D f Y = 0 g C if ran g 0 1 g supp 0 = K 1 R 0 R f J = if ran f J 0 1 f J supp 0 = K 1 R 0 R
408 407 ifeq1da φ f D if f Y = 0 g C if ran g 0 1 g supp 0 = K 1 R 0 R f J 0 R = if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
409 408 mpteq2dva φ f D if f Y = 0 g C if ran g 0 1 g supp 0 = K 1 R 0 R f J 0 R = f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
410 384 386 409 3eqtrd φ G E K = f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
411 380 410 oveq12d φ V Y · ˙ G E K 1 + R f G E K = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R f f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
412 ovex 0 I V
413 5 412 rabex2 D V
414 413 a1i φ D V
415 nfv f φ
416 fvexd φ f D G E K 1 f f 𝟙 I Y V
417 26 416 ifexd φ f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y V
418 eqid f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y
419 415 417 418 fnmptd φ f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y Fn D
420 27 26 ifcld φ f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R Base R
421 eqid f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
422 415 420 421 fnmptd φ f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R Fn D
423 ofmpteq D V f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y Fn D f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R Fn D f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R f f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
424 414 419 422 423 syl3anc φ f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R f f D if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
425 377 411 424 3eqtrd φ V Y · ˙ G E K 1 + ˙ G E K = f D if f Y = 0 0 R G E K 1 f f 𝟙 I Y + R if f Y = 0 if ran f J 0 1 f J supp 0 = K 1 R 0 R 0 R
426 5 7 8 291 17 20 esplyfval3 Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) with typecode |-
427 367 425 426 3eqtr4rd Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ( V ` Y ) .x. ( G ` ( E ` ( K - 1 ) ) ) ) .+ ( G ` ( E ` K ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ( V ` Y ) .x. ( G ` ( E ` ( K - 1 ) ) ) ) .+ ( G ` ( E ` K ) ) ) ) with typecode |-