Metamath Proof Explorer


Theorem etransclem23

Description: This is the claim proof in Juillerat p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem23.a φA:0
etransclem23.l L=j=0MAjej0jexFxdx
etransclem23.k K=LP1!
etransclem23.p φP
etransclem23.m φM
etransclem23.f F=xxP1j=1MxjP
etransclem23.lt1 φj=0MAjejMMM+1MM+1P1P1!<1
Assertion etransclem23 φK<1

Proof

Step Hyp Ref Expression
1 etransclem23.a φA:0
2 etransclem23.l L=j=0MAjej0jexFxdx
3 etransclem23.k K=LP1!
4 etransclem23.p φP
5 etransclem23.m φM
6 etransclem23.f F=xxP1j=1MxjP
7 etransclem23.lt1 φj=0MAjejMMM+1MM+1P1P1!<1
8 2 oveq1i LP1!=j=0MAjej0jexFxdxP1!
9 3 8 eqtri K=j=0MAjej0jexFxdxP1!
10 9 fveq2i K=j=0MAjej0jexFxdxP1!
11 10 a1i φK=j=0MAjej0jexFxdxP1!
12 fzfid φ0MFin
13 1 adantr φj0MA:0
14 elfznn0 j0Mj0
15 14 adantl φj0Mj0
16 13 15 ffvelcdmd φj0MAj
17 16 zcnd φj0MAj
18 ere e
19 18 recni e
20 19 a1i φj0Me
21 elfzelz j0Mj
22 21 zcnd j0Mj
23 22 adantl φj0Mj
24 20 23 cxpcld φj0Mej
25 17 24 mulcld φj0MAjej
26 19 a1i φj0Mx0je
27 elioore x0jx
28 27 recnd x0jx
29 28 adantl φj0Mx0jx
30 29 negcld φj0Mx0jx
31 26 30 cxpcld φj0Mx0jex
32 ax-resscn
33 32 a1i φ
34 33 4 6 etransclem8 φF:
35 34 adantr φx0jF:
36 27 adantl φx0jx
37 35 36 ffvelcdmd φx0jFx
38 37 adantlr φj0Mx0jFx
39 31 38 mulcld φj0Mx0jexFx
40 reelprrecn
41 40 a1i φj0M
42 reopn topGenran.
43 eqid TopOpenfld=TopOpenfld
44 43 tgioo2 topGenran.=TopOpenfld𝑡
45 42 44 eleqtri TopOpenfld𝑡
46 45 a1i φj0MTopOpenfld𝑡
47 4 adantr φj0MP
48 5 nnnn0d φM0
49 48 adantr φj0MM0
50 etransclem6 xxP1j=1MxjP=yyP1h=1MyhP
51 etransclem6 yyP1h=1MyhP=xxP1k=1MxkP
52 6 50 51 3eqtri F=xxP1k=1MxkP
53 0red φj0M0
54 21 zred j0Mj
55 54 adantl φj0Mj
56 41 46 47 49 52 53 55 etransclem18 φj0Mx0jexFx𝐿1
57 39 56 itgcl φj0M0jexFxdx
58 25 57 mulcld φj0MAjej0jexFxdx
59 12 58 fsumcl φj=0MAjej0jexFxdx
60 nnm1nn0 PP10
61 4 60 syl φP10
62 61 faccld φP1!
63 62 nncnd φP1!
64 62 nnne0d φP1!0
65 59 63 64 absdivd φj=0MAjej0jexFxdxP1!=j=0MAjej0jexFxdxP1!
66 62 nnred φP1!
67 62 nnnn0d φP1!0
68 67 nn0ge0d φ0P1!
69 66 68 absidd φP1!=P1!
70 69 oveq2d φj=0MAjej0jexFxdxP1!=j=0MAjej0jexFxdxP1!
71 11 65 70 3eqtrd φK=j=0MAjej0jexFxdxP1!
72 2 59 eqeltrid φL
73 72 63 64 divcld φLP1!
74 3 73 eqeltrid φK
75 74 abscld φK
76 71 75 eqeltrrd φj=0MAjej0jexFxdxP1!
77 5 nnred φM
78 4 nnnn0d φP0
79 77 78 reexpcld φMP
80 peano2nn0 M0M+10
81 48 80 syl φM+10
82 79 81 reexpcld φMPM+1
83 82 recnd φMPM+1
84 5 nncnd φM
85 83 84 mulcomd φMPM+1 M=MMPM+1
86 4 nncnd φP
87 1cnd φ1
88 86 87 npcand φP-1+1=P
89 88 eqcomd φP=P-1+1
90 89 oveq2d φMM+1P=MM+1P-1+1
91 81 nn0cnd φM+1
92 91 86 mulcomd φM+1P=PM+1
93 92 oveq2d φMM+1P=MPM+1
94 84 78 81 expmuld φMM+1P=MM+1P
95 84 81 78 expmuld φMPM+1=MPM+1
96 93 94 95 3eqtr3d φMM+1P=MPM+1
97 77 81 reexpcld φMM+1
98 97 recnd φMM+1
99 98 61 expp1d φMM+1P-1+1=MM+1P1MM+1
100 90 96 99 3eqtr3d φMPM+1=MM+1P1MM+1
101 100 oveq2d φMMPM+1=MMM+1P1MM+1
102 98 61 expcld φMM+1P1
103 84 102 98 mul12d φMMM+1P1MM+1=MM+1P1MMM+1
104 84 98 mulcld φMMM+1
105 102 104 mulcomd φMM+1P1MMM+1=MMM+1MM+1P1
106 103 105 eqtrd φMMM+1P1MM+1=MMM+1MM+1P1
107 85 101 106 3eqtrd φMPM+1 M=MMM+1MM+1P1
108 107 adantr φj0MMPM+1 M=MMM+1MM+1P1
109 108 oveq2d φj0MAjejMPM+1 M=AjejMMM+1MM+1P1
110 25 abscld φj0MAjej
111 110 recnd φj0MAjej
112 104 adantr φj0MMMM+1
113 102 adantr φj0MMM+1P1
114 111 112 113 mulassd φj0MAjejMMM+1MM+1P1=AjejMMM+1MM+1P1
115 109 114 eqtr4d φj0MAjejMPM+1 M=AjejMMM+1MM+1P1
116 115 sumeq2dv φj=0MAjejMPM+1 M=j=0MAjejMMM+1MM+1P1
117 111 112 mulcld φj0MAjejMMM+1
118 12 102 117 fsummulc1 φj=0MAjejMMM+1MM+1P1=j=0MAjejMMM+1MM+1P1
119 116 118 eqtr4d φj=0MAjejMPM+1 M=j=0MAjejMMM+1MM+1P1
120 119 oveq1d φj=0MAjejMPM+1 MP1!=j=0MAjejMMM+1MM+1P1P1!
121 12 117 fsumcl φj=0MAjejMMM+1
122 121 102 63 64 divassd φj=0MAjejMMM+1MM+1P1P1!=j=0MAjejMMM+1MM+1P1P1!
123 120 122 eqtrd φj=0MAjejMPM+1 MP1!=j=0MAjejMMM+1MM+1P1P1!
124 82 adantr φj0MMPM+1
125 77 adantr φj0MM
126 124 125 remulcld φj0MMPM+1 M
127 110 126 remulcld φj0MAjejMPM+1 M
128 12 127 fsumrecl φj=0MAjejMPM+1 M
129 128 62 nndivred φj=0MAjejMPM+1 MP1!
130 123 129 eqeltrrd φj=0MAjejMMM+1MM+1P1P1!
131 1red φ1
132 59 abscld φj=0MAjej0jexFxdx
133 62 nnrpd φP1!+
134 58 abscld φj0MAjej0jexFxdx
135 12 134 fsumrecl φj=0MAjej0jexFxdx
136 12 58 fsumabs φj=0MAjej0jexFxdxj=0MAjej0jexFxdx
137 82 ad2antrr φj0Mx0jMPM+1
138 ioombl 0jdomvol
139 138 a1i φj0M0jdomvol
140 0red j0M0
141 elfzle1 j0M0j
142 volioo 0j0jvol0j=j0
143 140 54 141 142 syl3anc j0Mvol0j=j0
144 54 140 resubcld j0Mj0
145 143 144 eqeltrd j0Mvol0j
146 145 adantl φj0Mvol0j
147 83 adantr φj0MMPM+1
148 iblconstmpt 0jdomvolvol0jMPM+1x0jMPM+1𝐿1
149 139 146 147 148 syl3anc φj0Mx0jMPM+1𝐿1
150 137 149 itgrecl φj0M0jMPM+1dx
151 110 150 remulcld φj0MAjej0jMPM+1dx
152 12 151 fsumrecl φj=0MAjej0jMPM+1dx
153 25 57 absmuld φj0MAjej0jexFxdx=Ajej0jexFxdx
154 57 abscld φj0M0jexFxdx
155 25 absge0d φj0M0Ajej
156 39 abscld φj0Mx0jexFx
157 39 56 iblabs φj0Mx0jexFx𝐿1
158 156 157 itgrecl φj0M0jexFxdx
159 39 56 itgabs φj0M0jexFxdx0jexFxdx
160 31 38 absmuld φj0Mx0jexFx=exFx
161 31 abscld φj0Mx0jex
162 1red φj0Mx0j1
163 38 abscld φj0Mx0jFx
164 31 absge0d φj0Mx0j0ex
165 38 absge0d φj0Mx0j0Fx
166 18 a1i x0je
167 0re 0
168 epos 0<e
169 167 18 168 ltleii 0e
170 169 a1i x0j0e
171 27 renegcld x0jx
172 166 170 171 recxpcld x0jex
173 166 170 171 cxpge0d x0j0ex
174 172 173 absidd x0jex=ex
175 174 adantl j0Mx0jex=ex
176 172 adantl j0Mx0jex
177 1red j0Mx0j1
178 0xr 0*
179 178 a1i j0Mx0j0*
180 54 rexrd j0Mj*
181 180 adantr j0Mx0jj*
182 simpr j0Mx0jx0j
183 ioogtlb 0*j*x0j0<x
184 179 181 182 183 syl3anc j0Mx0j0<x
185 27 adantl j0Mx0jx
186 185 lt0neg2d j0Mx0j0<xx<0
187 184 186 mpbid j0Mx0jx<0
188 18 a1i j0Mx0je
189 1lt2 1<2
190 egt2lt3 2<ee<3
191 190 simpli 2<e
192 1re 1
193 2re 2
194 192 193 18 lttri 1<22<e1<e
195 189 191 194 mp2an 1<e
196 195 a1i j0Mx0j1<e
197 171 adantl j0Mx0jx
198 0red j0Mx0j0
199 188 196 197 198 cxpltd j0Mx0jx<0ex<e0
200 187 199 mpbid j0Mx0jex<e0
201 cxp0 ee0=1
202 19 201 mp1i j0Mx0je0=1
203 200 202 breqtrd j0Mx0jex<1
204 176 177 203 ltled j0Mx0jex1
205 175 204 eqbrtrd j0Mx0jex1
206 205 adantll φj0Mx0jex1
207 32 a1i φj0Mx0j
208 4 ad2antrr φj0Mx0jP
209 48 ad2antrr φj0Mx0jM0
210 6 50 eqtri F=yyP1h=1MyhP
211 27 adantl φj0Mx0jx
212 207 208 209 210 211 etransclem13 φj0Mx0jFx=h=0Mxhifh=0P1P
213 212 fveq2d φj0Mx0jFx=h=0Mxhifh=0P1P
214 nn0uz 0=0
215 27 adantr x0jh0x
216 nn0re h0h
217 216 adantl x0jh0h
218 215 217 resubcld x0jh0xh
219 218 adantll φj0Mx0jh0xh
220 61 78 ifcld φifh=0P1P0
221 220 ad3antrrr φj0Mx0jh0ifh=0P1P0
222 219 221 reexpcld φj0Mx0jh0xhifh=0P1P
223 222 recnd φj0Mx0jh0xhifh=0P1P
224 214 209 223 fprodabs φj0Mx0jh=0Mxhifh=0P1P=h=0Mxhifh=0P1P
225 elfznn0 h0Mh0
226 28 adantr x0jh0x
227 nn0cn h0h
228 227 adantl x0jh0h
229 226 228 subcld x0jh0xh
230 229 adantll φj0Mx0jh0xh
231 225 230 sylan2 φj0Mx0jh0Mxh
232 220 ad3antrrr φj0Mx0jh0Mifh=0P1P0
233 231 232 absexpd φj0Mx0jh0Mxhifh=0P1P=xhifh=0P1P
234 233 prodeq2dv φj0Mx0jh=0Mxhifh=0P1P=h=0Mxhifh=0P1P
235 213 224 234 3eqtrd φj0Mx0jFx=h=0Mxhifh=0P1P
236 nfv hφj0Mx0j
237 fzfid φj0Mx0j0MFin
238 225 229 sylan2 x0jh0Mxh
239 238 abscld x0jh0Mxh
240 239 adantll φj0Mx0jh0Mxh
241 240 232 reexpcld φj0Mx0jh0Mxhifh=0P1P
242 238 absge0d x0jh0M0xh
243 242 adantll φj0Mx0jh0M0xh
244 240 232 243 expge0d φj0Mx0jh0M0xhifh=0P1P
245 79 ad3antrrr φj0Mx0jh0MMP
246 77 ad3antrrr φj0Mx0jh0MM
247 246 232 reexpcld φj0Mx0jh0MMifh=0P1P
248 225 219 sylan2 φj0Mx0jh0Mxh
249 28 adantr x0jh0Mx
250 225 228 sylan2 x0jh0Mh
251 249 250 negsubdi2d x0jh0Mxh=hx
252 251 adantll φj0Mx0jh0Mxh=hx
253 225 adantl φj0Mx0jh0Mh0
254 253 nn0red φj0Mx0jh0Mh
255 0red φj0Mx0jh0M0
256 211 adantr φj0Mx0jh0Mx
257 elfzle2 h0MhM
258 257 adantl φj0Mx0jh0MhM
259 198 185 184 ltled j0Mx0j0x
260 259 adantll φj0Mx0j0x
261 260 adantr φj0Mx0jh0M0x
262 254 255 246 256 258 261 le2subd φj0Mx0jh0MhxM0
263 84 subid1d φM0=M
264 263 ad3antrrr φj0Mx0jh0MM0=M
265 262 264 breqtrd φj0Mx0jh0MhxM
266 252 265 eqbrtrd φj0Mx0jh0MxhM
267 248 246 266 lenegcon1d φj0Mx0jh0MMxh
268 elfzel2 j0MM
269 268 zred j0MM
270 269 adantr j0Mx0jM
271 54 adantr j0Mx0jj
272 iooltub 0*j*x0jx<j
273 179 181 182 272 syl3anc j0Mx0jx<j
274 elfzle2 j0MjM
275 274 adantr j0Mx0jjM
276 185 271 270 273 275 ltletrd j0Mx0jx<M
277 185 270 276 ltled j0Mx0jxM
278 277 adantll φj0Mx0jxM
279 278 adantr φj0Mx0jh0MxM
280 253 nn0ge0d φj0Mx0jh0M0h
281 256 255 246 254 279 280 le2subd φj0Mx0jh0MxhM0
282 281 264 breqtrd φj0Mx0jh0MxhM
283 248 246 absled φj0Mx0jh0MxhMMxhxhM
284 267 282 283 mpbir2and φj0Mx0jh0MxhM
285 leexp1a xhMifh=0P1P00xhxhMxhifh=0P1PMifh=0P1P
286 240 246 232 243 284 285 syl32anc φj0Mx0jh0Mxhifh=0P1PMifh=0P1P
287 5 nnge1d φ1M
288 287 ad3antrrr φj0Mx0jh0M1M
289 220 nn0zd φifh=0P1P
290 78 nn0zd φP
291 iftrue h=0ifh=0P1P=P1
292 291 adantl φh=0ifh=0P1P=P1
293 4 nnred φP
294 293 lem1d φP1P
295 294 adantr φh=0P1P
296 292 295 eqbrtrd φh=0ifh=0P1PP
297 iffalse ¬h=0ifh=0P1P=P
298 297 adantl φ¬h=0ifh=0P1P=P
299 293 leidd φPP
300 299 adantr φ¬h=0PP
301 298 300 eqbrtrd φ¬h=0ifh=0P1PP
302 296 301 pm2.61dan φifh=0P1PP
303 eluz2 Pifh=0P1Pifh=0P1PPifh=0P1PP
304 289 290 302 303 syl3anbrc φPifh=0P1P
305 304 ad3antrrr φj0Mx0jh0MPifh=0P1P
306 246 288 305 leexp2ad φj0Mx0jh0MMifh=0P1PMP
307 241 247 245 286 306 letrd φj0Mx0jh0Mxhifh=0P1PMP
308 236 237 241 244 245 307 fprodle φj0Mx0jh=0Mxhifh=0P1Ph=0MMP
309 79 recnd φMP
310 fprodconst 0MFinMPh=0MMP=MP0M
311 12 309 310 syl2anc φh=0MMP=MP0M
312 hashfz0 M00M=M+1
313 48 312 syl φ0M=M+1
314 313 oveq2d φMP0M=MPM+1
315 311 314 eqtrd φh=0MMP=MPM+1
316 315 ad2antrr φj0Mx0jh=0MMP=MPM+1
317 308 316 breqtrd φj0Mx0jh=0Mxhifh=0P1PMPM+1
318 235 317 eqbrtrd φj0Mx0jFxMPM+1
319 161 162 163 137 164 165 206 318 lemul12ad φj0Mx0jexFx1MPM+1
320 83 mullidd φ1MPM+1=MPM+1
321 320 ad2antrr φj0Mx0j1MPM+1=MPM+1
322 319 321 breqtrd φj0Mx0jexFxMPM+1
323 160 322 eqbrtrd φj0Mx0jexFxMPM+1
324 157 149 156 137 323 itgle φj0M0jexFxdx0jMPM+1dx
325 154 158 150 159 324 letrd φj0M0jexFxdx0jMPM+1dx
326 154 150 110 155 325 lemul2ad φj0MAjej0jexFxdxAjej0jMPM+1dx
327 153 326 eqbrtrd φj0MAjej0jexFxdxAjej0jMPM+1dx
328 12 134 151 327 fsumle φj=0MAjej0jexFxdxj=0MAjej0jMPM+1dx
329 itgconst 0jdomvolvol0jMPM+10jMPM+1dx=MPM+1vol0j
330 139 146 147 329 syl3anc φj0M0jMPM+1dx=MPM+1vol0j
331 48 nn0ge0d φ0M
332 77 78 331 expge0d φ0MP
333 79 81 332 expge0d φ0MPM+1
334 333 adantr φj0M0MPM+1
335 22 subid1d j0Mj0=j
336 143 335 eqtrd j0Mvol0j=j
337 336 274 eqbrtrd j0Mvol0jM
338 337 adantl φj0Mvol0jM
339 146 125 124 334 338 lemul2ad φj0MMPM+1vol0jMPM+1 M
340 330 339 eqbrtrd φj0M0jMPM+1dxMPM+1 M
341 150 126 110 155 340 lemul2ad φj0MAjej0jMPM+1dxAjejMPM+1 M
342 12 151 127 341 fsumle φj=0MAjej0jMPM+1dxj=0MAjejMPM+1 M
343 135 152 128 328 342 letrd φj=0MAjej0jexFxdxj=0MAjejMPM+1 M
344 132 135 128 136 343 letrd φj=0MAjej0jexFxdxj=0MAjejMPM+1 M
345 132 128 133 344 lediv1dd φj=0MAjej0jexFxdxP1!j=0MAjejMPM+1 MP1!
346 345 123 breqtrd φj=0MAjej0jexFxdxP1!j=0MAjejMMM+1MM+1P1P1!
347 76 130 131 346 7 lelttrd φj=0MAjej0jexFxdxP1!<1
348 71 347 eqbrtrd φK<1