Metamath Proof Explorer


Theorem ovnsubaddlem1

Description: The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsubaddlem1.x φXFin
ovnsubaddlem1.n0 φX
ovnsubaddlem1.a φA:𝒫X
ovnsubaddlem1.e φE+
ovnsubaddlem1.z Z=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
ovnsubaddlem1.c C=a𝒫Xh2X|ajkX.hjk
ovnsubaddlem1.l L=i2XkXvol.ik
ovnsubaddlem1.d D=a𝒫Xe+iCa|sum^jLijvoln*Xa+𝑒e
ovnsubaddlem1.i φnInDAnE2n
ovnsubaddlem1.f φF:1-1 onto×
ovnsubaddlem1.g G=mI1stFm2ndFm
Assertion ovnsubaddlem1 φvoln*XnAnsum^nvoln*XAn+𝑒E

Proof

Step Hyp Ref Expression
1 ovnsubaddlem1.x φXFin
2 ovnsubaddlem1.n0 φX
3 ovnsubaddlem1.a φA:𝒫X
4 ovnsubaddlem1.e φE+
5 ovnsubaddlem1.z Z=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
6 ovnsubaddlem1.c C=a𝒫Xh2X|ajkX.hjk
7 ovnsubaddlem1.l L=i2XkXvol.ik
8 ovnsubaddlem1.d D=a𝒫Xe+iCa|sum^jLijvoln*Xa+𝑒e
9 ovnsubaddlem1.i φnInDAnE2n
10 ovnsubaddlem1.f φF:1-1 onto×
11 ovnsubaddlem1.g G=mI1stFm2ndFm
12 3 adantr φnA:𝒫X
13 simpr φnn
14 12 13 ffvelcdmd φnAn𝒫X
15 elpwi An𝒫XAnX
16 14 15 syl φnAnX
17 16 ralrimiva φnAnX
18 iunss nAnXnAnX
19 17 18 sylibr φnAnX
20 1 19 ovnxrcl φvoln*XnAn*
21 nfv mφ
22 nnex V
23 22 a1i φV
24 icossicc 0+∞0+∞
25 nfv kφm
26 simpl φmφ
27 26 1 syl φmXFin
28 f1of F:1-1 onto×F:×
29 10 28 syl φF:×
30 29 adantr φmF:×
31 simpr φmm
32 30 31 ffvelcdmd φmFm×
33 xp1st Fm×1stFm
34 32 33 syl φm1stFm
35 xp2nd Fm×2ndFm
36 32 35 syl φm2ndFm
37 fvex 2ndFmV
38 eleq1 j=2ndFmj2ndFm
39 38 3anbi3d j=2ndFmφ1stFmjφ1stFm2ndFm
40 fveq2 j=2ndFmI1stFmj=I1stFm2ndFm
41 40 feq1d j=2ndFmI1stFmj:X2I1stFm2ndFm:X2
42 39 41 imbi12d j=2ndFmφ1stFmjI1stFmj:X2φ1stFm2ndFmI1stFm2ndFm:X2
43 fvex 1stFmV
44 eleq1 n=1stFmn1stFm
45 44 3anbi2d n=1stFmφnjφ1stFmj
46 fveq2 n=1stFmIn=I1stFm
47 46 fveq1d n=1stFmInj=I1stFmj
48 47 feq1d n=1stFmInj:X2I1stFmj:X2
49 45 48 imbi12d n=1stFmφnjInj:X2φ1stFmjI1stFmj:X2
50 sseq1 a=AnajkX.hjkAnjkX.hjk
51 50 rabbidv a=Anh2X|ajkX.hjk=h2X|AnjkX.hjk
52 ovex 2XV
53 52 rabex h2X|AnjkX.hjkV
54 53 a1i φnh2X|AnjkX.hjkV
55 6 51 14 54 fvmptd3 φnCAn=h2X|AnjkX.hjk
56 ssrab2 h2X|AnjkX.hjk2X
57 56 a1i φnh2X|AnjkX.hjk2X
58 55 57 eqsstrd φnCAn2X
59 fveq2 a=AnCa=CAn
60 59 eleq2d a=AniCaiCAn
61 fveq2 a=Anvoln*Xa=voln*XAn
62 61 oveq1d a=Anvoln*Xa+𝑒e=voln*XAn+𝑒e
63 62 breq2d a=Ansum^jLijvoln*Xa+𝑒esum^jLijvoln*XAn+𝑒e
64 60 63 anbi12d a=AniCasum^jLijvoln*Xa+𝑒eiCAnsum^jLijvoln*XAn+𝑒e
65 64 rabbidva2 a=AniCa|sum^jLijvoln*Xa+𝑒e=iCAn|sum^jLijvoln*XAn+𝑒e
66 65 mpteq2dv a=Ane+iCa|sum^jLijvoln*Xa+𝑒e=e+iCAn|sum^jLijvoln*XAn+𝑒e
67 rpex +V
68 67 mptex e+iCAn|sum^jLijvoln*XAn+𝑒eV
69 68 a1i φne+iCAn|sum^jLijvoln*XAn+𝑒eV
70 8 66 14 69 fvmptd3 φnDAn=e+iCAn|sum^jLijvoln*XAn+𝑒e
71 oveq2 e=E2nvoln*XAn+𝑒e=voln*XAn+𝑒E2n
72 71 breq2d e=E2nsum^jLijvoln*XAn+𝑒esum^jLijvoln*XAn+𝑒E2n
73 72 rabbidv e=E2niCAn|sum^jLijvoln*XAn+𝑒e=iCAn|sum^jLijvoln*XAn+𝑒E2n
74 73 adantl φne=E2niCAn|sum^jLijvoln*XAn+𝑒e=iCAn|sum^jLijvoln*XAn+𝑒E2n
75 4 adantr φnE+
76 2nn 2
77 76 a1i n2
78 nnnn0 nn0
79 77 78 nnexpcld n2n
80 79 nnrpd n2n+
81 80 adantl φn2n+
82 75 81 rpdivcld φnE2n+
83 fvex CAnV
84 83 rabex iCAn|sum^jLijvoln*XAn+𝑒E2nV
85 84 a1i φniCAn|sum^jLijvoln*XAn+𝑒E2nV
86 70 74 82 85 fvmptd φnDAnE2n=iCAn|sum^jLijvoln*XAn+𝑒E2n
87 ssrab2 iCAn|sum^jLijvoln*XAn+𝑒E2nCAn
88 87 a1i φniCAn|sum^jLijvoln*XAn+𝑒E2nCAn
89 86 88 eqsstrd φnDAnE2nCAn
90 89 9 sseldd φnInCAn
91 58 90 sseldd φnIn2X
92 elmapfn In2XInFn
93 91 92 syl φnInFn
94 elmapi In2XIn:2X
95 91 94 syl φnIn:2X
96 95 ffvelcdmda φnjInj2X
97 96 ralrimiva φnjInj2X
98 93 97 jca φnInFnjInj2X
99 98 3adant3 φnjInFnjInj2X
100 ffnfv In:2XInFnjInj2X
101 99 100 sylibr φnjIn:2X
102 simp3 φnjj
103 101 102 ffvelcdmd φnjInj2X
104 elmapi Inj2XInj:X2
105 103 104 syl φnjInj:X2
106 43 49 105 vtocl φ1stFmjI1stFmj:X2
107 37 42 106 vtocl φ1stFm2ndFmI1stFm2ndFm:X2
108 26 34 36 107 syl3anc φmI1stFm2ndFm:X2
109 id mm
110 fvex I1stFm2ndFmV
111 110 a1i mI1stFm2ndFmV
112 11 fvmpt2 mI1stFm2ndFmVGm=I1stFm2ndFm
113 109 111 112 syl2anc mGm=I1stFm2ndFm
114 113 adantl φmGm=I1stFm2ndFm
115 114 feq1d φmGm:X2I1stFm2ndFm:X2
116 108 115 mpbird φmGm:X2
117 25 27 7 116 hoiprodcl2 φmLGm0+∞
118 24 117 sselid φmLGm0+∞
119 21 23 118 sge0xrclmpt φsum^mLGm*
120 nfv nφ
121 0xr 0*
122 121 a1i φn0*
123 pnfxr +∞*
124 123 a1i φn+∞*
125 1 adantr φnXFin
126 125 16 5 ovnval2b φnvoln*XAn=ifX=0supZAn*<
127 2 neneqd φ¬X=
128 127 iffalsed φifX=0supZAn*<=supZAn*<
129 128 adantr φnifX=0supZAn*<=supZAn*<
130 126 129 eqtrd φnvoln*XAn=supZAn*<
131 sseq1 a=AnajkX.ijkAnjkX.ijk
132 131 anbi1d a=AnajkX.ijkz=sum^jkXvol.ijkAnjkX.ijkz=sum^jkXvol.ijk
133 132 rexbidv a=Ani2XajkX.ijkz=sum^jkXvol.ijki2XAnjkX.ijkz=sum^jkXvol.ijk
134 133 rabbidv a=Anz*|i2XajkX.ijkz=sum^jkXvol.ijk=z*|i2XAnjkX.ijkz=sum^jkXvol.ijk
135 xrex *V
136 135 rabex z*|i2XAnjkX.ijkz=sum^jkXvol.ijkV
137 136 a1i φnz*|i2XAnjkX.ijkz=sum^jkXvol.ijkV
138 5 134 14 137 fvmptd3 φnZAn=z*|i2XAnjkX.ijkz=sum^jkXvol.ijk
139 ssrab2 z*|i2XAnjkX.ijkz=sum^jkXvol.ijk*
140 139 a1i φnz*|i2XAnjkX.ijkz=sum^jkXvol.ijk*
141 138 140 eqsstrd φnZAn*
142 infxrcl ZAn*supZAn*<*
143 141 142 syl φnsupZAn*<*
144 130 143 eqeltrd φnvoln*XAn*
145 4 rpred φE
146 145 adantr φnE
147 2re 2
148 147 a1i n2
149 148 78 reexpcld n2n
150 149 adantl φn2n
151 148 recnd n2
152 2ne0 20
153 152 a1i n20
154 nnz nn
155 151 153 154 expne0d n2n0
156 155 adantl φn2n0
157 146 150 156 redivcld φnE2n
158 157 rexrd φnE2n*
159 144 158 xaddcld φnvoln*XAn+𝑒E2n*
160 125 16 ovncl φnvoln*XAn0+∞
161 xrge0ge0 voln*XAn0+∞0voln*XAn
162 160 161 syl φn0voln*XAn
163 0red φn0
164 82 rpgt0d φn0<E2n
165 163 157 164 ltled φn0E2n
166 157 ltpnfd φnE2n<+∞
167 158 124 166 xrltled φnE2n+∞
168 122 124 158 165 167 eliccxrd φnE2n0+∞
169 144 168 xadd0ge φnvoln*XAnvoln*XAn+𝑒E2n
170 122 144 159 162 169 xrletrd φn0voln*XAn+𝑒E2n
171 pnfge voln*XAn+𝑒E2n*voln*XAn+𝑒E2n+∞
172 159 171 syl φnvoln*XAn+𝑒E2n+∞
173 122 124 159 170 172 eliccxrd φnvoln*XAn+𝑒E2n0+∞
174 120 23 173 sge0xrclmpt φsum^nvoln*XAn+𝑒E2n*
175 sseq1 a=A1stFmajkX.hjkA1stFmjkX.hjk
176 175 rabbidv a=A1stFmh2X|ajkX.hjk=h2X|A1stFmjkX.hjk
177 3 adantr φmA:𝒫X
178 177 34 ffvelcdmd φmA1stFm𝒫X
179 52 rabex h2X|A1stFmjkX.hjkV
180 179 a1i φmh2X|A1stFmjkX.hjkV
181 6 176 178 180 fvmptd3 φmCA1stFm=h2X|A1stFmjkX.hjk
182 ssrab2 h2X|A1stFmjkX.hjk2X
183 182 a1i φmh2X|A1stFmjkX.hjk2X
184 181 183 eqsstrd φmCA1stFm2X
185 fveq2 a=A1stFmCa=CA1stFm
186 185 eleq2d a=A1stFmiCaiCA1stFm
187 fveq2 a=A1stFmvoln*Xa=voln*XA1stFm
188 187 oveq1d a=A1stFmvoln*Xa+𝑒e=voln*XA1stFm+𝑒e
189 188 breq2d a=A1stFmsum^jLijvoln*Xa+𝑒esum^jLijvoln*XA1stFm+𝑒e
190 186 189 anbi12d a=A1stFmiCasum^jLijvoln*Xa+𝑒eiCA1stFmsum^jLijvoln*XA1stFm+𝑒e
191 190 rabbidva2 a=A1stFmiCa|sum^jLijvoln*Xa+𝑒e=iCA1stFm|sum^jLijvoln*XA1stFm+𝑒e
192 191 mpteq2dv a=A1stFme+iCa|sum^jLijvoln*Xa+𝑒e=e+iCA1stFm|sum^jLijvoln*XA1stFm+𝑒e
193 67 mptex e+iCA1stFm|sum^jLijvoln*XA1stFm+𝑒eV
194 193 a1i φme+iCA1stFm|sum^jLijvoln*XA1stFm+𝑒eV
195 8 192 178 194 fvmptd3 φmDA1stFm=e+iCA1stFm|sum^jLijvoln*XA1stFm+𝑒e
196 oveq2 e=E21stFmvoln*XA1stFm+𝑒e=voln*XA1stFm+𝑒E21stFm
197 196 breq2d e=E21stFmsum^jLijvoln*XA1stFm+𝑒esum^jLijvoln*XA1stFm+𝑒E21stFm
198 197 rabbidv e=E21stFmiCA1stFm|sum^jLijvoln*XA1stFm+𝑒e=iCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFm
199 198 adantl φme=E21stFmiCA1stFm|sum^jLijvoln*XA1stFm+𝑒e=iCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFm
200 26 4 syl φmE+
201 2rp 2+
202 201 a1i φm2+
203 34 nnzd φm1stFm
204 202 203 rpexpcld φm21stFm+
205 200 204 rpdivcld φmE21stFm+
206 fvex CA1stFmV
207 206 rabex iCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFmV
208 207 a1i φmiCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFmV
209 195 199 205 208 fvmptd φmDA1stFmE21stFm=iCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFm
210 ssrab2 iCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFmCA1stFm
211 210 a1i φmiCA1stFm|sum^jLijvoln*XA1stFm+𝑒E21stFmCA1stFm
212 209 211 eqsstrd φmDA1stFmE21stFmCA1stFm
213 44 anbi2d n=1stFmφnφ1stFm
214 2fveq3 n=1stFmDAn=DA1stFm
215 oveq2 n=1stFm2n=21stFm
216 215 oveq2d n=1stFmE2n=E21stFm
217 214 216 fveq12d n=1stFmDAnE2n=DA1stFmE21stFm
218 46 217 eleq12d n=1stFmInDAnE2nI1stFmDA1stFmE21stFm
219 213 218 imbi12d n=1stFmφnInDAnE2nφ1stFmI1stFmDA1stFmE21stFm
220 43 219 9 vtocl φ1stFmI1stFmDA1stFmE21stFm
221 26 34 220 syl2anc φmI1stFmDA1stFmE21stFm
222 212 221 sseldd φmI1stFmCA1stFm
223 184 222 sseldd φmI1stFm2X
224 elmapfn I1stFm2XI1stFmFn
225 223 224 syl φmI1stFmFn
226 elmapi I1stFm2XI1stFm:2X
227 223 226 syl φmI1stFm:2X
228 227 ffvelcdmda φmjI1stFmj2X
229 228 ralrimiva φmjI1stFmj2X
230 225 229 jca φmI1stFmFnjI1stFmj2X
231 ffnfv I1stFm:2XI1stFmFnjI1stFmj2X
232 230 231 sylibr φmI1stFm:2X
233 232 36 ffvelcdmd φmI1stFm2ndFm2X
234 233 11 fmptd φG:2X
235 simpl φnφ
236 9 86 eleqtrd φnIniCAn|sum^jLijvoln*XAn+𝑒E2n
237 87 236 sselid φnInCAn
238 simp3 φnInCAnInCAn
239 55 3adant3 φnInCAnCAn=h2X|AnjkX.hjk
240 238 239 eleqtrd φnInCAnInh2X|AnjkX.hjk
241 fveq1 h=Inhj=Inj
242 241 coeq2d h=In.hj=.Inj
243 242 fveq1d h=In.hjk=.Injk
244 243 ixpeq2dv h=InkX.hjk=kX.Injk
245 244 iuneq2d h=InjkX.hjk=jkX.Injk
246 245 sseq2d h=InAnjkX.hjkAnjkX.Injk
247 246 elrab Inh2X|AnjkX.hjkIn2XAnjkX.Injk
248 240 247 sylib φnInCAnIn2XAnjkX.Injk
249 248 simprd φnInCAnAnjkX.Injk
250 235 13 237 249 syl3anc φnAnjkX.Injk
251 f1ofo F:1-1 onto×F:onto×
252 10 251 syl φF:onto×
253 252 ad2antrr φnjF:onto×
254 opelxpi njnj×
255 13 254 sylan φnjnj×
256 foelcdmi F:onto×nj×mFm=nj
257 253 255 256 syl2anc φnjmFm=nj
258 nfv mφnj
259 nfre1 mmi|1stFi=nkX.InjkkX.Gmk
260 simpl mFm=njm
261 fveq2 Fm=nj1stFm=1stnj
262 op1stg nVjV1stnj=n
263 262 el2v 1stnj=n
264 263 a1i Fm=nj1stnj=n
265 261 264 eqtrd Fm=nj1stFm=n
266 265 adantl mFm=nj1stFm=n
267 260 266 jca mFm=njm1stFm=n
268 2fveq3 i=m1stFi=1stFm
269 268 eqeq1d i=m1stFi=n1stFm=n
270 269 elrab mi|1stFi=nm1stFm=n
271 267 270 sylibr mFm=njmi|1stFi=n
272 271 3adant1 φnjmFm=njmi|1stFi=n
273 260 113 syl mFm=njGm=I1stFm2ndFm
274 265 fveq2d Fm=njI1stFm=In
275 vex nV
276 vex jV
277 275 276 op2ndd Fm=nj2ndFm=j
278 274 277 fveq12d Fm=njI1stFm2ndFm=Inj
279 278 adantl mFm=njI1stFm2ndFm=Inj
280 273 279 eqtr2d mFm=njInj=Gm
281 280 coeq2d mFm=nj.Inj=.Gm
282 281 fveq1d mFm=nj.Injk=.Gmk
283 282 ixpeq2dv mFm=njkX.Injk=kX.Gmk
284 eqimss kX.Injk=kX.GmkkX.InjkkX.Gmk
285 283 284 syl mFm=njkX.InjkkX.Gmk
286 285 3adant1 φnjmFm=njkX.InjkkX.Gmk
287 rspe mi|1stFi=nkX.InjkkX.Gmkmi|1stFi=nkX.InjkkX.Gmk
288 272 286 287 syl2anc φnjmFm=njmi|1stFi=nkX.InjkkX.Gmk
289 288 3exp φnjmFm=njmi|1stFi=nkX.InjkkX.Gmk
290 258 259 289 rexlimd φnjmFm=njmi|1stFi=nkX.InjkkX.Gmk
291 257 290 mpd φnjmi|1stFi=nkX.InjkkX.Gmk
292 291 ralrimiva φnjmi|1stFi=nkX.InjkkX.Gmk
293 iunss2 jmi|1stFi=nkX.InjkkX.GmkjkX.Injkmi|1stFi=nkX.Gmk
294 292 293 syl φnjkX.Injkmi|1stFi=nkX.Gmk
295 250 294 sstrd φnAnmi|1stFi=nkX.Gmk
296 ssrab2 i|1stFi=n
297 iunss1 i|1stFi=nmi|1stFi=nkX.GmkmkX.Gmk
298 296 297 ax-mp mi|1stFi=nkX.GmkmkX.Gmk
299 298 a1i φnmi|1stFi=nkX.GmkmkX.Gmk
300 295 299 sstrd φnAnmkX.Gmk
301 300 ralrimiva φnAnmkX.Gmk
302 iunss nAnmkX.GmknAnmkX.Gmk
303 301 302 sylibr φnAnmkX.Gmk
304 1 2 7 234 303 ovnlecvr φvoln*XnAnsum^mLGm
305 114 fveq2d φmLGm=LI1stFm2ndFm
306 305 mpteq2dva φmLGm=mLI1stFm2ndFm
307 306 fveq2d φsum^mLGm=sum^mLI1stFm2ndFm
308 nfv pφ
309 2fveq3 p=FmI1stp=I1stFm
310 fveq2 p=Fm2ndp=2ndFm
311 309 310 fveq12d p=FmI1stp2ndp=I1stFm2ndFm
312 311 fveq2d p=FmLI1stp2ndp=LI1stFm2ndFm
313 eqidd φmFm=Fm
314 nfv kφp×
315 1 adantr φp×XFin
316 simpl φp×φ
317 xp1st p×1stp
318 317 adantl φp×1stp
319 xp2nd p×2ndp
320 319 adantl φp×2ndp
321 fvex 2ndpV
322 eleq1 j=2ndpj2ndp
323 322 3anbi3d j=2ndpφ1stpjφ1stp2ndp
324 fveq2 j=2ndpI1stpj=I1stp2ndp
325 324 feq1d j=2ndpI1stpj:X2I1stp2ndp:X2
326 323 325 imbi12d j=2ndpφ1stpjI1stpj:X2φ1stp2ndpI1stp2ndp:X2
327 fvex 1stpV
328 eleq1 n=1stpn1stp
329 328 3anbi2d n=1stpφnjφ1stpj
330 fveq2 n=1stpIn=I1stp
331 330 fveq1d n=1stpInj=I1stpj
332 331 feq1d n=1stpInj:X2I1stpj:X2
333 329 332 imbi12d n=1stpφnjInj:X2φ1stpjI1stpj:X2
334 327 333 105 vtocl φ1stpjI1stpj:X2
335 321 326 334 vtocl φ1stp2ndpI1stp2ndp:X2
336 316 318 320 335 syl3anc φp×I1stp2ndp:X2
337 314 315 7 336 hoiprodcl2 φp×LI1stp2ndp0+∞
338 24 337 sselid φp×LI1stp2ndp0+∞
339 308 21 312 23 10 313 338 sge0f1o φsum^p×LI1stp2ndp=sum^mLI1stFm2ndFm
340 307 339 eqtr4d φsum^mLGm=sum^p×LI1stp2ndp
341 nfv jφ
342 275 276 op1std p=nj1stp=n
343 342 fveq2d p=njI1stp=In
344 275 276 op2ndd p=nj2ndp=j
345 343 344 fveq12d p=njI1stp2ndp=Inj
346 345 fveq2d p=njLI1stp2ndp=LInj
347 nfv kφnj
348 125 adantr φnjXFin
349 96 104 syl φnjInj:X2
350 347 348 7 349 hoiprodcl2 φnjLInj0+∞
351 24 350 sselid φnjLInj0+∞
352 351 3impa φnjLInj0+∞
353 341 346 23 23 352 sge0xp φsum^nsum^jLInj=sum^p×LI1stp2ndp
354 353 eqcomd φsum^p×LI1stp2ndp=sum^nsum^jLInj
355 22 a1i φnV
356 eqid jLInj=jLInj
357 351 356 fmptd φnjLInj:0+∞
358 355 357 sge0cl φnsum^jLInj0+∞
359 fveq1 i=Inij=Inj
360 359 fveq2d i=InLij=LInj
361 360 mpteq2dv i=InjLij=jLInj
362 361 fveq2d i=Insum^jLij=sum^jLInj
363 362 breq1d i=Insum^jLijvoln*XAn+𝑒E2nsum^jLInjvoln*XAn+𝑒E2n
364 363 elrab IniCAn|sum^jLijvoln*XAn+𝑒E2nInCAnsum^jLInjvoln*XAn+𝑒E2n
365 236 364 sylib φnInCAnsum^jLInjvoln*XAn+𝑒E2n
366 365 simprd φnsum^jLInjvoln*XAn+𝑒E2n
367 120 23 358 173 366 sge0lempt φsum^nsum^jLInjsum^nvoln*XAn+𝑒E2n
368 354 367 eqbrtrd φsum^p×LI1stp2ndpsum^nvoln*XAn+𝑒E2n
369 340 368 eqbrtrd φsum^mLGmsum^nvoln*XAn+𝑒E2n
370 20 119 174 304 369 xrletrd φvoln*XnAnsum^nvoln*XAn+𝑒E2n
371 120 23 160 168 sge0xadd φsum^nvoln*XAn+𝑒E2n=sum^nvoln*XAn+𝑒sum^nE2n
372 121 a1i φ0*
373 123 a1i φ+∞*
374 145 rexrd φE*
375 4 rpge0d φ0E
376 145 ltpnfd φE<+∞
377 372 373 374 375 376 elicod φE0+∞
378 377 sge0ad2en φsum^nE2n=E
379 378 oveq2d φsum^nvoln*XAn+𝑒sum^nE2n=sum^nvoln*XAn+𝑒E
380 371 379 eqtrd φsum^nvoln*XAn+𝑒E2n=sum^nvoln*XAn+𝑒E
381 370 380 breqtrd φvoln*XnAnsum^nvoln*XAn+𝑒E