Metamath Proof Explorer


Theorem ovnsubaddlem1

Description: The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsubaddlem1.x φ X Fin
ovnsubaddlem1.n0 φ X
ovnsubaddlem1.a φ A : 𝒫 X
ovnsubaddlem1.e φ E +
ovnsubaddlem1.z Z = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
ovnsubaddlem1.c C = a 𝒫 X h 2 X | a j k X . h j k
ovnsubaddlem1.l L = i 2 X k X vol . i k
ovnsubaddlem1.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
ovnsubaddlem1.i φ n I n D A n E 2 n
ovnsubaddlem1.f φ F : 1-1 onto ×
ovnsubaddlem1.g G = m I 1 st F m 2 nd F m
Assertion ovnsubaddlem1 φ voln* X n A n sum^ n voln* X A n + 𝑒 E

Proof

Step Hyp Ref Expression
1 ovnsubaddlem1.x φ X Fin
2 ovnsubaddlem1.n0 φ X
3 ovnsubaddlem1.a φ A : 𝒫 X
4 ovnsubaddlem1.e φ E +
5 ovnsubaddlem1.z Z = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
6 ovnsubaddlem1.c C = a 𝒫 X h 2 X | a j k X . h j k
7 ovnsubaddlem1.l L = i 2 X k X vol . i k
8 ovnsubaddlem1.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
9 ovnsubaddlem1.i φ n I n D A n E 2 n
10 ovnsubaddlem1.f φ F : 1-1 onto ×
11 ovnsubaddlem1.g G = m I 1 st F m 2 nd F m
12 3 adantr φ n A : 𝒫 X
13 simpr φ n n
14 12 13 ffvelrnd φ n A n 𝒫 X
15 elpwi A n 𝒫 X A n X
16 14 15 syl φ n A n X
17 16 ralrimiva φ n A n X
18 iunss n A n X n A n X
19 17 18 sylibr φ n A n X
20 1 19 ovnxrcl φ voln* X n A n *
21 nfv m φ
22 nnex V
23 22 a1i φ V
24 icossicc 0 +∞ 0 +∞
25 nfv k φ m
26 simpl φ m φ
27 26 1 syl φ m X Fin
28 f1of F : 1-1 onto × F : ×
29 10 28 syl φ F : ×
30 29 adantr φ m F : ×
31 simpr φ m m
32 30 31 ffvelrnd φ m F m ×
33 xp1st F m × 1 st F m
34 32 33 syl φ m 1 st F m
35 xp2nd F m × 2 nd F m
36 32 35 syl φ m 2 nd F m
37 fvex 2 nd F m V
38 eleq1 j = 2 nd F m j 2 nd F m
39 38 3anbi3d j = 2 nd F m φ 1 st F m j φ 1 st F m 2 nd F m
40 fveq2 j = 2 nd F m I 1 st F m j = I 1 st F m 2 nd F m
41 40 feq1d j = 2 nd F m I 1 st F m j : X 2 I 1 st F m 2 nd F m : X 2
42 39 41 imbi12d j = 2 nd F m φ 1 st F m j I 1 st F m j : X 2 φ 1 st F m 2 nd F m I 1 st F m 2 nd F m : X 2
43 fvex 1 st F m V
44 eleq1 n = 1 st F m n 1 st F m
45 44 3anbi2d n = 1 st F m φ n j φ 1 st F m j
46 fveq2 n = 1 st F m I n = I 1 st F m
47 46 fveq1d n = 1 st F m I n j = I 1 st F m j
48 47 feq1d n = 1 st F m I n j : X 2 I 1 st F m j : X 2
49 45 48 imbi12d n = 1 st F m φ n j I n j : X 2 φ 1 st F m j I 1 st F m j : X 2
50 sseq1 a = A n a j k X . h j k A n j k X . h j k
51 50 rabbidv a = A n h 2 X | a j k X . h j k = h 2 X | A n j k X . h j k
52 ovex 2 X V
53 52 rabex h 2 X | A n j k X . h j k V
54 53 a1i φ n h 2 X | A n j k X . h j k V
55 6 51 14 54 fvmptd3 φ n C A n = h 2 X | A n j k X . h j k
56 ssrab2 h 2 X | A n j k X . h j k 2 X
57 56 a1i φ n h 2 X | A n j k X . h j k 2 X
58 55 57 eqsstrd φ n C A n 2 X
59 fveq2 a = A n C a = C A n
60 59 eleq2d a = A n i C a i C A n
61 fveq2 a = A n voln* X a = voln* X A n
62 61 oveq1d a = A n voln* X a + 𝑒 e = voln* X A n + 𝑒 e
63 62 breq2d a = A n sum^ j L i j voln* X a + 𝑒 e sum^ j L i j voln* X A n + 𝑒 e
64 60 63 anbi12d a = A n i C a sum^ j L i j voln* X a + 𝑒 e i C A n sum^ j L i j voln* X A n + 𝑒 e
65 64 rabbidva2 a = A n i C a | sum^ j L i j voln* X a + 𝑒 e = i C A n | sum^ j L i j voln* X A n + 𝑒 e
66 65 mpteq2dv a = A n e + i C a | sum^ j L i j voln* X a + 𝑒 e = e + i C A n | sum^ j L i j voln* X A n + 𝑒 e
67 rpex + V
68 67 mptex e + i C A n | sum^ j L i j voln* X A n + 𝑒 e V
69 68 a1i φ n e + i C A n | sum^ j L i j voln* X A n + 𝑒 e V
70 8 66 14 69 fvmptd3 φ n D A n = e + i C A n | sum^ j L i j voln* X A n + 𝑒 e
71 oveq2 e = E 2 n voln* X A n + 𝑒 e = voln* X A n + 𝑒 E 2 n
72 71 breq2d e = E 2 n sum^ j L i j voln* X A n + 𝑒 e sum^ j L i j voln* X A n + 𝑒 E 2 n
73 72 rabbidv e = E 2 n i C A n | sum^ j L i j voln* X A n + 𝑒 e = i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n
74 73 adantl φ n e = E 2 n i C A n | sum^ j L i j voln* X A n + 𝑒 e = i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n
75 4 adantr φ n E +
76 2nn 2
77 76 a1i n 2
78 nnnn0 n n 0
79 77 78 nnexpcld n 2 n
80 79 nnrpd n 2 n +
81 80 adantl φ n 2 n +
82 75 81 rpdivcld φ n E 2 n +
83 fvex C A n V
84 83 rabex i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n V
85 84 a1i φ n i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n V
86 70 74 82 85 fvmptd φ n D A n E 2 n = i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n
87 ssrab2 i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n C A n
88 87 a1i φ n i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n C A n
89 86 88 eqsstrd φ n D A n E 2 n C A n
90 89 9 sseldd φ n I n C A n
91 58 90 sseldd φ n I n 2 X
92 elmapfn I n 2 X I n Fn
93 91 92 syl φ n I n Fn
94 elmapi I n 2 X I n : 2 X
95 91 94 syl φ n I n : 2 X
96 95 ffvelrnda φ n j I n j 2 X
97 96 ralrimiva φ n j I n j 2 X
98 93 97 jca φ n I n Fn j I n j 2 X
99 98 3adant3 φ n j I n Fn j I n j 2 X
100 ffnfv I n : 2 X I n Fn j I n j 2 X
101 99 100 sylibr φ n j I n : 2 X
102 simp3 φ n j j
103 101 102 ffvelrnd φ n j I n j 2 X
104 elmapi I n j 2 X I n j : X 2
105 103 104 syl φ n j I n j : X 2
106 43 49 105 vtocl φ 1 st F m j I 1 st F m j : X 2
107 37 42 106 vtocl φ 1 st F m 2 nd F m I 1 st F m 2 nd F m : X 2
108 26 34 36 107 syl3anc φ m I 1 st F m 2 nd F m : X 2
109 id m m
110 fvex I 1 st F m 2 nd F m V
111 110 a1i m I 1 st F m 2 nd F m V
112 11 fvmpt2 m I 1 st F m 2 nd F m V G m = I 1 st F m 2 nd F m
113 109 111 112 syl2anc m G m = I 1 st F m 2 nd F m
114 113 adantl φ m G m = I 1 st F m 2 nd F m
115 114 feq1d φ m G m : X 2 I 1 st F m 2 nd F m : X 2
116 108 115 mpbird φ m G m : X 2
117 25 27 7 116 hoiprodcl2 φ m L G m 0 +∞
118 24 117 sselid φ m L G m 0 +∞
119 21 23 118 sge0xrclmpt φ sum^ m L G m *
120 nfv n φ
121 0xr 0 *
122 121 a1i φ n 0 *
123 pnfxr +∞ *
124 123 a1i φ n +∞ *
125 1 adantr φ n X Fin
126 125 16 5 ovnval2b φ n voln* X A n = if X = 0 sup Z A n * <
127 2 neneqd φ ¬ X =
128 127 iffalsed φ if X = 0 sup Z A n * < = sup Z A n * <
129 128 adantr φ n if X = 0 sup Z A n * < = sup Z A n * <
130 126 129 eqtrd φ n voln* X A n = sup Z A n * <
131 sseq1 a = A n a j k X . i j k A n j k X . i j k
132 131 anbi1d a = A n a j k X . i j k z = sum^ j k X vol . i j k A n j k X . i j k z = sum^ j k X vol . i j k
133 132 rexbidv a = A n i 2 X a j k X . i j k z = sum^ j k X vol . i j k i 2 X A n j k X . i j k z = sum^ j k X vol . i j k
134 133 rabbidv a = A n z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k
135 xrex * V
136 135 rabex z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k V
137 136 a1i φ n z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k V
138 5 134 14 137 fvmptd3 φ n Z A n = z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k
139 ssrab2 z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k *
140 139 a1i φ n z * | i 2 X A n j k X . i j k z = sum^ j k X vol . i j k *
141 138 140 eqsstrd φ n Z A n *
142 infxrcl Z A n * sup Z A n * < *
143 141 142 syl φ n sup Z A n * < *
144 130 143 eqeltrd φ n voln* X A n *
145 4 rpred φ E
146 145 adantr φ n E
147 2re 2
148 147 a1i n 2
149 148 78 reexpcld n 2 n
150 149 adantl φ n 2 n
151 148 recnd n 2
152 2ne0 2 0
153 152 a1i n 2 0
154 nnz n n
155 151 153 154 expne0d n 2 n 0
156 155 adantl φ n 2 n 0
157 146 150 156 redivcld φ n E 2 n
158 157 rexrd φ n E 2 n *
159 144 158 xaddcld φ n voln* X A n + 𝑒 E 2 n *
160 125 16 ovncl φ n voln* X A n 0 +∞
161 xrge0ge0 voln* X A n 0 +∞ 0 voln* X A n
162 160 161 syl φ n 0 voln* X A n
163 0red φ n 0
164 82 rpgt0d φ n 0 < E 2 n
165 163 157 164 ltled φ n 0 E 2 n
166 157 ltpnfd φ n E 2 n < +∞
167 158 124 166 xrltled φ n E 2 n +∞
168 122 124 158 165 167 eliccxrd φ n E 2 n 0 +∞
169 144 168 xadd0ge φ n voln* X A n voln* X A n + 𝑒 E 2 n
170 122 144 159 162 169 xrletrd φ n 0 voln* X A n + 𝑒 E 2 n
171 pnfge voln* X A n + 𝑒 E 2 n * voln* X A n + 𝑒 E 2 n +∞
172 159 171 syl φ n voln* X A n + 𝑒 E 2 n +∞
173 122 124 159 170 172 eliccxrd φ n voln* X A n + 𝑒 E 2 n 0 +∞
174 120 23 173 sge0xrclmpt φ sum^ n voln* X A n + 𝑒 E 2 n *
175 sseq1 a = A 1 st F m a j k X . h j k A 1 st F m j k X . h j k
176 175 rabbidv a = A 1 st F m h 2 X | a j k X . h j k = h 2 X | A 1 st F m j k X . h j k
177 3 adantr φ m A : 𝒫 X
178 177 34 ffvelrnd φ m A 1 st F m 𝒫 X
179 52 rabex h 2 X | A 1 st F m j k X . h j k V
180 179 a1i φ m h 2 X | A 1 st F m j k X . h j k V
181 6 176 178 180 fvmptd3 φ m C A 1 st F m = h 2 X | A 1 st F m j k X . h j k
182 ssrab2 h 2 X | A 1 st F m j k X . h j k 2 X
183 182 a1i φ m h 2 X | A 1 st F m j k X . h j k 2 X
184 181 183 eqsstrd φ m C A 1 st F m 2 X
185 fveq2 a = A 1 st F m C a = C A 1 st F m
186 185 eleq2d a = A 1 st F m i C a i C A 1 st F m
187 fveq2 a = A 1 st F m voln* X a = voln* X A 1 st F m
188 187 oveq1d a = A 1 st F m voln* X a + 𝑒 e = voln* X A 1 st F m + 𝑒 e
189 188 breq2d a = A 1 st F m sum^ j L i j voln* X a + 𝑒 e sum^ j L i j voln* X A 1 st F m + 𝑒 e
190 186 189 anbi12d a = A 1 st F m i C a sum^ j L i j voln* X a + 𝑒 e i C A 1 st F m sum^ j L i j voln* X A 1 st F m + 𝑒 e
191 190 rabbidva2 a = A 1 st F m i C a | sum^ j L i j voln* X a + 𝑒 e = i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e
192 191 mpteq2dv a = A 1 st F m e + i C a | sum^ j L i j voln* X a + 𝑒 e = e + i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e
193 67 mptex e + i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e V
194 193 a1i φ m e + i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e V
195 8 192 178 194 fvmptd3 φ m D A 1 st F m = e + i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e
196 oveq2 e = E 2 1 st F m voln* X A 1 st F m + 𝑒 e = voln* X A 1 st F m + 𝑒 E 2 1 st F m
197 196 breq2d e = E 2 1 st F m sum^ j L i j voln* X A 1 st F m + 𝑒 e sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m
198 197 rabbidv e = E 2 1 st F m i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e = i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m
199 198 adantl φ m e = E 2 1 st F m i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 e = i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m
200 26 4 syl φ m E +
201 2rp 2 +
202 201 a1i φ m 2 +
203 34 nnzd φ m 1 st F m
204 202 203 rpexpcld φ m 2 1 st F m +
205 200 204 rpdivcld φ m E 2 1 st F m +
206 fvex C A 1 st F m V
207 206 rabex i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m V
208 207 a1i φ m i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m V
209 195 199 205 208 fvmptd φ m D A 1 st F m E 2 1 st F m = i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m
210 ssrab2 i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m C A 1 st F m
211 210 a1i φ m i C A 1 st F m | sum^ j L i j voln* X A 1 st F m + 𝑒 E 2 1 st F m C A 1 st F m
212 209 211 eqsstrd φ m D A 1 st F m E 2 1 st F m C A 1 st F m
213 44 anbi2d n = 1 st F m φ n φ 1 st F m
214 2fveq3 n = 1 st F m D A n = D A 1 st F m
215 oveq2 n = 1 st F m 2 n = 2 1 st F m
216 215 oveq2d n = 1 st F m E 2 n = E 2 1 st F m
217 214 216 fveq12d n = 1 st F m D A n E 2 n = D A 1 st F m E 2 1 st F m
218 46 217 eleq12d n = 1 st F m I n D A n E 2 n I 1 st F m D A 1 st F m E 2 1 st F m
219 213 218 imbi12d n = 1 st F m φ n I n D A n E 2 n φ 1 st F m I 1 st F m D A 1 st F m E 2 1 st F m
220 43 219 9 vtocl φ 1 st F m I 1 st F m D A 1 st F m E 2 1 st F m
221 26 34 220 syl2anc φ m I 1 st F m D A 1 st F m E 2 1 st F m
222 212 221 sseldd φ m I 1 st F m C A 1 st F m
223 184 222 sseldd φ m I 1 st F m 2 X
224 elmapfn I 1 st F m 2 X I 1 st F m Fn
225 223 224 syl φ m I 1 st F m Fn
226 elmapi I 1 st F m 2 X I 1 st F m : 2 X
227 223 226 syl φ m I 1 st F m : 2 X
228 227 ffvelrnda φ m j I 1 st F m j 2 X
229 228 ralrimiva φ m j I 1 st F m j 2 X
230 225 229 jca φ m I 1 st F m Fn j I 1 st F m j 2 X
231 ffnfv I 1 st F m : 2 X I 1 st F m Fn j I 1 st F m j 2 X
232 230 231 sylibr φ m I 1 st F m : 2 X
233 232 36 ffvelrnd φ m I 1 st F m 2 nd F m 2 X
234 233 11 fmptd φ G : 2 X
235 simpl φ n φ
236 9 86 eleqtrd φ n I n i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n
237 87 236 sselid φ n I n C A n
238 simp3 φ n I n C A n I n C A n
239 55 3adant3 φ n I n C A n C A n = h 2 X | A n j k X . h j k
240 238 239 eleqtrd φ n I n C A n I n h 2 X | A n j k X . h j k
241 fveq1 h = I n h j = I n j
242 241 coeq2d h = I n . h j = . I n j
243 242 fveq1d h = I n . h j k = . I n j k
244 243 ixpeq2dv h = I n k X . h j k = k X . I n j k
245 244 iuneq2d h = I n j k X . h j k = j k X . I n j k
246 245 sseq2d h = I n A n j k X . h j k A n j k X . I n j k
247 246 elrab I n h 2 X | A n j k X . h j k I n 2 X A n j k X . I n j k
248 240 247 sylib φ n I n C A n I n 2 X A n j k X . I n j k
249 248 simprd φ n I n C A n A n j k X . I n j k
250 235 13 237 249 syl3anc φ n A n j k X . I n j k
251 f1ofo F : 1-1 onto × F : onto ×
252 10 251 syl φ F : onto ×
253 252 ad2antrr φ n j F : onto ×
254 opelxpi n j n j ×
255 13 254 sylan φ n j n j ×
256 foelrni F : onto × n j × m F m = n j
257 253 255 256 syl2anc φ n j m F m = n j
258 nfv m φ n j
259 nfre1 m m i | 1 st F i = n k X . I n j k k X . G m k
260 simpl m F m = n j m
261 fveq2 F m = n j 1 st F m = 1 st n j
262 op1stg n V j V 1 st n j = n
263 262 el2v 1 st n j = n
264 263 a1i F m = n j 1 st n j = n
265 261 264 eqtrd F m = n j 1 st F m = n
266 265 adantl m F m = n j 1 st F m = n
267 260 266 jca m F m = n j m 1 st F m = n
268 2fveq3 i = m 1 st F i = 1 st F m
269 268 eqeq1d i = m 1 st F i = n 1 st F m = n
270 269 elrab m i | 1 st F i = n m 1 st F m = n
271 267 270 sylibr m F m = n j m i | 1 st F i = n
272 271 3adant1 φ n j m F m = n j m i | 1 st F i = n
273 260 113 syl m F m = n j G m = I 1 st F m 2 nd F m
274 265 fveq2d F m = n j I 1 st F m = I n
275 vex n V
276 vex j V
277 275 276 op2ndd F m = n j 2 nd F m = j
278 274 277 fveq12d F m = n j I 1 st F m 2 nd F m = I n j
279 278 adantl m F m = n j I 1 st F m 2 nd F m = I n j
280 273 279 eqtr2d m F m = n j I n j = G m
281 280 coeq2d m F m = n j . I n j = . G m
282 281 fveq1d m F m = n j . I n j k = . G m k
283 282 ixpeq2dv m F m = n j k X . I n j k = k X . G m k
284 eqimss k X . I n j k = k X . G m k k X . I n j k k X . G m k
285 283 284 syl m F m = n j k X . I n j k k X . G m k
286 285 3adant1 φ n j m F m = n j k X . I n j k k X . G m k
287 rspe m i | 1 st F i = n k X . I n j k k X . G m k m i | 1 st F i = n k X . I n j k k X . G m k
288 272 286 287 syl2anc φ n j m F m = n j m i | 1 st F i = n k X . I n j k k X . G m k
289 288 3exp φ n j m F m = n j m i | 1 st F i = n k X . I n j k k X . G m k
290 258 259 289 rexlimd φ n j m F m = n j m i | 1 st F i = n k X . I n j k k X . G m k
291 257 290 mpd φ n j m i | 1 st F i = n k X . I n j k k X . G m k
292 291 ralrimiva φ n j m i | 1 st F i = n k X . I n j k k X . G m k
293 iunss2 j m i | 1 st F i = n k X . I n j k k X . G m k j k X . I n j k m i | 1 st F i = n k X . G m k
294 292 293 syl φ n j k X . I n j k m i | 1 st F i = n k X . G m k
295 250 294 sstrd φ n A n m i | 1 st F i = n k X . G m k
296 ssrab2 i | 1 st F i = n
297 iunss1 i | 1 st F i = n m i | 1 st F i = n k X . G m k m k X . G m k
298 296 297 ax-mp m i | 1 st F i = n k X . G m k m k X . G m k
299 298 a1i φ n m i | 1 st F i = n k X . G m k m k X . G m k
300 295 299 sstrd φ n A n m k X . G m k
301 300 ralrimiva φ n A n m k X . G m k
302 iunss n A n m k X . G m k n A n m k X . G m k
303 301 302 sylibr φ n A n m k X . G m k
304 1 2 7 234 303 ovnlecvr φ voln* X n A n sum^ m L G m
305 114 fveq2d φ m L G m = L I 1 st F m 2 nd F m
306 305 mpteq2dva φ m L G m = m L I 1 st F m 2 nd F m
307 306 fveq2d φ sum^ m L G m = sum^ m L I 1 st F m 2 nd F m
308 nfv p φ
309 2fveq3 p = F m I 1 st p = I 1 st F m
310 fveq2 p = F m 2 nd p = 2 nd F m
311 309 310 fveq12d p = F m I 1 st p 2 nd p = I 1 st F m 2 nd F m
312 311 fveq2d p = F m L I 1 st p 2 nd p = L I 1 st F m 2 nd F m
313 eqidd φ m F m = F m
314 nfv k φ p ×
315 1 adantr φ p × X Fin
316 simpl φ p × φ
317 xp1st p × 1 st p
318 317 adantl φ p × 1 st p
319 xp2nd p × 2 nd p
320 319 adantl φ p × 2 nd p
321 fvex 2 nd p V
322 eleq1 j = 2 nd p j 2 nd p
323 322 3anbi3d j = 2 nd p φ 1 st p j φ 1 st p 2 nd p
324 fveq2 j = 2 nd p I 1 st p j = I 1 st p 2 nd p
325 324 feq1d j = 2 nd p I 1 st p j : X 2 I 1 st p 2 nd p : X 2
326 323 325 imbi12d j = 2 nd p φ 1 st p j I 1 st p j : X 2 φ 1 st p 2 nd p I 1 st p 2 nd p : X 2
327 fvex 1 st p V
328 eleq1 n = 1 st p n 1 st p
329 328 3anbi2d n = 1 st p φ n j φ 1 st p j
330 fveq2 n = 1 st p I n = I 1 st p
331 330 fveq1d n = 1 st p I n j = I 1 st p j
332 331 feq1d n = 1 st p I n j : X 2 I 1 st p j : X 2
333 329 332 imbi12d n = 1 st p φ n j I n j : X 2 φ 1 st p j I 1 st p j : X 2
334 327 333 105 vtocl φ 1 st p j I 1 st p j : X 2
335 321 326 334 vtocl φ 1 st p 2 nd p I 1 st p 2 nd p : X 2
336 316 318 320 335 syl3anc φ p × I 1 st p 2 nd p : X 2
337 314 315 7 336 hoiprodcl2 φ p × L I 1 st p 2 nd p 0 +∞
338 24 337 sselid φ p × L I 1 st p 2 nd p 0 +∞
339 308 21 312 23 10 313 338 sge0f1o φ sum^ p × L I 1 st p 2 nd p = sum^ m L I 1 st F m 2 nd F m
340 307 339 eqtr4d φ sum^ m L G m = sum^ p × L I 1 st p 2 nd p
341 nfv j φ
342 275 276 op1std p = n j 1 st p = n
343 342 fveq2d p = n j I 1 st p = I n
344 275 276 op2ndd p = n j 2 nd p = j
345 343 344 fveq12d p = n j I 1 st p 2 nd p = I n j
346 345 fveq2d p = n j L I 1 st p 2 nd p = L I n j
347 nfv k φ n j
348 125 adantr φ n j X Fin
349 96 104 syl φ n j I n j : X 2
350 347 348 7 349 hoiprodcl2 φ n j L I n j 0 +∞
351 24 350 sselid φ n j L I n j 0 +∞
352 351 3impa φ n j L I n j 0 +∞
353 341 346 23 23 352 sge0xp φ sum^ n sum^ j L I n j = sum^ p × L I 1 st p 2 nd p
354 353 eqcomd φ sum^ p × L I 1 st p 2 nd p = sum^ n sum^ j L I n j
355 22 a1i φ n V
356 eqid j L I n j = j L I n j
357 351 356 fmptd φ n j L I n j : 0 +∞
358 355 357 sge0cl φ n sum^ j L I n j 0 +∞
359 fveq1 i = I n i j = I n j
360 359 fveq2d i = I n L i j = L I n j
361 360 mpteq2dv i = I n j L i j = j L I n j
362 361 fveq2d i = I n sum^ j L i j = sum^ j L I n j
363 362 breq1d i = I n sum^ j L i j voln* X A n + 𝑒 E 2 n sum^ j L I n j voln* X A n + 𝑒 E 2 n
364 363 elrab I n i C A n | sum^ j L i j voln* X A n + 𝑒 E 2 n I n C A n sum^ j L I n j voln* X A n + 𝑒 E 2 n
365 236 364 sylib φ n I n C A n sum^ j L I n j voln* X A n + 𝑒 E 2 n
366 365 simprd φ n sum^ j L I n j voln* X A n + 𝑒 E 2 n
367 120 23 358 173 366 sge0lempt φ sum^ n sum^ j L I n j sum^ n voln* X A n + 𝑒 E 2 n
368 354 367 eqbrtrd φ sum^ p × L I 1 st p 2 nd p sum^ n voln* X A n + 𝑒 E 2 n
369 340 368 eqbrtrd φ sum^ m L G m sum^ n voln* X A n + 𝑒 E 2 n
370 20 119 174 304 369 xrletrd φ voln* X n A n sum^ n voln* X A n + 𝑒 E 2 n
371 120 23 160 168 sge0xadd φ sum^ n voln* X A n + 𝑒 E 2 n = sum^ n voln* X A n + 𝑒 sum^ n E 2 n
372 121 a1i φ 0 *
373 123 a1i φ +∞ *
374 145 rexrd φ E *
375 4 rpge0d φ 0 E
376 145 ltpnfd φ E < +∞
377 372 373 374 375 376 elicod φ E 0 +∞
378 377 sge0ad2en φ sum^ n E 2 n = E
379 378 oveq2d φ sum^ n voln* X A n + 𝑒 sum^ n E 2 n = sum^ n voln* X A n + 𝑒 E
380 371 379 eqtrd φ sum^ n voln* X A n + 𝑒 E 2 n = sum^ n voln* X A n + 𝑒 E
381 370 380 breqtrd φ voln* X n A n sum^ n voln* X A n + 𝑒 E