Metamath Proof Explorer


Theorem ply1degltdimlem

Description: Lemma for ply1degltdim . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltdim.p P=Poly1R
ply1degltdim.d D=deg1R
ply1degltdim.s S=D-1−∞N
ply1degltdim.n φN0
ply1degltdim.r φRDivRing
ply1degltdim.e E=P𝑠S
ply1degltdimlem.f F=n0..^NnmulGrpPvar1R
Assertion ply1degltdimlem φranFLBasisE

Proof

Step Hyp Ref Expression
1 ply1degltdim.p P=Poly1R
2 ply1degltdim.d D=deg1R
3 ply1degltdim.s S=D-1−∞N
4 ply1degltdim.n φN0
5 ply1degltdim.r φRDivRing
6 ply1degltdim.e E=P𝑠S
7 ply1degltdimlem.f F=n0..^NnmulGrpPvar1R
8 eqid BaseR=BaseR
9 4 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EN0
10 5 drngringd φRRing
11 10 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0ERRing
12 eqid 0R=0R
13 eqid 0P=0P
14 elmapi aBaseScalarP0..^Na:0..^NBaseScalarP
15 14 adantl φaBaseScalarP0..^Na:0..^NBaseScalarP
16 1 ply1sca RDivRingR=ScalarP
17 5 16 syl φR=ScalarP
18 17 fveq2d φBaseR=BaseScalarP
19 18 adantr φaBaseScalarP0..^NBaseR=BaseScalarP
20 19 feq3d φaBaseScalarP0..^Na:0..^NBaseRa:0..^NBaseScalarP
21 15 20 mpbird φaBaseScalarP0..^Na:0..^NBaseR
22 21 ad2antrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea:0..^NBaseR
23 simpr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EEaPfF=0E
24 ovexd φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0E0..^NV
25 1 5 ply1lvec φPLVec
26 25 lveclmodd φPLMod
27 1 2 3 4 10 ply1degltlss φSLSubSpP
28 eqid LSubSpP=LSubSpP
29 28 lsssubg PLModSLSubSpPSSubGrpP
30 26 27 29 syl2anc φSSubGrpP
31 subgsubm SSubGrpPSSubMndP
32 30 31 syl φSSubMndP
33 32 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0ESSubMndP
34 eqid BaseP=BaseP
35 2 1 34 deg1xrf D:BaseP*
36 ffn D:BaseP*DFnBaseP
37 35 36 mp1i φkBaseScalarPxBaseEDFnBaseP
38 26 ad2antrr φkBaseScalarPxBaseEPLMod
39 simplr φkBaseScalarPxBaseEkBaseScalarP
40 34 28 lssss SLSubSpPSBaseP
41 27 40 syl φSBaseP
42 6 34 ressbas2 SBasePS=BaseE
43 41 42 syl φS=BaseE
44 43 41 eqsstrrd φBaseEBaseP
45 44 sselda φxBaseExBaseP
46 45 adantlr φkBaseScalarPxBaseExBaseP
47 eqid ScalarP=ScalarP
48 eqid P=P
49 eqid BaseScalarP=BaseScalarP
50 34 47 48 49 lmodvscl PLModkBaseScalarPxBasePkPxBaseP
51 38 39 46 50 syl3anc φkBaseScalarPxBaseEkPxBaseP
52 mnfxr −∞*
53 52 a1i φkBaseScalarPxBaseE−∞*
54 4 nn0red φN
55 54 rexrd φN*
56 55 ad2antrr φkBaseScalarPxBaseEN*
57 35 a1i φkBaseScalarPxBaseED:BaseP*
58 57 51 ffvelcdmd φkBaseScalarPxBaseEDkPx*
59 58 mnfled φkBaseScalarPxBaseE−∞DkPx
60 57 46 ffvelcdmd φkBaseScalarPxBaseEDx*
61 10 ad2antrr φkBaseScalarPxBaseERRing
62 18 ad2antrr φkBaseScalarPxBaseEBaseR=BaseScalarP
63 39 62 eleqtrrd φkBaseScalarPxBaseEkBaseR
64 1 2 61 34 8 48 63 46 deg1vscale φkBaseScalarPxBaseEDkPxDx
65 simpll φkBaseScalarPxBaseEφ
66 simpr φkBaseScalarPxBaseExBaseE
67 43 ad2antrr φkBaseScalarPxBaseES=BaseE
68 66 67 eleqtrrd φkBaseScalarPxBaseExS
69 52 a1i φxS−∞*
70 55 adantr φxSN*
71 35 36 mp1i φxSDFnBaseP
72 simpr φxSxS
73 72 3 eleqtrdi φxSxD-1−∞N
74 elpreima DFnBasePxD-1−∞NxBasePDx−∞N
75 74 simplbda DFnBasePxD-1−∞NDx−∞N
76 71 73 75 syl2anc φxSDx−∞N
77 elico1 −∞*N*Dx−∞NDx*−∞DxDx<N
78 77 biimpa −∞*N*Dx−∞NDx*−∞DxDx<N
79 78 simp3d −∞*N*Dx−∞NDx<N
80 69 70 76 79 syl21anc φxSDx<N
81 65 68 80 syl2anc φkBaseScalarPxBaseEDx<N
82 58 60 56 64 81 xrlelttrd φkBaseScalarPxBaseEDkPx<N
83 53 56 58 59 82 elicod φkBaseScalarPxBaseEDkPx−∞N
84 37 51 83 elpreimad φkBaseScalarPxBaseEkPxD-1−∞N
85 84 3 eleqtrrdi φkBaseScalarPxBaseEkPxS
86 85 anasss φkBaseScalarPxBaseEkPxS
87 86 ad5ant15 φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EkBaseScalarPxBaseEkPxS
88 15 ad2antrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea:0..^NBaseScalarP
89 35 36 mp1i φn0..^NDFnBaseP
90 eqid mulGrpP=mulGrpP
91 90 34 mgpbas BaseP=BasemulGrpP
92 eqid mulGrpP=mulGrpP
93 1 ply1ring RRingPRing
94 90 ringmgp PRingmulGrpPMnd
95 10 93 94 3syl φmulGrpPMnd
96 95 adantr φn0..^NmulGrpPMnd
97 elfzonn0 n0..^Nn0
98 97 adantl φn0..^Nn0
99 eqid var1R=var1R
100 99 1 34 vr1cl RRingvar1RBaseP
101 10 100 syl φvar1RBaseP
102 101 adantr φn0..^Nvar1RBaseP
103 91 92 96 98 102 mulgnn0cld φn0..^NnmulGrpPvar1RBaseP
104 52 a1i φn0..^N−∞*
105 55 adantr φn0..^NN*
106 2 1 34 deg1xrcl nmulGrpPvar1RBasePDnmulGrpPvar1R*
107 103 106 syl φn0..^NDnmulGrpPvar1R*
108 107 mnfled φn0..^N−∞DnmulGrpPvar1R
109 97 nn0red n0..^Nn
110 109 rexrd n0..^Nn*
111 110 adantl φn0..^Nn*
112 2 1 99 90 92 deg1pwle RRingn0DnmulGrpPvar1Rn
113 10 97 112 syl2an φn0..^NDnmulGrpPvar1Rn
114 elfzolt2 n0..^Nn<N
115 114 adantl φn0..^Nn<N
116 107 111 105 113 115 xrlelttrd φn0..^NDnmulGrpPvar1R<N
117 104 105 107 108 116 elicod φn0..^NDnmulGrpPvar1R−∞N
118 89 103 117 elpreimad φn0..^NnmulGrpPvar1RD-1−∞N
119 118 3 eleqtrrdi φn0..^NnmulGrpPvar1RS
120 43 adantr φn0..^NS=BaseE
121 119 120 eleqtrd φn0..^NnmulGrpPvar1RBaseE
122 121 7 fmptd φF:0..^NBaseE
123 122 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EF:0..^NBaseE
124 inidm 0..^N0..^N=0..^N
125 87 88 123 24 24 124 off φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EaPfF:0..^NS
126 24 33 125 6 gsumsubm φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EPaPfF=EaPfF
127 ringmnd PRingPMnd
128 10 93 127 3syl φPMnd
129 35 36 mp1i φDFnBaseP
130 34 13 mndidcl PMnd0PBaseP
131 128 130 syl φ0PBaseP
132 52 a1i φ−∞*
133 2 1 34 deg1xrcl 0PBasePD0P*
134 131 133 syl φD0P*
135 134 mnfled φ−∞D0P
136 2 1 13 deg1z RRingD0P=−∞
137 10 136 syl φD0P=−∞
138 54 mnfltd φ−∞<N
139 137 138 eqbrtrd φD0P<N
140 132 55 134 135 139 elicod φD0P−∞N
141 129 131 140 elpreimad φ0PD-1−∞N
142 141 3 eleqtrrdi φ0PS
143 6 34 13 ress0g PMnd0PSSBaseP0P=0E
144 128 142 41 143 syl3anc φ0P=0E
145 144 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0E0P=0E
146 23 126 145 3eqtr4d φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0EPaPfF=0P
147 1 8 9 11 7 12 13 22 146 ply1gsumz φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea=0..^N×0R
148 17 fveq2d φ0R=0ScalarP
149 148 sneqd φ0R=0ScalarP
150 149 xpeq2d φ0..^N×0R=0..^N×0ScalarP
151 150 ad3antrrr φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0E0..^N×0R=0..^N×0ScalarP
152 147 151 eqtrd φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea=0..^N×0ScalarP
153 152 expl φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea=0..^N×0ScalarP
154 153 ralrimiva φaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea=0..^N×0ScalarP
155 119 7 fmptd φF:0..^NS
156 155 frnd φranFS
157 eqid LSpanP=LSpanP
158 28 157 lspssp PLModSLSubSpPranFSLSpanPranFS
159 26 27 156 158 syl3anc φLSpanPranFS
160 fvexd φxSBaseScalarPV
161 ovexd φxS0..^NV
162 41 sselda φxSxBaseP
163 eqid coe1x=coe1x
164 163 34 1 8 coe1f xBasePcoe1x:0BaseR
165 162 164 syl φxScoe1x:0BaseR
166 18 adantr φxSBaseR=BaseScalarP
167 166 feq3d φxScoe1x:0BaseRcoe1x:0BaseScalarP
168 165 167 mpbid φxScoe1x:0BaseScalarP
169 fzo0ssnn0 0..^N0
170 169 a1i φxS0..^N0
171 168 170 fssresd φxScoe1x0..^N:0..^NBaseScalarP
172 elmapg BaseScalarPV0..^NVcoe1x0..^NBaseScalarP0..^Ncoe1x0..^N:0..^NBaseScalarP
173 172 biimpar BaseScalarPV0..^NVcoe1x0..^N:0..^NBaseScalarPcoe1x0..^NBaseScalarP0..^N
174 160 161 171 173 syl21anc φxScoe1x0..^NBaseScalarP0..^N
175 breq1 a=coe1x0..^NfinSupp0ScalarPafinSupp0ScalarPcoe1x0..^N
176 oveq1 a=coe1x0..^NaPfF=coe1x0..^NPfF
177 176 oveq2d a=coe1x0..^NPaPfF=Pcoe1x0..^NPfF
178 177 eqeq2d a=coe1x0..^Nx=PaPfFx=Pcoe1x0..^NPfF
179 175 178 anbi12d a=coe1x0..^NfinSupp0ScalarPax=PaPfFfinSupp0ScalarPcoe1x0..^Nx=Pcoe1x0..^NPfF
180 179 adantl φxSa=coe1x0..^NfinSupp0ScalarPax=PaPfFfinSupp0ScalarPcoe1x0..^Nx=Pcoe1x0..^NPfF
181 165 ffund φxSFuncoe1x
182 fzofi 0..^NFin
183 182 a1i φxS0..^NFin
184 fvexd φxS0ScalarPV
185 181 183 184 resfifsupp φxSfinSupp0ScalarPcoe1x0..^N
186 ringcmn PRingPCMnd
187 10 93 186 3syl φPCMnd
188 187 adantr φxSPCMnd
189 nn0ex 0V
190 189 a1i φxS0V
191 26 ad2antrr φxSi0PLMod
192 168 ffvelcdmda φxSi0coe1xiBaseScalarP
193 10 ad2antrr φxSi0RRing
194 193 93 94 3syl φxSi0mulGrpPMnd
195 simpr φxSi0i0
196 193 100 syl φxSi0var1RBaseP
197 91 92 194 195 196 mulgnn0cld φxSi0imulGrpPvar1RBaseP
198 34 47 48 49 lmodvscl PLModcoe1xiBaseScalarPimulGrpPvar1RBasePcoe1xiPimulGrpPvar1RBaseP
199 191 192 197 198 syl3anc φxSi0coe1xiPimulGrpPvar1RBaseP
200 eqid i0coe1xiPimulGrpPvar1R=i0coe1xiPimulGrpPvar1R
201 199 200 fmptd φxSi0coe1xiPimulGrpPvar1R:0BaseP
202 nfv iφxS
203 202 199 200 fnmptd φxSi0coe1xiPimulGrpPvar1RFn0
204 fveq2 i=jcoe1xi=coe1xj
205 oveq1 i=jimulGrpPvar1R=jmulGrpPvar1R
206 204 205 oveq12d i=jcoe1xiPimulGrpPvar1R=coe1xjPjmulGrpPvar1R
207 simplr φxSj0Njj0
208 ovexd φxSj0Njcoe1xjPjmulGrpPvar1RV
209 200 206 207 208 fvmptd3 φxSj0Nji0coe1xiPimulGrpPvar1Rj=coe1xjPjmulGrpPvar1R
210 162 ad2antrr φxSj0NjxBaseP
211 icossxr −∞N*
212 211 76 sselid φxSDx*
213 212 ad2antrr φxSj0NjDx*
214 55 ad3antrrr φxSj0NjN*
215 207 nn0red φxSj0Njj
216 215 rexrd φxSj0Njj*
217 80 ad2antrr φxSj0NjDx<N
218 simpr φxSj0NjNj
219 213 214 216 217 218 xrltletrd φxSj0NjDx<j
220 2 1 34 12 163 deg1lt xBasePj0Dx<jcoe1xj=0R
221 210 207 219 220 syl3anc φxSj0Njcoe1xj=0R
222 221 oveq1d φxSj0Njcoe1xjPjmulGrpPvar1R=0RPjmulGrpPvar1R
223 148 ad3antrrr φxSj0Nj0R=0ScalarP
224 223 oveq1d φxSj0Nj0RPjmulGrpPvar1R=0ScalarPPjmulGrpPvar1R
225 26 ad3antrrr φxSj0NjPLMod
226 95 ad3antrrr φxSj0NjmulGrpPMnd
227 101 ad3antrrr φxSj0Njvar1RBaseP
228 91 92 226 207 227 mulgnn0cld φxSj0NjjmulGrpPvar1RBaseP
229 eqid 0ScalarP=0ScalarP
230 34 47 48 229 13 lmod0vs PLModjmulGrpPvar1RBaseP0ScalarPPjmulGrpPvar1R=0P
231 225 228 230 syl2anc φxSj0Nj0ScalarPPjmulGrpPvar1R=0P
232 224 231 eqtrd φxSj0Nj0RPjmulGrpPvar1R=0P
233 209 222 232 3eqtrd φxSj0Nji0coe1xiPimulGrpPvar1Rj=0P
234 4 nn0zd φN
235 234 adantr φxSN
236 203 233 235 suppssnn0 φxSi0coe1xiPimulGrpPvar1Rsupp0P0..^N
237 190 mptexd φxSi0coe1xiPimulGrpPvar1RV
238 203 fnfund φxSFuni0coe1xiPimulGrpPvar1R
239 fvexd φxS0PV
240 suppssfifsupp i0coe1xiPimulGrpPvar1RVFuni0coe1xiPimulGrpPvar1R0PV0..^NFini0coe1xiPimulGrpPvar1Rsupp0P0..^NfinSupp0Pi0coe1xiPimulGrpPvar1R
241 237 238 239 183 236 240 syl32anc φxSfinSupp0Pi0coe1xiPimulGrpPvar1R
242 34 13 188 190 201 236 241 gsumres φxSPi0coe1xiPimulGrpPvar1R0..^N=Pi0coe1xiPimulGrpPvar1R
243 fvexd φxScoe1xV
244 ovexd φ0..^NV
245 155 244 fexd φFV
246 245 adantr φxSFV
247 offres coe1xVFVcoe1xPfF0..^N=coe1x0..^NPfF0..^N
248 243 246 247 syl2anc φxScoe1xPfF0..^N=coe1x0..^NPfF0..^N
249 165 ffnd φxScoe1xFn0
250 155 ffnd φFFn0..^N
251 250 adantr φxSFFn0..^N
252 sseqin2 0..^N000..^N=0..^N
253 169 252 mpbi 00..^N=0..^N
254 eqidd φxSj0coe1xj=coe1xj
255 oveq1 n=jnmulGrpPvar1R=jmulGrpPvar1R
256 simpr φxSj0..^Nj0..^N
257 ovexd φxSj0..^NjmulGrpPvar1RV
258 7 255 256 257 fvmptd3 φxSj0..^NFj=jmulGrpPvar1R
259 249 251 190 161 253 254 258 ofval φxSj0..^Ncoe1xPfFj=coe1xjPjmulGrpPvar1R
260 169 256 sselid φxSj0..^Nj0
261 ovexd φxSj0..^Ncoe1xjPjmulGrpPvar1RV
262 200 206 260 261 fvmptd3 φxSj0..^Ni0coe1xiPimulGrpPvar1Rj=coe1xjPjmulGrpPvar1R
263 259 262 eqtr4d φxSj0..^Ncoe1xPfFj=i0coe1xiPimulGrpPvar1Rj
264 263 ralrimiva φxSj0..^Ncoe1xPfFj=i0coe1xiPimulGrpPvar1Rj
265 249 251 190 161 253 offn φxScoe1xPfFFn0..^N
266 ssidd φxS0..^N0..^N
267 fvreseq0 coe1xPfFFn0..^Ni0coe1xiPimulGrpPvar1RFn00..^N0..^N0..^N0coe1xPfF0..^N=i0coe1xiPimulGrpPvar1R0..^Nj0..^Ncoe1xPfFj=i0coe1xiPimulGrpPvar1Rj
268 265 203 266 170 267 syl22anc φxScoe1xPfF0..^N=i0coe1xiPimulGrpPvar1R0..^Nj0..^Ncoe1xPfFj=i0coe1xiPimulGrpPvar1Rj
269 264 268 mpbird φxScoe1xPfF0..^N=i0coe1xiPimulGrpPvar1R0..^N
270 fnresdm FFn0..^NF0..^N=F
271 250 270 syl φF0..^N=F
272 271 adantr φxSF0..^N=F
273 272 oveq2d φxScoe1x0..^NPfF0..^N=coe1x0..^NPfF
274 248 269 273 3eqtr3rd φxScoe1x0..^NPfF=i0coe1xiPimulGrpPvar1R0..^N
275 274 oveq2d φxSPcoe1x0..^NPfF=Pi0coe1xiPimulGrpPvar1R0..^N
276 10 adantr φxSRRing
277 1 99 34 48 90 92 163 ply1coe RRingxBasePx=Pi0coe1xiPimulGrpPvar1R
278 276 162 277 syl2anc φxSx=Pi0coe1xiPimulGrpPvar1R
279 242 275 278 3eqtr4rd φxSx=Pcoe1x0..^NPfF
280 185 279 jca φxSfinSupp0ScalarPcoe1x0..^Nx=Pcoe1x0..^NPfF
281 174 180 280 rspcedvd φxSaBaseScalarP0..^NfinSupp0ScalarPax=PaPfF
282 103 7 fmptd φF:0..^NBaseP
283 157 34 49 47 229 48 282 26 244 ellspd φxLSpanPF0..^NaBaseScalarP0..^NfinSupp0ScalarPax=PaPfF
284 283 adantr φxSxLSpanPF0..^NaBaseScalarP0..^NfinSupp0ScalarPax=PaPfF
285 281 284 mpbird φxSxLSpanPF0..^N
286 imadmrn FdomF=ranF
287 155 fdmd φdomF=0..^N
288 287 imaeq2d φFdomF=F0..^N
289 286 288 eqtr3id φranF=F0..^N
290 289 fveq2d φLSpanPranF=LSpanPF0..^N
291 290 adantr φxSLSpanPranF=LSpanPF0..^N
292 285 291 eleqtrrd φxSxLSpanPranF
293 159 292 eqelssd φLSpanPranF=S
294 eqid LSpanE=LSpanE
295 6 157 294 28 lsslsp PLModSLSubSpPranFSLSpanPranF=LSpanEranF
296 26 27 156 295 syl3anc φLSpanPranF=LSpanEranF
297 293 296 43 3eqtr3d φLSpanEranF=BaseE
298 eqid BaseE=BaseE
299 2 fvexi DV
300 cnvexg DVD-1V
301 imaexg D-1VD-1−∞NV
302 299 300 301 mp2b D-1−∞NV
303 3 302 eqeltri SV
304 6 47 resssca SVScalarP=ScalarE
305 303 304 ax-mp ScalarP=ScalarE
306 305 fveq2i BaseScalarP=BaseScalarE
307 eqid ScalarE=ScalarE
308 6 48 ressvsca SVP=E
309 303 308 ax-mp P=E
310 eqid 0E=0E
311 305 fveq2i 0ScalarP=0ScalarE
312 eqid LBasisE=LBasisE
313 6 28 lsslvec PLVecSLSubSpPELVec
314 25 27 313 syl2anc φELVec
315 314 lveclmodd φELMod
316 17 5 eqeltrrd φScalarPDivRing
317 drngnzr ScalarPDivRingScalarPNzRing
318 316 317 syl φScalarPNzRing
319 305 318 eqeltrrid φScalarENzRing
320 121 ralrimiva φn0..^NnmulGrpPvar1RBaseE
321 drngnzr RDivRingRNzRing
322 5 321 syl φRNzRing
323 322 ad2antrr φn0..^Ni0..^NRNzRing
324 98 adantr φn0..^Ni0..^Nn0
325 elfzonn0 i0..^Ni0
326 325 adantl φn0..^Ni0..^Ni0
327 1 99 92 323 324 326 ply1moneq φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
328 327 biimpd φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
329 328 anasss φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
330 329 ralrimivva φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
331 oveq1 n=inmulGrpPvar1R=imulGrpPvar1R
332 7 331 f1mpt F:0..^N1-1BaseEn0..^NnmulGrpPvar1RBaseEn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
333 320 330 332 sylanbrc φF:0..^N1-1BaseE
334 298 306 307 309 310 311 312 294 315 319 244 333 islbs5 φranFLBasisEaBaseScalarP0..^NfinSupp0ScalarPaEaPfF=0Ea=0..^N×0ScalarPLSpanEranF=BaseE
335 154 297 334 mpbir2and φranFLBasisE