Metamath Proof Explorer


Theorem dvasin

Description: Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018)

Ref Expression
Hypothesis dvasin.d D=−∞11+∞
Assertion dvasin DarcsinD=xD11x2

Proof

Step Hyp Ref Expression
1 dvasin.d D=−∞11+∞
2 df-asin arcsin=xilogix+1x2
3 2 reseq1i arcsinD=xilogix+1x2D
4 difss −∞11+∞
5 1 4 eqsstri D
6 resmpt Dxilogix+1x2D=xDilogix+1x2
7 5 6 ax-mp xilogix+1x2D=xDilogix+1x2
8 3 7 eqtri arcsinD=xDilogix+1x2
9 8 oveq2i DarcsinD=dxDilogix+1x2dx
10 cnelprrecn
11 10 a1i
12 5 sseli xDx
13 ax-icn i
14 mulcl ixix
15 13 14 mpan xix
16 ax-1cn 1
17 sqcl xx2
18 subcl 1x21x2
19 16 17 18 sylancr x1x2
20 19 sqrtcld x1x2
21 15 20 addcld xix+1x2
22 12 21 syl xDix+1x2
23 asinlem xix+1x20
24 12 23 syl xDix+1x20
25 22 24 logcld xDlogix+1x2
26 25 adantl xDlogix+1x2
27 ovexd xDi1x2V
28 simpr xix+1x2ix+1x2
29 asinlem3 x0ix+1x2
30 rere ix+1x2ix+1x2=ix+1x2
31 30 breq2d ix+1x20ix+1x20ix+1x2
32 31 biimpac 0ix+1x2ix+1x20ix+1x2
33 29 32 sylan xix+1x20ix+1x2
34 23 adantr xix+1x2ix+1x20
35 28 33 34 ne0gt0d xix+1x20<ix+1x2
36 0re 0
37 ltnle 0ix+1x20<ix+1x2¬ix+1x20
38 36 37 mpan ix+1x20<ix+1x2¬ix+1x20
39 38 adantl xix+1x20<ix+1x2¬ix+1x20
40 35 39 mpbid xix+1x2¬ix+1x20
41 40 ex xix+1x2¬ix+1x20
42 12 41 syl xDix+1x2¬ix+1x20
43 imor ix+1x2¬ix+1x20¬ix+1x2¬ix+1x20
44 42 43 sylib xD¬ix+1x2¬ix+1x20
45 44 orcomd xD¬ix+1x20¬ix+1x2
46 45 olcd xD¬−∞<ix+1x2¬ix+1x20¬ix+1x2
47 3ianor ¬ix+1x2−∞<ix+1x2ix+1x20¬ix+1x2¬−∞<ix+1x2¬ix+1x20
48 3orrot ¬ix+1x2¬−∞<ix+1x2¬ix+1x20¬−∞<ix+1x2¬ix+1x20¬ix+1x2
49 3orass ¬−∞<ix+1x2¬ix+1x20¬ix+1x2¬−∞<ix+1x2¬ix+1x20¬ix+1x2
50 47 48 49 3bitrri ¬−∞<ix+1x2¬ix+1x20¬ix+1x2¬ix+1x2−∞<ix+1x2ix+1x20
51 mnfxr −∞*
52 elioc2 −∞*0ix+1x2−∞0ix+1x2−∞<ix+1x2ix+1x20
53 51 36 52 mp2an ix+1x2−∞0ix+1x2−∞<ix+1x2ix+1x20
54 50 53 xchbinxr ¬−∞<ix+1x2¬ix+1x20¬ix+1x2¬ix+1x2−∞0
55 46 54 sylib xD¬ix+1x2−∞0
56 22 55 eldifd xDix+1x2−∞0
57 56 adantl xDix+1x2−∞0
58 ovexd xDiix+1x21x2V
59 eldifi y−∞0y
60 eldifn y−∞0¬y−∞0
61 0xr 0*
62 mnflt0 −∞<0
63 ubioc1 −∞*0*−∞<00−∞0
64 51 61 62 63 mp3an 0−∞0
65 eleq1 y=0y−∞00−∞0
66 64 65 mpbiri y=0y−∞0
67 66 necon3bi ¬y−∞0y0
68 60 67 syl y−∞0y0
69 59 68 logcld y−∞0logy
70 69 adantl y−∞0logy
71 ovexd y−∞01yV
72 13 a1i xDi
73 72 12 mulcld xDix
74 73 adantl xDix
75 13 a1i xDi
76 12 adantl xDx
77 1cnd xD1
78 simpr xx
79 1cnd x1
80 11 dvmptid dxxdx=x1
81 5 a1i D
82 eqid TopOpenfld=TopOpenfld
83 82 cnfldtopon TopOpenfldTopOn
84 83 toponrestid TopOpenfld=TopOpenfld𝑡
85 82 recld2 ClsdTopOpenfld
86 neg1rr 1
87 iocmnfcld 1−∞1ClsdtopGenran.
88 86 87 ax-mp −∞1ClsdtopGenran.
89 1re 1
90 icopnfcld 11+∞ClsdtopGenran.
91 89 90 ax-mp 1+∞ClsdtopGenran.
92 uncld −∞1ClsdtopGenran.1+∞ClsdtopGenran.−∞11+∞ClsdtopGenran.
93 88 91 92 mp2an −∞11+∞ClsdtopGenran.
94 82 tgioo2 topGenran.=TopOpenfld𝑡
95 94 fveq2i ClsdtopGenran.=ClsdTopOpenfld𝑡
96 93 95 eleqtri −∞11+∞ClsdTopOpenfld𝑡
97 restcldr ClsdTopOpenfld−∞11+∞ClsdTopOpenfld𝑡−∞11+∞ClsdTopOpenfld
98 85 96 97 mp2an −∞11+∞ClsdTopOpenfld
99 83 toponunii =TopOpenfld
100 99 cldopn −∞11+∞ClsdTopOpenfld−∞11+∞TopOpenfld
101 98 100 ax-mp −∞11+∞TopOpenfld
102 1 101 eqeltri DTopOpenfld
103 102 a1i DTopOpenfld
104 11 78 79 80 81 84 82 103 dvmptres dxDxdx=xD1
105 13 a1i i
106 11 76 77 104 105 dvmptcmul dxDixdx=xDi1
107 13 mulridi i1=i
108 107 mpteq2i xDi1=xDi
109 106 108 eqtrdi dxDixdx=xDi
110 12 sqcld xDx2
111 16 110 18 sylancr xD1x2
112 111 sqrtcld xD1x2
113 112 adantl xD1x2
114 ovexd xDx1x2V
115 elin xDxDx
116 1 asindmre D=11
117 116 eqimssi D11
118 117 sseli xDx11
119 115 118 sylbir xDxx11
120 incom 0+∞−∞0=−∞00+∞
121 pnfxr +∞*
122 df-ioc .=x*,y*z*|x<zzy
123 df-ioo .=x*,y*z*|x<zz<y
124 xrltnle 0*w*0<w¬w0
125 122 123 124 ixxdisj −∞*0*+∞*−∞00+∞=
126 51 61 121 125 mp3an −∞00+∞=
127 120 126 eqtri 0+∞−∞0=
128 elioore x11x
129 128 resqcld x11x2
130 resubcl 1x21x2
131 89 129 130 sylancr x111x2
132 86 rexri 1*
133 1xr 1*
134 elioo2 1*1*x11x1<xx<1
135 132 133 134 mp2an x11x1<xx<1
136 recn xx
137 136 abscld xx
138 136 absge0d x0x
139 0le1 01
140 lt2sq x0x101x<1x2<12
141 89 139 140 mpanr12 x0xx<1x2<12
142 137 138 141 syl2anc xx<1x2<12
143 abslt x1x<11<xx<1
144 89 143 mpan2 xx<11<xx<1
145 absresq xx2=x2
146 sq1 12=1
147 146 a1i x12=1
148 145 147 breq12d xx2<12x2<1
149 resqcl xx2
150 posdif x21x2<10<1x2
151 149 89 150 sylancl xx2<10<1x2
152 148 151 bitrd xx2<120<1x2
153 142 144 152 3bitr3d x1<xx<10<1x2
154 153 biimpd x1<xx<10<1x2
155 154 3impib x1<xx<10<1x2
156 135 155 sylbi x110<1x2
157 131 156 elrpd x111x2+
158 ioorp 0+∞=+
159 157 158 eleqtrrdi x111x20+∞
160 disjel 0+∞−∞0=1x20+∞¬1x2−∞0
161 127 159 160 sylancr x11¬1x2−∞0
162 119 161 syl xDx¬1x2−∞0
163 elioc2 −∞*01x2−∞01x2−∞<1x21x20
164 51 36 163 mp2an 1x2−∞01x2−∞<1x21x20
165 164 biimpi 1x2−∞01x2−∞<1x21x20
166 165 simp1d 1x2−∞01x2
167 resubcl 11x211x2
168 89 166 167 sylancr 1x2−∞011x2
169 nncan 1x211x2=x2
170 16 169 mpan x211x2=x2
171 170 eleq1d x211x2x2
172 171 biimpa x211x2x2
173 168 172 sylan2 x21x2−∞0x2
174 166 adantl x21x2−∞01x2
175 165 simp3d 1x2−∞01x20
176 175 adantl x21x2−∞01x20
177 letr 1x2011x20011x21
178 36 89 177 mp3an23 1x21x20011x21
179 139 178 mpan2i 1x21x201x21
180 174 176 179 sylc x21x2−∞01x21
181 subge0 11x2011x21x21
182 89 174 181 sylancr x21x2−∞0011x21x21
183 180 182 mpbird x21x2−∞0011x2
184 170 adantr x21x2−∞011x2=x2
185 183 184 breqtrd x21x2−∞00x2
186 173 185 resqrtcld x21x2−∞0x2
187 17 186 sylan x1x2−∞0x2
188 eleq1 x=x2xx2
189 187 188 syl5ibrcom x1x2−∞0x=x2x
190 187 renegcld x1x2−∞0x2
191 eleq1 x=x2xx2
192 190 191 syl5ibrcom x1x2−∞0x=x2x
193 eqid x2=x2
194 eqsqrtor xx2x2=x2x=x2x=x2
195 17 194 mpdan xx2=x2x=x2x=x2
196 193 195 mpbii xx=x2x=x2
197 196 adantr x1x2−∞0x=x2x=x2
198 189 192 197 mpjaod x1x2−∞0x
199 198 stoic1a x¬x¬1x2−∞0
200 12 199 sylan xD¬x¬1x2−∞0
201 162 200 pm2.61dan xD¬1x2−∞0
202 111 201 eldifd xD1x2−∞0
203 202 adantl xD1x2−∞0
204 2cnd x2
205 id xx
206 204 205 mulcld x2x
207 206 negcld x2x
208 207 adantl x2x
209 12 208 sylan2 xD2x
210 59 sqrtcld y−∞0y
211 210 adantl y−∞0y
212 ovexd y−∞012yV
213 19 adantl x1x2
214 36 a1i x0
215 1cnd 1
216 11 215 dvmptc dx1dx=x0
217 17 adantl xx2
218 2cn 2
219 mulcl 2x2x
220 218 219 mpan x2x
221 220 adantl x2x
222 2nn 2
223 dvexp 2dxx2dx=x2x21
224 222 223 ax-mp dxx2dx=x2x21
225 2m1e1 21=1
226 225 oveq2i x21=x1
227 exp1 xx1=x
228 226 227 eqtrid xx21=x
229 228 oveq2d x2x21=2x
230 229 mpteq2ia x2x21=x2x
231 224 230 eqtri dxx2dx=x2x
232 231 a1i dxx2dx=x2x
233 11 79 214 216 217 221 232 dvmptsub dx1x2dx=x02x
234 df-neg 2x=02x
235 234 mpteq2i x2x=x02x
236 233 235 eqtr4di dx1x2dx=x2x
237 11 213 208 236 81 84 82 103 dvmptres dxD1x2dx=xD2x
238 eqid −∞0=−∞0
239 238 dvcnsqrt dy−∞0ydy=y−∞012y
240 239 a1i dy−∞0ydy=y−∞012y
241 fveq2 y=1x2y=1x2
242 241 oveq2d y=1x22y=21x2
243 242 oveq2d y=1x212y=121x2
244 11 11 203 209 211 212 237 240 241 243 dvmptco dxD1x2dx=xD121x22x
245 mulneg2 2x2x=2x
246 218 12 245 sylancr xD2x=2x
247 246 oveq1d xD2x21x2=2x21x2
248 12 negcld xDx
249 eldifn x−∞11+∞¬x−∞11+∞
250 249 1 eleq2s xD¬x−∞11+∞
251 id x=1x=1
252 mnflt 1−∞<1
253 86 252 ax-mp −∞<1
254 ubioc1 −∞*1*−∞<11−∞1
255 51 132 253 254 mp3an 1−∞1
256 251 255 eqeltrdi x=1x−∞1
257 id x=1x=1
258 ltpnf 11<+∞
259 89 258 ax-mp 1<+∞
260 lbico1 1*+∞*1<+∞11+∞
261 133 121 259 260 mp3an 11+∞
262 257 261 eqeltrdi x=1x1+∞
263 256 262 orim12i x=1x=1x−∞1x1+∞
264 263 orcoms x=1x=1x−∞1x1+∞
265 elun x−∞11+∞x−∞1x1+∞
266 264 265 sylibr x=1x=1x−∞11+∞
267 250 266 nsyl xD¬x=1x=1
268 1cnd x1x2=01
269 17 adantr x1x2=0x2
270 19 adantr x1x2=01x2
271 simpr x1x2=01x2=0
272 270 271 sqr00d x1x2=01x2=0
273 268 269 272 subeq0d x1x2=01=x2
274 146 273 eqtr2id x1x2=0x2=12
275 274 ex x1x2=0x2=12
276 sqeqor x1x2=12x=1x=1
277 16 276 mpan2 xx2=12x=1x=1
278 275 277 sylibd x1x2=0x=1x=1
279 278 necon3bd x¬x=1x=11x20
280 12 267 279 sylc xD1x20
281 2cnne0 220
282 divcan5 x1x21x202202x21x2=x1x2
283 281 282 mp3an3 x1x21x202x21x2=x1x2
284 248 112 280 283 syl12anc xD2x21x2=x1x2
285 218 12 219 sylancr xD2x
286 285 negcld xD2x
287 mulcl 21x221x2
288 218 112 287 sylancr xD21x2
289 mulne0 2201x21x2021x20
290 281 289 mpan 1x21x2021x20
291 112 280 290 syl2anc xD21x20
292 286 288 291 divrec2d xD2x21x2=121x22x
293 247 284 292 3eqtr3rd xD121x22x=x1x2
294 293 mpteq2ia xD121x22x=xDx1x2
295 244 294 eqtrdi dxD1x2dx=xDx1x2
296 11 74 75 109 113 114 295 dvmptadd dxDix+1x2dx=xDi+x1x2
297 mulcl i1x2i1x2
298 13 20 297 sylancr xi1x2
299 12 298 syl xDi1x2
300 299 248 112 280 divdird xDi1x2+x1x2=i1x21x2+x1x2
301 ixi ii=1
302 301 eqcomi 1=ii
303 302 oveq1i -1x=iix
304 mulm1 x-1x=x
305 mulass iixiix=iix
306 13 13 305 mp3an12 xiix=iix
307 303 304 306 3eqtr3a xx=iix
308 307 oveq1d x-x+i1x2=iix+i1x2
309 negcl xx
310 298 309 addcomd xi1x2+x=-x+i1x2
311 13 a1i xi
312 311 15 20 adddid xiix+1x2=iix+i1x2
313 308 310 312 3eqtr4d xi1x2+x=iix+1x2
314 12 313 syl xDi1x2+x=iix+1x2
315 314 oveq1d xDi1x2+x1x2=iix+1x21x2
316 72 112 280 divcan4d xDi1x21x2=i
317 316 oveq1d xDi1x21x2+x1x2=i+x1x2
318 300 315 317 3eqtr3rd xDi+x1x2=iix+1x21x2
319 318 mpteq2ia xDi+x1x2=xDiix+1x21x2
320 296 319 eqtrdi dxDix+1x2dx=xDiix+1x21x2
321 logf1o log:01-1 ontoranlog
322 f1of log:01-1 ontoranloglog:0ranlog
323 321 322 mp1i log:0ranlog
324 snssi 0−∞00−∞0
325 64 324 ax-mp 0−∞0
326 sscon 0−∞0−∞00
327 325 326 mp1i −∞00
328 323 327 feqresmpt log−∞0=y−∞0logy
329 328 oveq2d Dlog−∞0=dy−∞0logydy
330 238 dvlog Dlog−∞0=y−∞01y
331 329 330 eqtr3di dy−∞0logydy=y−∞01y
332 fveq2 y=ix+1x2logy=logix+1x2
333 oveq2 y=ix+1x21y=1ix+1x2
334 11 11 57 58 70 71 320 331 332 333 dvmptco dxDlogix+1x2dx=xD1ix+1x2iix+1x21x2
335 22 24 reccld xD1ix+1x2
336 mulcl iix+1x2iix+1x2
337 13 21 336 sylancr xiix+1x2
338 12 337 syl xDiix+1x2
339 335 338 112 280 divassd xD1ix+1x2iix+1x21x2=1ix+1x2iix+1x21x2
340 338 22 24 divrec2d xDiix+1x2ix+1x2=1ix+1x2iix+1x2
341 72 22 24 divcan4d xDiix+1x2ix+1x2=i
342 340 341 eqtr3d xD1ix+1x2iix+1x2=i
343 342 oveq1d xD1ix+1x2iix+1x21x2=i1x2
344 339 343 eqtr3d xD1ix+1x2iix+1x21x2=i1x2
345 344 mpteq2ia xD1ix+1x2iix+1x21x2=xDi1x2
346 334 345 eqtrdi dxDlogix+1x2dx=xDi1x2
347 negicn i
348 347 a1i i
349 11 26 27 346 348 dvmptcmul dxDilogix+1x2dx=xDii1x2
350 349 mptru dxDilogix+1x2dx=xDii1x2
351 divass ii1x21x20ii1x2=ii1x2
352 347 13 351 mp3an12 1x21x20ii1x2=ii1x2
353 112 280 352 syl2anc xDii1x2=ii1x2
354 13 13 mulneg1i ii=ii
355 301 negeqi ii=-1
356 negneg1e1 -1=1
357 354 355 356 3eqtri ii=1
358 357 oveq1i ii1x2=11x2
359 353 358 eqtr3di xDii1x2=11x2
360 359 mpteq2ia xDii1x2=xD11x2
361 9 350 360 3eqtri DarcsinD=xD11x2