Metamath Proof Explorer


Theorem ioodvbdlimc2lem

Description: Limit at the upper bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc2lem.a φA
ioodvbdlimc2lem.b φB
ioodvbdlimc2lem.altb φA<B
ioodvbdlimc2lem.f φF:AB
ioodvbdlimc2lem.dmdv φdomF=AB
ioodvbdlimc2lem.dvbd φyxABFxy
ioodvbdlimc2lem.y Y=supranxABFx<
ioodvbdlimc2lem.m M=1BA+1
ioodvbdlimc2lem.s S=jMFB1j
ioodvbdlimc2lem.r R=jMB1j
ioodvbdlimc2lem.n N=ifMYx2+1Yx2+1M
ioodvbdlimc2lem.ch χφx+jNSjlim supS<x2zABzB<1j
Assertion ioodvbdlimc2lem φlim supSFlimB

Proof

Step Hyp Ref Expression
1 ioodvbdlimc2lem.a φA
2 ioodvbdlimc2lem.b φB
3 ioodvbdlimc2lem.altb φA<B
4 ioodvbdlimc2lem.f φF:AB
5 ioodvbdlimc2lem.dmdv φdomF=AB
6 ioodvbdlimc2lem.dvbd φyxABFxy
7 ioodvbdlimc2lem.y Y=supranxABFx<
8 ioodvbdlimc2lem.m M=1BA+1
9 ioodvbdlimc2lem.s S=jMFB1j
10 ioodvbdlimc2lem.r R=jMB1j
11 ioodvbdlimc2lem.n N=ifMYx2+1Yx2+1M
12 ioodvbdlimc2lem.ch χφx+jNSjlim supS<x2zABzB<1j
13 uzssz M
14 zssre
15 13 14 sstri M
16 15 a1i φM
17 2 1 resubcld φBA
18 1 2 posdifd φA<B0<BA
19 3 18 mpbid φ0<BA
20 19 gt0ne0d φBA0
21 17 20 rereccld φ1BA
22 0red φ0
23 17 19 recgt0d φ0<1BA
24 22 21 23 ltled φ01BA
25 flge0nn0 1BA01BA1BA0
26 21 24 25 syl2anc φ1BA0
27 peano2nn0 1BA01BA+10
28 26 27 syl φ1BA+10
29 8 28 eqeltrid φM0
30 29 nn0zd φM
31 eqid M=M
32 31 uzsup MsupM*<=+∞
33 30 32 syl φsupM*<=+∞
34 4 adantr φjMF:AB
35 1 rexrd φA*
36 35 adantr φjMA*
37 2 rexrd φB*
38 37 adantr φjMB*
39 2 adantr φjMB
40 eluzelre jMj
41 40 adantl φjMj
42 0red φjM0
43 0red jM0
44 1red jM1
45 43 44 readdcld jM0+1
46 45 adantl φjM0+1
47 43 ltp1d jM0<0+1
48 47 adantl φjM0<0+1
49 eluzel2 jMM
50 49 zred jMM
51 50 adantl φjMM
52 21 flcld φ1BA
53 52 zred φ1BA
54 1red φ1
55 26 nn0ge0d φ01BA
56 22 53 54 55 leadd1dd φ0+11BA+1
57 56 8 breqtrrdi φ0+1M
58 57 adantr φjM0+1M
59 eluzle jMMj
60 59 adantl φjMMj
61 46 51 41 58 60 letrd φjM0+1j
62 42 46 41 48 61 ltletrd φjM0<j
63 62 gt0ne0d φjMj0
64 41 63 rereccld φjM1j
65 39 64 resubcld φjMB1j
66 1 adantr φjMA
67 29 nn0red φM
68 22 54 readdcld φ0+1
69 53 54 readdcld φ1BA+1
70 22 ltp1d φ0<0+1
71 22 68 69 70 56 ltletrd φ0<1BA+1
72 71 8 breqtrrdi φ0<M
73 72 gt0ne0d φM0
74 67 73 rereccld φ1M
75 74 adantr φjM1M
76 39 75 resubcld φjMB1M
77 8 eqcomi 1BA+1=M
78 77 oveq2i 11BA+1=1M
79 78 74 eqeltrid φ11BA+1
80 21 23 elrpd φ1BA+
81 69 71 elrpd φ1BA+1+
82 1rp 1+
83 82 a1i φ1+
84 fllelt 1BA1BA1BA1BA<1BA+1
85 21 84 syl φ1BA1BA1BA<1BA+1
86 85 simprd φ1BA<1BA+1
87 80 81 83 86 ltdiv2dd φ11BA+1<11BA
88 17 recnd φBA
89 88 20 recrecd φ11BA=BA
90 87 89 breqtrd φ11BA+1<BA
91 79 17 2 90 ltsub2dd φBBA<B11BA+1
92 2 recnd φB
93 1 recnd φA
94 92 93 nncand φBBA=A
95 78 oveq2i B11BA+1=B1M
96 95 a1i φB11BA+1=B1M
97 91 94 96 3brtr3d φA<B1M
98 97 adantr φjMA<B1M
99 67 72 elrpd φM+
100 99 adantr φjMM+
101 41 62 elrpd φjMj+
102 1red φjM1
103 0le1 01
104 103 a1i φjM01
105 100 101 102 104 60 lediv2ad φjM1j1M
106 64 75 39 105 lesub2dd φjMB1MB1j
107 66 76 65 98 106 ltletrd φjMA<B1j
108 101 rpreccld φjM1j+
109 39 108 ltsubrpd φjMB1j<B
110 36 38 65 107 109 eliood φjMB1jAB
111 34 110 ffvelcdmd φjMFB1j
112 111 9 fmptd φS:M
113 1 2 3 4 5 6 dvbdfbdioo φbxABFxb
114 67 adantr φxABFxbM
115 simpr φjMjM
116 9 fvmpt2 jMFB1jSj=FB1j
117 115 111 116 syl2anc φjMSj=FB1j
118 117 fveq2d φjMSj=FB1j
119 118 adantlr φxABFxbjMSj=FB1j
120 simplr φxABFxbjMxABFxb
121 110 adantlr φxABFxbjMB1jAB
122 2fveq3 x=B1jFx=FB1j
123 122 breq1d x=B1jFxbFB1jb
124 123 rspccva xABFxbB1jABFB1jb
125 120 121 124 syl2anc φxABFxbjMFB1jb
126 119 125 eqbrtrd φxABFxbjMSjb
127 126 a1d φxABFxbjMMjSjb
128 127 ralrimiva φxABFxbjMMjSjb
129 breq1 k=MkjMj
130 129 imbi1d k=MkjSjbMjSjb
131 130 ralbidv k=MjMkjSjbjMMjSjb
132 131 rspcev MjMMjSjbkjMkjSjb
133 114 128 132 syl2anc φxABFxbkjMkjSjb
134 133 ex φxABFxbkjMkjSjb
135 134 reximdv φbxABFxbbkjMkjSjb
136 113 135 mpd φbkjMkjSjb
137 16 33 112 136 limsupre φlim supS
138 137 recnd φlim supS
139 eluzelre jNj
140 139 adantl φx+jNj
141 0red φx+jN0
142 52 peano2zd φ1BA+1
143 8 142 eqeltrid φM
144 143 adantr φx+M
145 144 zred φx+M
146 145 adantr φx+jNM
147 72 ad2antrr φx+jN0<M
148 ioomidp ABA<BA+B2AB
149 1 2 3 148 syl3anc φA+B2AB
150 ne0i A+B2ABAB
151 149 150 syl φAB
152 ioossre AB
153 152 a1i φAB
154 dvfre F:ABABF:domF
155 4 153 154 syl2anc φF:domF
156 5 feq2d φF:domFF:AB
157 155 156 mpbid φF:AB
158 157 ffvelcdmda φxABFx
159 158 recnd φxABFx
160 159 abscld φxABFx
161 eqid xABFx=xABFx
162 eqid supranxABFx<=supranxABFx<
163 151 160 6 161 162 suprnmpt φsupranxABFx<xABFxsupranxABFx<
164 163 simpld φsupranxABFx<
165 7 164 eqeltrid φY
166 165 adantr φx+Y
167 rpre x+x
168 167 rehalfcld x+x2
169 168 adantl φx+x2
170 167 recnd x+x
171 170 adantl φx+x
172 2cnd φx+2
173 rpne0 x+x0
174 173 adantl φx+x0
175 2ne0 20
176 175 a1i φx+20
177 171 172 174 176 divne0d φx+x20
178 166 169 177 redivcld φx+Yx2
179 178 flcld φx+Yx2
180 179 peano2zd φx+Yx2+1
181 180 144 ifcld φx+ifMYx2+1Yx2+1M
182 11 181 eqeltrid φx+N
183 182 zred φx+N
184 183 adantr φx+jNN
185 180 zred φx+Yx2+1
186 max1 MYx2+1MifMYx2+1Yx2+1M
187 145 185 186 syl2anc φx+MifMYx2+1Yx2+1M
188 187 11 breqtrrdi φx+MN
189 188 adantr φx+jNMN
190 eluzle jNNj
191 190 adantl φx+jNNj
192 146 184 140 189 191 letrd φx+jNMj
193 141 146 140 147 192 ltletrd φx+jN0<j
194 193 gt0ne0d φx+jNj0
195 140 194 rereccld φx+jN1j
196 140 193 recgt0d φx+jN0<1j
197 195 196 elrpd φx+jN1j+
198 197 adantr φx+jNSjlim supS<x21j+
199 12 biimpi χφx+jNSjlim supS<x2zABzB<1j
200 simp-5l φx+jNSjlim supS<x2zABzB<1jφ
201 199 200 syl χφ
202 201 4 syl χF:AB
203 199 simplrd χzAB
204 202 203 ffvelcdmd χFz
205 204 recnd χFz
206 201 112 syl χS:M
207 simp-5r φx+jNSjlim supS<x2zABzB<1jx+
208 199 207 syl χx+
209 eluz2 NMMNMN
210 144 182 188 209 syl3anbrc φx+NM
211 201 208 210 syl2anc χNM
212 uzss NMNM
213 211 212 syl χNM
214 simp-4r φx+jNSjlim supS<x2zABzB<1jjN
215 199 214 syl χjN
216 213 215 sseldd χjM
217 206 216 ffvelcdmd χSj
218 217 recnd χSj
219 201 138 syl χlim supS
220 205 218 219 npncand χFzSj+Sj-lim supS=Fzlim supS
221 220 eqcomd χFzlim supS=FzSj+Sj-lim supS
222 221 fveq2d χFzlim supS=FzSj+Sj-lim supS
223 204 217 resubcld χFzSj
224 201 137 syl χlim supS
225 217 224 resubcld χSjlim supS
226 223 225 readdcld χFzSj+Sj-lim supS
227 226 recnd χFzSj+Sj-lim supS
228 227 abscld χFzSj+Sj-lim supS
229 223 recnd χFzSj
230 229 abscld χFzSj
231 225 recnd χSjlim supS
232 231 abscld χSjlim supS
233 230 232 readdcld χFzSj+Sjlim supS
234 208 rpred χx
235 229 231 abstrid χFzSj+Sj-lim supSFzSj+Sjlim supS
236 234 rehalfcld χx2
237 201 216 117 syl2anc χSj=FB1j
238 237 oveq2d χFzSj=FzFB1j
239 238 fveq2d χFzSj=FzFB1j
240 239 230 eqeltrrd χFzFB1j
241 201 165 syl χY
242 152 203 sselid χz
243 201 216 65 syl2anc χB1j
244 242 243 resubcld χzB1j
245 241 244 remulcld χYzB1j
246 201 1 syl χA
247 201 2 syl χB
248 201 5 syl χdomF=AB
249 163 simprd φxABFxsupranxABFx<
250 7 breq2i FxYFxsupranxABFx<
251 250 ralbii xABFxYxABFxsupranxABFx<
252 249 251 sylibr φxABFxY
253 201 252 syl χxABFxY
254 2fveq3 w=xFw=Fx
255 254 breq1d w=xFwYFxY
256 255 cbvralvw wABFwYxABFxY
257 253 256 sylibr χwABFwY
258 201 216 110 syl2anc χB1jAB
259 243 rexrd χB1j*
260 201 37 syl χB*
261 15 216 sselid χj
262 201 216 63 syl2anc χj0
263 261 262 rereccld χ1j
264 247 242 resubcld χBz
265 242 247 resubcld χzB
266 265 recnd χzB
267 266 abscld χzB
268 264 leabsd χBzBz
269 201 92 syl χB
270 242 recnd χz
271 269 270 abssubd χBz=zB
272 268 271 breqtrd χBzzB
273 199 simprd χzB<1j
274 264 267 263 272 273 lelttrd χBz<1j
275 247 242 263 274 ltsub23d χB1j<z
276 201 35 syl χA*
277 iooltub A*B*zABz<B
278 276 260 203 277 syl3anc χz<B
279 259 260 242 275 278 eliood χzB1jB
280 246 247 202 248 241 257 258 279 dvbdfbdioolem1 χFzFB1jYzB1jFzFB1jYBA
281 280 simpld χFzFB1jYzB1j
282 201 216 64 syl2anc χ1j
283 241 282 remulcld χY1j
284 157 149 ffvelcdmd φFA+B2
285 284 recnd φFA+B2
286 285 abscld φFA+B2
287 285 absge0d φ0FA+B2
288 2fveq3 x=A+B2Fx=FA+B2
289 7 eqcomi supranxABFx<=Y
290 289 a1i x=A+B2supranxABFx<=Y
291 288 290 breq12d x=A+B2FxsupranxABFx<FA+B2Y
292 291 rspcva A+B2ABxABFxsupranxABFx<FA+B2Y
293 149 249 292 syl2anc φFA+B2Y
294 22 286 165 287 293 letrd φ0Y
295 201 294 syl χ0Y
296 282 recnd χ1j
297 sub31 zB1jzB1j=1jBz
298 270 269 296 297 syl3anc χzB1j=1jBz
299 242 247 posdifd χz<B0<Bz
300 278 299 mpbid χ0<Bz
301 264 300 elrpd χBz+
302 282 301 ltsubrpd χ1jBz<1j
303 298 302 eqbrtrd χzB1j<1j
304 244 282 303 ltled χzB1j1j
305 244 282 241 295 304 lemul2ad χYzB1jY1j
306 283 adantr χY=0Y1j
307 236 adantr χY=0x2
308 oveq1 Y=0Y1j=01j
309 296 mul02d χ01j=0
310 308 309 sylan9eqr χY=0Y1j=0
311 208 rphalfcld χx2+
312 311 rpgt0d χ0<x2
313 312 adantr χY=00<x2
314 310 313 eqbrtrd χY=0Y1j<x2
315 306 307 314 ltled χY=0Y1jx2
316 241 adantr χ¬Y=0Y
317 295 adantr χ¬Y=00Y
318 neqne ¬Y=0Y0
319 318 adantl χ¬Y=0Y0
320 316 317 319 ne0gt0d χ¬Y=00<Y
321 283 adantr χ0<YY1j
322 15 211 sselid χN
323 0red χ0
324 201 208 145 syl2anc χM
325 201 72 syl χ0<M
326 201 208 188 syl2anc χMN
327 323 324 322 325 326 ltletrd χ0<N
328 327 gt0ne0d χN0
329 322 328 rereccld χ1N
330 241 329 remulcld χY1N
331 330 adantr χ0<YY1N
332 236 adantr χ0<Yx2
333 282 adantr χ0<Y1j
334 329 adantr χ0<Y1N
335 241 adantr χ0<YY
336 295 adantr χ0<Y0Y
337 322 327 elrpd χN+
338 201 216 101 syl2anc χj+
339 1red χ1
340 103 a1i χ01
341 215 190 syl χNj
342 337 338 339 340 341 lediv2ad χ1j1N
343 342 adantr χ0<Y1j1N
344 333 334 335 336 343 lemul2ad χ0<YY1jY1N
345 234 recnd χx
346 2cnd χ2
347 208 rpne0d χx0
348 175 a1i χ20
349 345 346 347 348 divne0d χx20
350 241 236 349 redivcld χYx2
351 350 adantr χ0<YYx2
352 simpr χ0<Y0<Y
353 312 adantr χ0<Y0<x2
354 335 332 352 353 divgt0d χ0<Y0<Yx2
355 351 354 elrpd χ0<YYx2+
356 355 rprecred χ0<Y1Yx2
357 337 adantr χ0<YN+
358 1red χ0<Y1
359 103 a1i χ0<Y01
360 350 flcld χYx2
361 360 peano2zd χYx2+1
362 361 zred χYx2+1
363 201 143 syl χM
364 361 363 ifcld χifMYx2+1Yx2+1M
365 11 364 eqeltrid χN
366 365 zred χN
367 flltp1 Yx2Yx2<Yx2+1
368 350 367 syl χYx2<Yx2+1
369 201 67 syl χM
370 max2 MYx2+1Yx2+1ifMYx2+1Yx2+1M
371 369 362 370 syl2anc χYx2+1ifMYx2+1Yx2+1M
372 371 11 breqtrrdi χYx2+1N
373 350 362 366 368 372 ltletrd χYx2<N
374 350 322 373 ltled χYx2N
375 374 adantr χ0<YYx2N
376 355 357 358 359 375 lediv2ad χ0<Y1N1Yx2
377 334 356 335 336 376 lemul2ad χ0<YY1NY1Yx2
378 335 recnd χ0<YY
379 351 recnd χ0<YYx2
380 354 gt0ne0d χ0<YYx20
381 378 379 380 divrecd χ0<YYYx2=Y1Yx2
382 332 recnd χ0<Yx2
383 352 gt0ne0d χ0<YY0
384 349 adantr χ0<Yx20
385 378 382 383 384 ddcand χ0<YYYx2=x2
386 381 385 eqtr3d χ0<YY1Yx2=x2
387 377 386 breqtrd χ0<YY1Nx2
388 321 331 332 344 387 letrd χ0<YY1jx2
389 320 388 syldan χ¬Y=0Y1jx2
390 315 389 pm2.61dan χY1jx2
391 245 283 236 305 390 letrd χYzB1jx2
392 240 245 236 281 391 letrd χFzFB1jx2
393 239 392 eqbrtrd χFzSjx2
394 simpllr φx+jNSjlim supS<x2zABzB<1jSjlim supS<x2
395 199 394 syl χSjlim supS<x2
396 230 232 236 236 393 395 leltaddd χFzSj+Sjlim supS<x2+x2
397 345 2halvesd χx2+x2=x
398 396 397 breqtrd χFzSj+Sjlim supS<x
399 228 233 234 235 398 lelttrd χFzSj+Sj-lim supS<x
400 222 399 eqbrtrd χFzlim supS<x
401 12 400 sylbir φx+jNSjlim supS<x2zABzB<1jFzlim supS<x
402 401 adantrl φx+jNSjlim supS<x2zABzBzB<1jFzlim supS<x
403 402 ex φx+jNSjlim supS<x2zABzBzB<1jFzlim supS<x
404 403 ralrimiva φx+jNSjlim supS<x2zABzBzB<1jFzlim supS<x
405 brimralrspcev 1j+zABzBzB<1jFzlim supS<xy+zABzBzB<yFzlim supS<x
406 198 404 405 syl2anc φx+jNSjlim supS<x2y+zABzBzB<yFzlim supS<x
407 simpr φx+bNbN
408 407 iftrued φx+bNifbNNb=N
409 uzid NNN
410 182 409 syl φx+NN
411 410 adantr φx+bNNN
412 408 411 eqeltrd φx+bNifbNNbN
413 412 adantlr φx+bbNifbNNbN
414 iffalse ¬bNifbNNb=b
415 414 adantl φx+b¬bNifbNNb=b
416 182 ad2antrr φx+b¬bNN
417 simplr φx+b¬bNb
418 416 zred φx+b¬bNN
419 417 zred φx+b¬bNb
420 simpr φx+b¬bN¬bN
421 418 419 ltnled φx+b¬bNN<b¬bN
422 420 421 mpbird φx+b¬bNN<b
423 418 419 422 ltled φx+b¬bNNb
424 eluz2 bNNbNb
425 416 417 423 424 syl3anbrc φx+b¬bNbN
426 415 425 eqeltrd φx+b¬bNifbNNbN
427 413 426 pm2.61dan φx+bifbNNbN
428 427 adantr φx+bcbScSclim supS<x2ifbNNbN
429 simpr φx+bcbScSclim supS<x2cbScSclim supS<x2
430 simpr φx+bb
431 182 adantr φx+bN
432 431 430 ifcld φx+bifbNNb
433 430 zred φx+bb
434 431 zred φx+bN
435 max1 bNbifbNNb
436 433 434 435 syl2anc φx+bbifbNNb
437 eluz2 ifbNNbbbifbNNbbifbNNb
438 430 432 436 437 syl3anbrc φx+bifbNNbb
439 438 adantr φx+bcbScSclim supS<x2ifbNNbb
440 fveq2 c=ifbNNbSc=SifbNNb
441 440 eleq1d c=ifbNNbScSifbNNb
442 440 fvoveq1d c=ifbNNbSclim supS=SifbNNblim supS
443 442 breq1d c=ifbNNbSclim supS<x2SifbNNblim supS<x2
444 441 443 anbi12d c=ifbNNbScSclim supS<x2SifbNNbSifbNNblim supS<x2
445 444 rspccva cbScSclim supS<x2ifbNNbbSifbNNbSifbNNblim supS<x2
446 429 439 445 syl2anc φx+bcbScSclim supS<x2SifbNNbSifbNNblim supS<x2
447 446 simprd φx+bcbScSclim supS<x2SifbNNblim supS<x2
448 fveq2 j=ifbNNbSj=SifbNNb
449 448 fvoveq1d j=ifbNNbSjlim supS=SifbNNblim supS
450 449 breq1d j=ifbNNbSjlim supS<x2SifbNNblim supS<x2
451 450 rspcev ifbNNbNSifbNNblim supS<x2jNSjlim supS<x2
452 428 447 451 syl2anc φx+bcbScSclim supS<x2jNSjlim supS<x2
453 ax-resscn
454 453 a1i φ
455 4 454 fssd φF:AB
456 dvcn F:ABABdomF=ABF:ABcn
457 454 455 153 5 456 syl31anc φF:ABcn
458 cncfcdm F:ABcnF:ABcnF:AB
459 454 457 458 syl2anc φF:ABcnF:AB
460 4 459 mpbird φF:ABcn
461 110 10 fmptd φR:MAB
462 eqid jMFRj=jMFRj
463 climrel Rel
464 463 a1i φRel
465 fvex MV
466 465 mptex jMBV
467 466 a1i φjMBV
468 eqidd φmMjMB=jMB
469 eqidd φmMj=mB=B
470 simpr φmMmM
471 2 adantr φmMB
472 468 469 470 471 fvmptd φmMjMBm=B
473 31 30 467 92 472 climconst φjMBB
474 465 mptex jMB1jV
475 10 474 eqeltri RV
476 475 a1i φRV
477 1cnd φ1
478 elnnnn0b MM00<M
479 29 72 478 sylanbrc φM
480 divcnvg 1MjM1j0
481 477 479 480 syl2anc φjM1j0
482 eqidd φiMjMB=jMB
483 eqidd φiMj=iB=B
484 simpr φiMiM
485 2 adantr φiMB
486 482 483 484 485 fvmptd φiMjMBi=B
487 486 485 eqeltrd φiMjMBi
488 487 recnd φiMjMBi
489 eqidd φiMjM1j=jM1j
490 oveq2 j=i1j=1i
491 490 adantl φiMj=i1j=1i
492 15 484 sselid φiMi
493 0red φiM0
494 67 adantr φiMM
495 72 adantr φiM0<M
496 eluzle iMMi
497 496 adantl φiMMi
498 493 494 492 495 497 ltletrd φiM0<i
499 498 gt0ne0d φiMi0
500 492 499 rereccld φiM1i
501 489 491 484 500 fvmptd φiMjM1ji=1i
502 492 recnd φiMi
503 502 499 reccld φiM1i
504 501 503 eqeltrd φiMjM1ji
505 490 oveq2d j=iB1j=B1i
506 ovex B1iV
507 505 10 506 fvmpt iMRi=B1i
508 507 adantl φiMRi=B1i
509 486 501 oveq12d φiMjMBijM1ji=B1i
510 508 509 eqtr4d φiMRi=jMBijM1ji
511 31 30 473 476 481 488 504 510 climsub φRB0
512 92 subid1d φB0=B
513 511 512 breqtrd φRB
514 releldm RelRBRdom
515 464 513 514 syl2anc φRdom
516 fveq2 l=kl=k
517 fveq2 l=kRl=Rk
518 517 oveq2d l=kRhRl=RhRk
519 518 fveq2d l=kRhRl=RhRk
520 519 breq1d l=kRhRl<xsupranzABFz<+1RhRk<xsupranzABFz<+1
521 516 520 raleqbidv l=khlRhRl<xsupranzABFz<+1hkRhRk<xsupranzABFz<+1
522 521 cbvrabv lM|hlRhRl<xsupranzABFz<+1=kM|hkRhRk<xsupranzABFz<+1
523 fveq2 h=iRh=Ri
524 523 fvoveq1d h=iRhRk=RiRk
525 524 breq1d h=iRhRk<xsupranzABFz<+1RiRk<xsupranzABFz<+1
526 525 cbvralvw hkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1
527 526 rgenw kMhkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1
528 rabbi kMhkRhRk<xsupranzABFz<+1ikRiRk<xsupranzABFz<+1kM|hkRhRk<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
529 527 528 mpbi kM|hkRhRk<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
530 522 529 eqtri lM|hlRhRl<xsupranzABFz<+1=kM|ikRiRk<xsupranzABFz<+1
531 530 infeq1i suplM|hlRhRl<xsupranzABFz<+1<=supkM|ikRiRk<xsupranzABFz<+1<
532 1 2 3 460 5 6 30 461 462 515 531 ioodvbdlimc1lem1 φjMFRjlim supjMFRj
533 10 fvmpt2 jMB1jRj=B1j
534 115 65 533 syl2anc φjMRj=B1j
535 534 eqcomd φjMB1j=Rj
536 535 fveq2d φjMFB1j=FRj
537 536 mpteq2dva φjMFB1j=jMFRj
538 9 537 eqtrid φS=jMFRj
539 538 fveq2d φlim supS=lim supjMFRj
540 532 538 539 3brtr4d φSlim supS
541 465 mptex jMFB1jV
542 9 541 eqeltri SV
543 542 a1i φSV
544 eqidd φcSc=Sc
545 543 544 clim φSlim supSlim supSa+bcbScSclim supS<a
546 540 545 mpbid φlim supSa+bcbScSclim supS<a
547 546 simprd φa+bcbScSclim supS<a
548 547 adantr φx+a+bcbScSclim supS<a
549 simpr φx+x+
550 549 rphalfcld φx+x2+
551 breq2 a=x2Sclim supS<aSclim supS<x2
552 551 anbi2d a=x2ScSclim supS<aScSclim supS<x2
553 552 rexralbidv a=x2bcbScSclim supS<abcbScSclim supS<x2
554 553 rspccva a+bcbScSclim supS<ax2+bcbScSclim supS<x2
555 548 550 554 syl2anc φx+bcbScSclim supS<x2
556 452 555 r19.29a φx+jNSjlim supS<x2
557 406 556 r19.29a φx+y+zABzBzB<yFzlim supS<x
558 557 ralrimiva φx+y+zABzBzB<yFzlim supS<x
559 ioosscn AB
560 559 a1i φAB
561 455 560 92 ellimc3 φlim supSFlimBlim supSx+y+zABzBzB<yFzlim supS<x
562 138 558 561 mpbir2and φlim supSFlimB