Metamath Proof Explorer


Theorem poimirlem22

Description: Lemma for poimir , that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
poimirlem22.1 φ F : 0 N 1 0 K 1 N
poimirlem22.2 φ T S
poimirlem22.3 φ n 1 N p ran F p n 0
poimirlem22.4 φ n 1 N p ran F p n K
Assertion poimirlem22 φ ∃! z S z T

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
3 poimirlem22.1 φ F : 0 N 1 0 K 1 N
4 poimirlem22.2 φ T S
5 poimirlem22.3 φ n 1 N p ran F p n 0
6 poimirlem22.4 φ n 1 N p ran F p n K
7 1 adantr φ 2 nd T 1 N 1 N
8 3 adantr φ 2 nd T 1 N 1 F : 0 N 1 0 K 1 N
9 4 adantr φ 2 nd T 1 N 1 T S
10 simpr φ 2 nd T 1 N 1 2 nd T 1 N 1
11 7 2 8 9 10 poimirlem15 φ 2 nd T 1 N 1 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T S
12 fveq2 t = T 2 nd t = 2 nd T
13 12 breq2d t = T y < 2 nd t y < 2 nd T
14 13 ifbid t = T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
15 14 csbeq1d t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
16 2fveq3 t = T 1 st 1 st t = 1 st 1 st T
17 2fveq3 t = T 2 nd 1 st t = 2 nd 1 st T
18 17 imaeq1d t = T 2 nd 1 st t 1 j = 2 nd 1 st T 1 j
19 18 xpeq1d t = T 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 1 j × 1
20 17 imaeq1d t = T 2 nd 1 st t j + 1 N = 2 nd 1 st T j + 1 N
21 20 xpeq1d t = T 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T j + 1 N × 0
22 19 21 uneq12d t = T 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
23 16 22 oveq12d t = T 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
24 23 csbeq2dv t = T if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
25 15 24 eqtrd t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
26 25 mpteq2dv t = T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
27 26 eqeq2d t = T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
28 27 2 elrab2 T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
29 28 simprbi T S F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
30 4 29 syl φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
31 30 adantr φ 2 nd T 1 N 1 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
32 elrabi T t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
33 32 2 eleq2s T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
34 4 33 syl φ T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
35 xp1st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
36 34 35 syl φ 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
37 xp1st 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st T 0 ..^ K 1 N
38 36 37 syl φ 1 st 1 st T 0 ..^ K 1 N
39 elmapi 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T : 1 N 0 ..^ K
40 38 39 syl φ 1 st 1 st T : 1 N 0 ..^ K
41 elfzoelz n 0 ..^ K n
42 41 ssriv 0 ..^ K
43 fss 1 st 1 st T : 1 N 0 ..^ K 0 ..^ K 1 st 1 st T : 1 N
44 40 42 43 sylancl φ 1 st 1 st T : 1 N
45 44 adantr φ 2 nd T 1 N 1 1 st 1 st T : 1 N
46 xp2nd 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
47 36 46 syl φ 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
48 fvex 2 nd 1 st T V
49 f1oeq1 f = 2 nd 1 st T f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
50 48 49 elab 2 nd 1 st T f | f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
51 47 50 sylib φ 2 nd 1 st T : 1 N 1-1 onto 1 N
52 51 adantr φ 2 nd T 1 N 1 2 nd 1 st T : 1 N 1-1 onto 1 N
53 7 31 45 52 10 poimirlem1 φ 2 nd T 1 N 1 ¬ * n 1 N F 2 nd T 1 n F 2 nd T n
54 53 adantr φ 2 nd T 1 N 1 z S ¬ * n 1 N F 2 nd T 1 n F 2 nd T n
55 1 ad3antrrr φ 2 nd T 1 N 1 z S 2 nd z 2 nd T N
56 fveq2 t = z 2 nd t = 2 nd z
57 56 breq2d t = z y < 2 nd t y < 2 nd z
58 57 ifbid t = z if y < 2 nd t y y + 1 = if y < 2 nd z y y + 1
59 58 csbeq1d t = z if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
60 2fveq3 t = z 1 st 1 st t = 1 st 1 st z
61 2fveq3 t = z 2 nd 1 st t = 2 nd 1 st z
62 61 imaeq1d t = z 2 nd 1 st t 1 j = 2 nd 1 st z 1 j
63 62 xpeq1d t = z 2 nd 1 st t 1 j × 1 = 2 nd 1 st z 1 j × 1
64 61 imaeq1d t = z 2 nd 1 st t j + 1 N = 2 nd 1 st z j + 1 N
65 64 xpeq1d t = z 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st z j + 1 N × 0
66 63 65 uneq12d t = z 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
67 60 66 oveq12d t = z 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
68 67 csbeq2dv t = z if y < 2 nd z y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
69 59 68 eqtrd t = z if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
70 69 mpteq2dv t = z y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
71 70 eqeq2d t = z F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
72 71 2 elrab2 z S z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
73 72 simprbi z S F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
74 73 ad2antlr φ 2 nd T 1 N 1 z S 2 nd z 2 nd T F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
75 elrabi z t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
76 75 2 eleq2s z S z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
77 xp1st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
78 76 77 syl z S 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
79 xp1st 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st z 0 ..^ K 1 N
80 78 79 syl z S 1 st 1 st z 0 ..^ K 1 N
81 elmapi 1 st 1 st z 0 ..^ K 1 N 1 st 1 st z : 1 N 0 ..^ K
82 80 81 syl z S 1 st 1 st z : 1 N 0 ..^ K
83 fss 1 st 1 st z : 1 N 0 ..^ K 0 ..^ K 1 st 1 st z : 1 N
84 82 42 83 sylancl z S 1 st 1 st z : 1 N
85 84 ad2antlr φ 2 nd T 1 N 1 z S 2 nd z 2 nd T 1 st 1 st z : 1 N
86 xp2nd 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st z f | f : 1 N 1-1 onto 1 N
87 78 86 syl z S 2 nd 1 st z f | f : 1 N 1-1 onto 1 N
88 fvex 2 nd 1 st z V
89 f1oeq1 f = 2 nd 1 st z f : 1 N 1-1 onto 1 N 2 nd 1 st z : 1 N 1-1 onto 1 N
90 88 89 elab 2 nd 1 st z f | f : 1 N 1-1 onto 1 N 2 nd 1 st z : 1 N 1-1 onto 1 N
91 87 90 sylib z S 2 nd 1 st z : 1 N 1-1 onto 1 N
92 91 ad2antlr φ 2 nd T 1 N 1 z S 2 nd z 2 nd T 2 nd 1 st z : 1 N 1-1 onto 1 N
93 simpllr φ 2 nd T 1 N 1 z S 2 nd z 2 nd T 2 nd T 1 N 1
94 xp2nd z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 2 nd z 0 N
95 76 94 syl z S 2 nd z 0 N
96 95 adantl φ 2 nd T 1 N 1 z S 2 nd z 0 N
97 eldifsn 2 nd z 0 N 2 nd T 2 nd z 0 N 2 nd z 2 nd T
98 97 biimpri 2 nd z 0 N 2 nd z 2 nd T 2 nd z 0 N 2 nd T
99 96 98 sylan φ 2 nd T 1 N 1 z S 2 nd z 2 nd T 2 nd z 0 N 2 nd T
100 55 74 85 92 93 99 poimirlem2 φ 2 nd T 1 N 1 z S 2 nd z 2 nd T * n 1 N F 2 nd T 1 n F 2 nd T n
101 100 ex φ 2 nd T 1 N 1 z S 2 nd z 2 nd T * n 1 N F 2 nd T 1 n F 2 nd T n
102 101 necon1bd φ 2 nd T 1 N 1 z S ¬ * n 1 N F 2 nd T 1 n F 2 nd T n 2 nd z = 2 nd T
103 54 102 mpd φ 2 nd T 1 N 1 z S 2 nd z = 2 nd T
104 eleq1 2 nd z = 2 nd T 2 nd z 1 N 1 2 nd T 1 N 1
105 104 biimparc 2 nd T 1 N 1 2 nd z = 2 nd T 2 nd z 1 N 1
106 105 anim2i φ 2 nd T 1 N 1 2 nd z = 2 nd T φ 2 nd z 1 N 1
107 106 anassrs φ 2 nd T 1 N 1 2 nd z = 2 nd T φ 2 nd z 1 N 1
108 73 adantl φ 2 nd z 1 N 1 z S F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
109 breq1 y = 0 y < 2 nd z 0 < 2 nd z
110 id y = 0 y = 0
111 109 110 ifbieq1d y = 0 if y < 2 nd z y y + 1 = if 0 < 2 nd z 0 y + 1
112 elfznn 2 nd z 1 N 1 2 nd z
113 112 nngt0d 2 nd z 1 N 1 0 < 2 nd z
114 113 iftrued 2 nd z 1 N 1 if 0 < 2 nd z 0 y + 1 = 0
115 114 ad2antlr φ 2 nd z 1 N 1 z S if 0 < 2 nd z 0 y + 1 = 0
116 111 115 sylan9eqr φ 2 nd z 1 N 1 z S y = 0 if y < 2 nd z y y + 1 = 0
117 116 csbeq1d φ 2 nd z 1 N 1 z S y = 0 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 0 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
118 c0ex 0 V
119 oveq2 j = 0 1 j = 1 0
120 fz10 1 0 =
121 119 120 syl6eq j = 0 1 j =
122 121 imaeq2d j = 0 2 nd 1 st z 1 j = 2 nd 1 st z
123 122 xpeq1d j = 0 2 nd 1 st z 1 j × 1 = 2 nd 1 st z × 1
124 oveq1 j = 0 j + 1 = 0 + 1
125 0p1e1 0 + 1 = 1
126 124 125 syl6eq j = 0 j + 1 = 1
127 126 oveq1d j = 0 j + 1 N = 1 N
128 127 imaeq2d j = 0 2 nd 1 st z j + 1 N = 2 nd 1 st z 1 N
129 128 xpeq1d j = 0 2 nd 1 st z j + 1 N × 0 = 2 nd 1 st z 1 N × 0
130 123 129 uneq12d j = 0 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 2 nd 1 st z × 1 2 nd 1 st z 1 N × 0
131 ima0 2 nd 1 st z =
132 131 xpeq1i 2 nd 1 st z × 1 = × 1
133 0xp × 1 =
134 132 133 eqtri 2 nd 1 st z × 1 =
135 134 uneq1i 2 nd 1 st z × 1 2 nd 1 st z 1 N × 0 = 2 nd 1 st z 1 N × 0
136 uncom 2 nd 1 st z 1 N × 0 = 2 nd 1 st z 1 N × 0
137 un0 2 nd 1 st z 1 N × 0 = 2 nd 1 st z 1 N × 0
138 135 136 137 3eqtri 2 nd 1 st z × 1 2 nd 1 st z 1 N × 0 = 2 nd 1 st z 1 N × 0
139 130 138 syl6eq j = 0 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 2 nd 1 st z 1 N × 0
140 139 oveq2d j = 0 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 1 st 1 st z + f 2 nd 1 st z 1 N × 0
141 118 140 csbie 0 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 1 st 1 st z + f 2 nd 1 st z 1 N × 0
142 f1ofo 2 nd 1 st z : 1 N 1-1 onto 1 N 2 nd 1 st z : 1 N onto 1 N
143 91 142 syl z S 2 nd 1 st z : 1 N onto 1 N
144 foima 2 nd 1 st z : 1 N onto 1 N 2 nd 1 st z 1 N = 1 N
145 143 144 syl z S 2 nd 1 st z 1 N = 1 N
146 145 xpeq1d z S 2 nd 1 st z 1 N × 0 = 1 N × 0
147 146 oveq2d z S 1 st 1 st z + f 2 nd 1 st z 1 N × 0 = 1 st 1 st z + f 1 N × 0
148 ovexd z S 1 N V
149 82 ffnd z S 1 st 1 st z Fn 1 N
150 fnconstg 0 V 1 N × 0 Fn 1 N
151 118 150 mp1i z S 1 N × 0 Fn 1 N
152 eqidd z S n 1 N 1 st 1 st z n = 1 st 1 st z n
153 118 fvconst2 n 1 N 1 N × 0 n = 0
154 153 adantl z S n 1 N 1 N × 0 n = 0
155 82 ffvelrnda z S n 1 N 1 st 1 st z n 0 ..^ K
156 elfzonn0 1 st 1 st z n 0 ..^ K 1 st 1 st z n 0
157 155 156 syl z S n 1 N 1 st 1 st z n 0
158 157 nn0cnd z S n 1 N 1 st 1 st z n
159 158 addid1d z S n 1 N 1 st 1 st z n + 0 = 1 st 1 st z n
160 148 149 151 149 152 154 159 offveq z S 1 st 1 st z + f 1 N × 0 = 1 st 1 st z
161 147 160 eqtrd z S 1 st 1 st z + f 2 nd 1 st z 1 N × 0 = 1 st 1 st z
162 141 161 syl5eq z S 0 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 1 st 1 st z
163 162 ad2antlr φ 2 nd z 1 N 1 z S y = 0 0 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 1 st 1 st z
164 117 163 eqtrd φ 2 nd z 1 N 1 z S y = 0 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0 = 1 st 1 st z
165 nnm1nn0 N N 1 0
166 1 165 syl φ N 1 0
167 0elfz N 1 0 0 0 N 1
168 166 167 syl φ 0 0 N 1
169 168 ad2antrr φ 2 nd z 1 N 1 z S 0 0 N 1
170 fvexd φ 2 nd z 1 N 1 z S 1 st 1 st z V
171 108 164 169 170 fvmptd φ 2 nd z 1 N 1 z S F 0 = 1 st 1 st z
172 107 171 sylan φ 2 nd T 1 N 1 2 nd z = 2 nd T z S F 0 = 1 st 1 st z
173 172 an32s φ 2 nd T 1 N 1 z S 2 nd z = 2 nd T F 0 = 1 st 1 st z
174 103 173 mpdan φ 2 nd T 1 N 1 z S F 0 = 1 st 1 st z
175 fveq2 z = T 2 nd z = 2 nd T
176 175 eleq1d z = T 2 nd z 1 N 1 2 nd T 1 N 1
177 176 anbi2d z = T φ 2 nd z 1 N 1 φ 2 nd T 1 N 1
178 2fveq3 z = T 1 st 1 st z = 1 st 1 st T
179 178 eqeq2d z = T F 0 = 1 st 1 st z F 0 = 1 st 1 st T
180 177 179 imbi12d z = T φ 2 nd z 1 N 1 F 0 = 1 st 1 st z φ 2 nd T 1 N 1 F 0 = 1 st 1 st T
181 171 expcom z S φ 2 nd z 1 N 1 F 0 = 1 st 1 st z
182 180 181 vtoclga T S φ 2 nd T 1 N 1 F 0 = 1 st 1 st T
183 9 182 mpcom φ 2 nd T 1 N 1 F 0 = 1 st 1 st T
184 183 adantr φ 2 nd T 1 N 1 z S F 0 = 1 st 1 st T
185 174 184 eqtr3d φ 2 nd T 1 N 1 z S 1 st 1 st z = 1 st 1 st T
186 185 adantr φ 2 nd T 1 N 1 z S z T 1 st 1 st z = 1 st 1 st T
187 1 ad3antrrr φ 2 nd T 1 N 1 z S z T N
188 4 ad3antrrr φ 2 nd T 1 N 1 z S z T T S
189 simpllr φ 2 nd T 1 N 1 z S z T 2 nd T 1 N 1
190 simplr φ 2 nd T 1 N 1 z S z T z S
191 36 adantr φ 2 nd T 1 N 1 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
192 xpopth 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 1 st z = 1 st T
193 78 191 192 syl2anr φ 2 nd T 1 N 1 z S 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 1 st z = 1 st T
194 34 adantr φ 2 nd T 1 N 1 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
195 xpopth z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z = 1 st T 2 nd z = 2 nd T z = T
196 195 biimpd z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z = 1 st T 2 nd z = 2 nd T z = T
197 76 194 196 syl2anr φ 2 nd T 1 N 1 z S 1 st z = 1 st T 2 nd z = 2 nd T z = T
198 103 197 mpan2d φ 2 nd T 1 N 1 z S 1 st z = 1 st T z = T
199 193 198 sylbid φ 2 nd T 1 N 1 z S 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T z = T
200 185 199 mpand φ 2 nd T 1 N 1 z S 2 nd 1 st z = 2 nd 1 st T z = T
201 200 necon3d φ 2 nd T 1 N 1 z S z T 2 nd 1 st z 2 nd 1 st T
202 201 imp φ 2 nd T 1 N 1 z S z T 2 nd 1 st z 2 nd 1 st T
203 187 2 188 189 190 202 poimirlem9 φ 2 nd T 1 N 1 z S z T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
204 103 adantr φ 2 nd T 1 N 1 z S z T 2 nd z = 2 nd T
205 186 203 204 jca31 φ 2 nd T 1 N 1 z S z T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
206 205 ex φ 2 nd T 1 N 1 z S z T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
207 simplr 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
208 elfznn 2 nd T 1 N 1 2 nd T
209 208 nnred 2 nd T 1 N 1 2 nd T
210 209 ltp1d 2 nd T 1 N 1 2 nd T < 2 nd T + 1
211 209 210 ltned 2 nd T 1 N 1 2 nd T 2 nd T + 1
212 211 adantl φ 2 nd T 1 N 1 2 nd T 2 nd T + 1
213 fveq1 2 nd 1 st T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T
214 id 2 nd T 2 nd T
215 ltp1 2 nd T 2 nd T < 2 nd T + 1
216 214 215 ltned 2 nd T 2 nd T 2 nd T + 1
217 fvex 2 nd T V
218 ovex 2 nd T + 1 V
219 217 218 218 217 fpr 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
220 216 219 syl 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
221 f1oi I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1-1 onto 1 N 2 nd T 2 nd T + 1
222 f1of I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1-1 onto 1 N 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
223 221 222 ax-mp I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
224 disjdif 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 =
225 fun 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 N 2 nd T 2 nd T + 1
226 224 225 mpan2 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 N 2 nd T 2 nd T + 1
227 220 223 226 sylancl 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 N 2 nd T 2 nd T + 1
228 217 prid1 2 nd T 2 nd T 2 nd T + 1
229 elun1 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
230 228 229 ax-mp 2 nd T 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
231 fvco3 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T
232 227 230 231 sylancl 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T
233 220 ffnd 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1
234 fnresi I 1 N 2 nd T 2 nd T + 1 Fn 1 N 2 nd T 2 nd T + 1
235 224 228 pm3.2i 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 2 nd T 2 nd T 2 nd T + 1
236 fvun1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 Fn 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T
237 234 235 236 mp3an23 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T
238 233 237 syl 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T
239 217 218 fvpr1 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T = 2 nd T + 1
240 216 239 syl 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T = 2 nd T + 1
241 238 240 eqtrd 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd T + 1
242 241 fveq2d 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd 1 st T 2 nd T + 1
243 232 242 eqtrd 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd 1 st T 2 nd T + 1
244 209 243 syl 2 nd T 1 N 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd 1 st T 2 nd T + 1
245 244 eqeq2d 2 nd T 1 N 1 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T + 1
246 245 adantl φ 2 nd T 1 N 1 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T + 1
247 f1of1 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 1 N
248 51 247 syl φ 2 nd 1 st T : 1 N 1-1 1 N
249 248 adantr φ 2 nd T 1 N 1 2 nd 1 st T : 1 N 1-1 1 N
250 1 nncnd φ N
251 npcan1 N N - 1 + 1 = N
252 250 251 syl φ N - 1 + 1 = N
253 166 nn0zd φ N 1
254 uzid N 1 N 1 N 1
255 253 254 syl φ N 1 N 1
256 peano2uz N 1 N 1 N - 1 + 1 N 1
257 255 256 syl φ N - 1 + 1 N 1
258 252 257 eqeltrrd φ N N 1
259 fzss2 N N 1 1 N 1 1 N
260 258 259 syl φ 1 N 1 1 N
261 260 sselda φ 2 nd T 1 N 1 2 nd T 1 N
262 fzp1elp1 2 nd T 1 N 1 2 nd T + 1 1 N - 1 + 1
263 262 adantl φ 2 nd T 1 N 1 2 nd T + 1 1 N - 1 + 1
264 252 oveq2d φ 1 N - 1 + 1 = 1 N
265 264 adantr φ 2 nd T 1 N 1 1 N - 1 + 1 = 1 N
266 263 265 eleqtrd φ 2 nd T 1 N 1 2 nd T + 1 1 N
267 f1veqaeq 2 nd 1 st T : 1 N 1-1 1 N 2 nd T 1 N 2 nd T + 1 1 N 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T + 1 2 nd T = 2 nd T + 1
268 249 261 266 267 syl12anc φ 2 nd T 1 N 1 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T + 1 2 nd T = 2 nd T + 1
269 246 268 sylbid φ 2 nd T 1 N 1 2 nd 1 st T 2 nd T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T = 2 nd T + 1
270 213 269 syl5 φ 2 nd T 1 N 1 2 nd 1 st T = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T = 2 nd T + 1
271 270 necon3d φ 2 nd T 1 N 1 2 nd T 2 nd T + 1 2 nd 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
272 212 271 mpd φ 2 nd T 1 N 1 2 nd 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
273 2fveq3 z = T 2 nd 1 st z = 2 nd 1 st T
274 273 neeq1d z = T 2 nd 1 st z 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
275 272 274 syl5ibrcom φ 2 nd T 1 N 1 z = T 2 nd 1 st z 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
276 275 necon2d φ 2 nd T 1 N 1 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 z T
277 207 276 syl5 φ 2 nd T 1 N 1 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T z T
278 277 adantr φ 2 nd T 1 N 1 z S 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T z T
279 206 278 impbid φ 2 nd T 1 N 1 z S z T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
280 eqop z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 1 st z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
281 eqop 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
282 77 281 syl z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
283 282 anbi1d z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
284 280 283 bitrd z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
285 76 284 syl z S z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
286 285 adantl φ 2 nd T 1 N 1 z S z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 1 st 1 st z = 1 st 1 st T 2 nd 1 st z = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd z = 2 nd T
287 279 286 bitr4d φ 2 nd T 1 N 1 z S z T z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T
288 287 ralrimiva φ 2 nd T 1 N 1 z S z T z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T
289 reu6i 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T S z S z T z = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T ∃! z S z T
290 11 288 289 syl2anc φ 2 nd T 1 N 1 ∃! z S z T
291 xp2nd T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 2 nd T 0 N
292 34 291 syl φ 2 nd T 0 N
293 292 biantrurd φ ¬ 2 nd T 1 N 1 2 nd T 0 N ¬ 2 nd T 1 N 1
294 1 nnnn0d φ N 0
295 nn0uz 0 = 0
296 294 295 eleqtrdi φ N 0
297 fzpred N 0 0 N = 0 0 + 1 N
298 296 297 syl φ 0 N = 0 0 + 1 N
299 125 oveq1i 0 + 1 N = 1 N
300 299 uneq2i 0 0 + 1 N = 0 1 N
301 298 300 syl6eq φ 0 N = 0 1 N
302 301 difeq1d φ 0 N 1 N 1 = 0 1 N 1 N 1
303 difundir 0 1 N 1 N 1 = 0 1 N 1 1 N 1 N 1
304 0lt1 0 < 1
305 0re 0
306 1re 1
307 305 306 ltnlei 0 < 1 ¬ 1 0
308 304 307 mpbi ¬ 1 0
309 elfzle1 0 1 N 1 1 0
310 308 309 mto ¬ 0 1 N 1
311 incom 1 N 1 0 = 0 1 N 1
312 311 eqeq1i 1 N 1 0 = 0 1 N 1 =
313 disjsn 1 N 1 0 = ¬ 0 1 N 1
314 disj3 0 1 N 1 = 0 = 0 1 N 1
315 312 313 314 3bitr3i ¬ 0 1 N 1 0 = 0 1 N 1
316 310 315 mpbi 0 = 0 1 N 1
317 316 uneq1i 0 1 N 1 N 1 = 0 1 N 1 1 N 1 N 1
318 303 317 eqtr4i 0 1 N 1 N 1 = 0 1 N 1 N 1
319 difundir 1 N 1 N 1 N 1 = 1 N 1 1 N 1 N 1 N 1
320 difid 1 N 1 1 N 1 =
321 320 uneq1i 1 N 1 1 N 1 N 1 N 1 = N 1 N 1
322 uncom N 1 N 1 = N 1 N 1
323 un0 N 1 N 1 = N 1 N 1
324 322 323 eqtri N 1 N 1 = N 1 N 1
325 319 321 324 3eqtri 1 N 1 N 1 N 1 = N 1 N 1
326 nnuz = 1
327 1 326 eleqtrdi φ N 1
328 252 327 eqeltrd φ N - 1 + 1 1
329 fzsplit2 N - 1 + 1 1 N N 1 1 N = 1 N 1 N - 1 + 1 N
330 328 258 329 syl2anc φ 1 N = 1 N 1 N - 1 + 1 N
331 252 oveq1d φ N - 1 + 1 N = N N
332 1 nnzd φ N
333 fzsn N N N = N
334 332 333 syl φ N N = N
335 331 334 eqtrd φ N - 1 + 1 N = N
336 335 uneq2d φ 1 N 1 N - 1 + 1 N = 1 N 1 N
337 330 336 eqtrd φ 1 N = 1 N 1 N
338 337 difeq1d φ 1 N 1 N 1 = 1 N 1 N 1 N 1
339 1 nnred φ N
340 339 ltm1d φ N 1 < N
341 166 nn0red φ N 1
342 341 339 ltnled φ N 1 < N ¬ N N 1
343 340 342 mpbid φ ¬ N N 1
344 elfzle2 N 1 N 1 N N 1
345 343 344 nsyl φ ¬ N 1 N 1
346 incom 1 N 1 N = N 1 N 1
347 346 eqeq1i 1 N 1 N = N 1 N 1 =
348 disjsn 1 N 1 N = ¬ N 1 N 1
349 disj3 N 1 N 1 = N = N 1 N 1
350 347 348 349 3bitr3i ¬ N 1 N 1 N = N 1 N 1
351 345 350 sylib φ N = N 1 N 1
352 325 338 351 3eqtr4a φ 1 N 1 N 1 = N
353 352 uneq2d φ 0 1 N 1 N 1 = 0 N
354 318 353 syl5eq φ 0 1 N 1 N 1 = 0 N
355 302 354 eqtrd φ 0 N 1 N 1 = 0 N
356 355 eleq2d φ 2 nd T 0 N 1 N 1 2 nd T 0 N
357 eldif 2 nd T 0 N 1 N 1 2 nd T 0 N ¬ 2 nd T 1 N 1
358 elun 2 nd T 0 N 2 nd T 0 2 nd T N
359 217 elsn 2 nd T 0 2 nd T = 0
360 217 elsn 2 nd T N 2 nd T = N
361 359 360 orbi12i 2 nd T 0 2 nd T N 2 nd T = 0 2 nd T = N
362 358 361 bitri 2 nd T 0 N 2 nd T = 0 2 nd T = N
363 356 357 362 3bitr3g φ 2 nd T 0 N ¬ 2 nd T 1 N 1 2 nd T = 0 2 nd T = N
364 293 363 bitrd φ ¬ 2 nd T 1 N 1 2 nd T = 0 2 nd T = N
365 364 biimpa φ ¬ 2 nd T 1 N 1 2 nd T = 0 2 nd T = N
366 1 adantr φ 2 nd T = 0 N
367 3 adantr φ 2 nd T = 0 F : 0 N 1 0 K 1 N
368 4 adantr φ 2 nd T = 0 T S
369 6 adantlr φ 2 nd T = 0 n 1 N p ran F p n K
370 simpr φ 2 nd T = 0 2 nd T = 0
371 366 2 367 368 369 370 poimirlem18 φ 2 nd T = 0 ∃! z S z T
372 1 adantr φ 2 nd T = N N
373 3 adantr φ 2 nd T = N F : 0 N 1 0 K 1 N
374 4 adantr φ 2 nd T = N T S
375 5 adantlr φ 2 nd T = N n 1 N p ran F p n 0
376 simpr φ 2 nd T = N 2 nd T = N
377 372 2 373 374 375 376 poimirlem21 φ 2 nd T = N ∃! z S z T
378 371 377 jaodan φ 2 nd T = 0 2 nd T = N ∃! z S z T
379 365 378 syldan φ ¬ 2 nd T 1 N 1 ∃! z S z T
380 290 379 pm2.61dan φ ∃! z S z T