Metamath Proof Explorer


Theorem poimirlem22

Description: Lemma for poimir , that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
poimirlem22.2 φTS
poimirlem22.3 φn1NpranFpn0
poimirlem22.4 φn1NpranFpnK
Assertion poimirlem22 φ∃!zSzT

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 poimirlem22.2 φTS
5 poimirlem22.3 φn1NpranFpn0
6 poimirlem22.4 φn1NpranFpnK
7 1 adantr φ2ndT1N1N
8 3 adantr φ2ndT1N1F:0N10K1N
9 4 adantr φ2ndT1N1TS
10 simpr φ2ndT1N12ndT1N1
11 7 2 8 9 10 poimirlem15 φ2ndT1N11st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTS
12 fveq2 t=T2ndt=2ndT
13 12 breq2d t=Ty<2ndty<2ndT
14 13 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
15 14 csbeq1d t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
16 2fveq3 t=T1st1stt=1st1stT
17 2fveq3 t=T2nd1stt=2nd1stT
18 17 imaeq1d t=T2nd1stt1j=2nd1stT1j
19 18 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
20 17 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
21 20 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
22 19 21 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
23 16 22 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
24 23 csbeq2dv t=Tify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
25 15 24 eqtrd t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
26 25 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
27 26 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
28 27 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
29 28 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
30 4 29 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
31 30 adantr φ2ndT1N1F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
32 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
33 32 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
34 4 33 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
35 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
36 34 35 syl φ1stT0..^K1N×f|f:1N1-1 onto1N
37 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
38 36 37 syl φ1st1stT0..^K1N
39 elmapi 1st1stT0..^K1N1st1stT:1N0..^K
40 38 39 syl φ1st1stT:1N0..^K
41 elfzoelz n0..^Kn
42 41 ssriv 0..^K
43 fss 1st1stT:1N0..^K0..^K1st1stT:1N
44 40 42 43 sylancl φ1st1stT:1N
45 44 adantr φ2ndT1N11st1stT:1N
46 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
47 36 46 syl φ2nd1stTf|f:1N1-1 onto1N
48 fvex 2nd1stTV
49 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
50 48 49 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
51 47 50 sylib φ2nd1stT:1N1-1 onto1N
52 51 adantr φ2ndT1N12nd1stT:1N1-1 onto1N
53 7 31 45 52 10 poimirlem1 φ2ndT1N1¬*n1NF2ndT1nF2ndTn
54 53 adantr φ2ndT1N1zS¬*n1NF2ndT1nF2ndTn
55 1 ad3antrrr φ2ndT1N1zS2ndz2ndTN
56 fveq2 t=z2ndt=2ndz
57 56 breq2d t=zy<2ndty<2ndz
58 57 ifbid t=zify<2ndtyy+1=ify<2ndzyy+1
59 58 csbeq1d t=zify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
60 2fveq3 t=z1st1stt=1st1stz
61 2fveq3 t=z2nd1stt=2nd1stz
62 61 imaeq1d t=z2nd1stt1j=2nd1stz1j
63 62 xpeq1d t=z2nd1stt1j×1=2nd1stz1j×1
64 61 imaeq1d t=z2nd1sttj+1N=2nd1stzj+1N
65 64 xpeq1d t=z2nd1sttj+1N×0=2nd1stzj+1N×0
66 63 65 uneq12d t=z2nd1stt1j×12nd1sttj+1N×0=2nd1stz1j×12nd1stzj+1N×0
67 60 66 oveq12d t=z1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stz+f2nd1stz1j×12nd1stzj+1N×0
68 67 csbeq2dv t=zify<2ndzyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
69 59 68 eqtrd t=zify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
70 69 mpteq2dv t=zy0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
71 70 eqeq2d t=zF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
72 71 2 elrab2 zSz0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
73 72 simprbi zSF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
74 73 ad2antlr φ2ndT1N1zS2ndz2ndTF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
75 elrabi zt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0z0..^K1N×f|f:1N1-1 onto1N×0N
76 75 2 eleq2s zSz0..^K1N×f|f:1N1-1 onto1N×0N
77 xp1st z0..^K1N×f|f:1N1-1 onto1N×0N1stz0..^K1N×f|f:1N1-1 onto1N
78 76 77 syl zS1stz0..^K1N×f|f:1N1-1 onto1N
79 xp1st 1stz0..^K1N×f|f:1N1-1 onto1N1st1stz0..^K1N
80 78 79 syl zS1st1stz0..^K1N
81 elmapi 1st1stz0..^K1N1st1stz:1N0..^K
82 80 81 syl zS1st1stz:1N0..^K
83 fss 1st1stz:1N0..^K0..^K1st1stz:1N
84 82 42 83 sylancl zS1st1stz:1N
85 84 ad2antlr φ2ndT1N1zS2ndz2ndT1st1stz:1N
86 xp2nd 1stz0..^K1N×f|f:1N1-1 onto1N2nd1stzf|f:1N1-1 onto1N
87 78 86 syl zS2nd1stzf|f:1N1-1 onto1N
88 fvex 2nd1stzV
89 f1oeq1 f=2nd1stzf:1N1-1 onto1N2nd1stz:1N1-1 onto1N
90 88 89 elab 2nd1stzf|f:1N1-1 onto1N2nd1stz:1N1-1 onto1N
91 87 90 sylib zS2nd1stz:1N1-1 onto1N
92 91 ad2antlr φ2ndT1N1zS2ndz2ndT2nd1stz:1N1-1 onto1N
93 simpllr φ2ndT1N1zS2ndz2ndT2ndT1N1
94 xp2nd z0..^K1N×f|f:1N1-1 onto1N×0N2ndz0N
95 76 94 syl zS2ndz0N
96 95 adantl φ2ndT1N1zS2ndz0N
97 eldifsn 2ndz0N2ndT2ndz0N2ndz2ndT
98 97 biimpri 2ndz0N2ndz2ndT2ndz0N2ndT
99 96 98 sylan φ2ndT1N1zS2ndz2ndT2ndz0N2ndT
100 55 74 85 92 93 99 poimirlem2 φ2ndT1N1zS2ndz2ndT*n1NF2ndT1nF2ndTn
101 100 ex φ2ndT1N1zS2ndz2ndT*n1NF2ndT1nF2ndTn
102 101 necon1bd φ2ndT1N1zS¬*n1NF2ndT1nF2ndTn2ndz=2ndT
103 54 102 mpd φ2ndT1N1zS2ndz=2ndT
104 eleq1 2ndz=2ndT2ndz1N12ndT1N1
105 104 biimparc 2ndT1N12ndz=2ndT2ndz1N1
106 105 anim2i φ2ndT1N12ndz=2ndTφ2ndz1N1
107 106 anassrs φ2ndT1N12ndz=2ndTφ2ndz1N1
108 73 adantl φ2ndz1N1zSF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
109 breq1 y=0y<2ndz0<2ndz
110 id y=0y=0
111 109 110 ifbieq1d y=0ify<2ndzyy+1=if0<2ndz0y+1
112 elfznn 2ndz1N12ndz
113 112 nngt0d 2ndz1N10<2ndz
114 113 iftrued 2ndz1N1if0<2ndz0y+1=0
115 114 ad2antlr φ2ndz1N1zSif0<2ndz0y+1=0
116 111 115 sylan9eqr φ2ndz1N1zSy=0ify<2ndzyy+1=0
117 116 csbeq1d φ2ndz1N1zSy=0ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0=0/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
118 c0ex 0V
119 oveq2 j=01j=10
120 fz10 10=
121 119 120 eqtrdi j=01j=
122 121 imaeq2d j=02nd1stz1j=2nd1stz
123 122 xpeq1d j=02nd1stz1j×1=2nd1stz×1
124 oveq1 j=0j+1=0+1
125 0p1e1 0+1=1
126 124 125 eqtrdi j=0j+1=1
127 126 oveq1d j=0j+1N=1N
128 127 imaeq2d j=02nd1stzj+1N=2nd1stz1N
129 128 xpeq1d j=02nd1stzj+1N×0=2nd1stz1N×0
130 123 129 uneq12d j=02nd1stz1j×12nd1stzj+1N×0=2nd1stz×12nd1stz1N×0
131 ima0 2nd1stz=
132 131 xpeq1i 2nd1stz×1=×1
133 0xp ×1=
134 132 133 eqtri 2nd1stz×1=
135 134 uneq1i 2nd1stz×12nd1stz1N×0=2nd1stz1N×0
136 uncom 2nd1stz1N×0=2nd1stz1N×0
137 un0 2nd1stz1N×0=2nd1stz1N×0
138 135 136 137 3eqtri 2nd1stz×12nd1stz1N×0=2nd1stz1N×0
139 130 138 eqtrdi j=02nd1stz1j×12nd1stzj+1N×0=2nd1stz1N×0
140 139 oveq2d j=01st1stz+f2nd1stz1j×12nd1stzj+1N×0=1st1stz+f2nd1stz1N×0
141 118 140 csbie 0/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0=1st1stz+f2nd1stz1N×0
142 f1ofo 2nd1stz:1N1-1 onto1N2nd1stz:1Nonto1N
143 91 142 syl zS2nd1stz:1Nonto1N
144 foima 2nd1stz:1Nonto1N2nd1stz1N=1N
145 143 144 syl zS2nd1stz1N=1N
146 145 xpeq1d zS2nd1stz1N×0=1N×0
147 146 oveq2d zS1st1stz+f2nd1stz1N×0=1st1stz+f1N×0
148 ovexd zS1NV
149 82 ffnd zS1st1stzFn1N
150 fnconstg 0V1N×0Fn1N
151 118 150 mp1i zS1N×0Fn1N
152 eqidd zSn1N1st1stzn=1st1stzn
153 118 fvconst2 n1N1N×0n=0
154 153 adantl zSn1N1N×0n=0
155 82 ffvelcdmda zSn1N1st1stzn0..^K
156 elfzonn0 1st1stzn0..^K1st1stzn0
157 155 156 syl zSn1N1st1stzn0
158 157 nn0cnd zSn1N1st1stzn
159 158 addridd zSn1N1st1stzn+0=1st1stzn
160 148 149 151 149 152 154 159 offveq zS1st1stz+f1N×0=1st1stz
161 147 160 eqtrd zS1st1stz+f2nd1stz1N×0=1st1stz
162 141 161 eqtrid zS0/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0=1st1stz
163 162 ad2antlr φ2ndz1N1zSy=00/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0=1st1stz
164 117 163 eqtrd φ2ndz1N1zSy=0ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0=1st1stz
165 nnm1nn0 NN10
166 1 165 syl φN10
167 0elfz N1000N1
168 166 167 syl φ00N1
169 168 ad2antrr φ2ndz1N1zS00N1
170 fvexd φ2ndz1N1zS1st1stzV
171 108 164 169 170 fvmptd φ2ndz1N1zSF0=1st1stz
172 107 171 sylan φ2ndT1N12ndz=2ndTzSF0=1st1stz
173 172 an32s φ2ndT1N1zS2ndz=2ndTF0=1st1stz
174 103 173 mpdan φ2ndT1N1zSF0=1st1stz
175 fveq2 z=T2ndz=2ndT
176 175 eleq1d z=T2ndz1N12ndT1N1
177 176 anbi2d z=Tφ2ndz1N1φ2ndT1N1
178 2fveq3 z=T1st1stz=1st1stT
179 178 eqeq2d z=TF0=1st1stzF0=1st1stT
180 177 179 imbi12d z=Tφ2ndz1N1F0=1st1stzφ2ndT1N1F0=1st1stT
181 171 expcom zSφ2ndz1N1F0=1st1stz
182 180 181 vtoclga TSφ2ndT1N1F0=1st1stT
183 9 182 mpcom φ2ndT1N1F0=1st1stT
184 183 adantr φ2ndT1N1zSF0=1st1stT
185 174 184 eqtr3d φ2ndT1N1zS1st1stz=1st1stT
186 185 adantr φ2ndT1N1zSzT1st1stz=1st1stT
187 1 ad3antrrr φ2ndT1N1zSzTN
188 4 ad3antrrr φ2ndT1N1zSzTTS
189 simpllr φ2ndT1N1zSzT2ndT1N1
190 simplr φ2ndT1N1zSzTzS
191 36 adantr φ2ndT1N11stT0..^K1N×f|f:1N1-1 onto1N
192 xpopth 1stz0..^K1N×f|f:1N1-1 onto1N1stT0..^K1N×f|f:1N1-1 onto1N1st1stz=1st1stT2nd1stz=2nd1stT1stz=1stT
193 78 191 192 syl2anr φ2ndT1N1zS1st1stz=1st1stT2nd1stz=2nd1stT1stz=1stT
194 34 adantr φ2ndT1N1T0..^K1N×f|f:1N1-1 onto1N×0N
195 xpopth z0..^K1N×f|f:1N1-1 onto1N×0NT0..^K1N×f|f:1N1-1 onto1N×0N1stz=1stT2ndz=2ndTz=T
196 195 biimpd z0..^K1N×f|f:1N1-1 onto1N×0NT0..^K1N×f|f:1N1-1 onto1N×0N1stz=1stT2ndz=2ndTz=T
197 76 194 196 syl2anr φ2ndT1N1zS1stz=1stT2ndz=2ndTz=T
198 103 197 mpan2d φ2ndT1N1zS1stz=1stTz=T
199 193 198 sylbid φ2ndT1N1zS1st1stz=1st1stT2nd1stz=2nd1stTz=T
200 185 199 mpand φ2ndT1N1zS2nd1stz=2nd1stTz=T
201 200 necon3d φ2ndT1N1zSzT2nd1stz2nd1stT
202 201 imp φ2ndT1N1zSzT2nd1stz2nd1stT
203 187 2 188 189 190 202 poimirlem9 φ2ndT1N1zSzT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
204 103 adantr φ2ndT1N1zSzT2ndz=2ndT
205 186 203 204 jca31 φ2ndT1N1zSzT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
206 205 ex φ2ndT1N1zSzT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
207 simplr 1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
208 elfznn 2ndT1N12ndT
209 208 nnred 2ndT1N12ndT
210 209 ltp1d 2ndT1N12ndT<2ndT+1
211 209 210 ltned 2ndT1N12ndT2ndT+1
212 211 adantl φ2ndT1N12ndT2ndT+1
213 fveq1 2nd1stT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stT2ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT
214 id 2ndT2ndT
215 ltp1 2ndT2ndT<2ndT+1
216 214 215 ltned 2ndT2ndT2ndT+1
217 fvex 2ndTV
218 ovex 2ndT+1V
219 217 218 218 217 fpr 2ndT2ndT+12ndT2ndT+12ndT+12ndT:2ndT2ndT+12ndT+12ndT
220 216 219 syl 2ndT2ndT2ndT+12ndT+12ndT:2ndT2ndT+12ndT+12ndT
221 f1oi I1N2ndT2ndT+1:1N2ndT2ndT+11-1 onto1N2ndT2ndT+1
222 f1of I1N2ndT2ndT+1:1N2ndT2ndT+11-1 onto1N2ndT2ndT+1I1N2ndT2ndT+1:1N2ndT2ndT+11N2ndT2ndT+1
223 221 222 ax-mp I1N2ndT2ndT+1:1N2ndT2ndT+11N2ndT2ndT+1
224 disjdif 2ndT2ndT+11N2ndT2ndT+1=
225 fun 2ndT2ndT+12ndT+12ndT:2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N2ndT2ndT+11N2ndT2ndT+12ndT2ndT+11N2ndT2ndT+1=2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+12ndT+12ndT1N2ndT2ndT+1
226 224 225 mpan2 2ndT2ndT+12ndT+12ndT:2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:1N2ndT2ndT+11N2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+12ndT+12ndT1N2ndT2ndT+1
227 220 223 226 sylancl 2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+12ndT+12ndT1N2ndT2ndT+1
228 217 prid1 2ndT2ndT2ndT+1
229 elun1 2ndT2ndT2ndT+12ndT2ndT2ndT+11N2ndT2ndT+1
230 228 229 ax-mp 2ndT2ndT2ndT+11N2ndT2ndT+1
231 fvco3 2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1:2ndT2ndT+11N2ndT2ndT+12ndT+12ndT1N2ndT2ndT+12ndT2ndT2ndT+11N2ndT2ndT+12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT
232 227 230 231 sylancl 2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT
233 220 ffnd 2ndT2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1
234 fnresi I1N2ndT2ndT+1Fn1N2ndT2ndT+1
235 224 228 pm3.2i 2ndT2ndT+11N2ndT2ndT+1=2ndT2ndT2ndT+1
236 fvun1 2ndT2ndT+12ndT+12ndTFn2ndT2ndT+1I1N2ndT2ndT+1Fn1N2ndT2ndT+12ndT2ndT+11N2ndT2ndT+1=2ndT2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2ndT2ndT+12ndT+12ndT2ndT
237 234 235 236 mp3an23 2ndT2ndT+12ndT+12ndTFn2ndT2ndT+12ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2ndT2ndT+12ndT+12ndT2ndT
238 233 237 syl 2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2ndT2ndT+12ndT+12ndT2ndT
239 217 218 fvpr1 2ndT2ndT+12ndT2ndT+12ndT+12ndT2ndT=2ndT+1
240 216 239 syl 2ndT2ndT2ndT+12ndT+12ndT2ndT=2ndT+1
241 238 240 eqtrd 2ndT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2ndT+1
242 241 fveq2d 2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2nd1stT2ndT+1
243 232 242 eqtrd 2ndT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2nd1stT2ndT+1
244 209 243 syl 2ndT1N12nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2nd1stT2ndT+1
245 244 eqeq2d 2ndT1N12nd1stT2ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT2nd1stT2ndT=2nd1stT2ndT+1
246 245 adantl φ2ndT1N12nd1stT2ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT2nd1stT2ndT=2nd1stT2ndT+1
247 f1of1 2nd1stT:1N1-1 onto1N2nd1stT:1N1-11N
248 51 247 syl φ2nd1stT:1N1-11N
249 248 adantr φ2ndT1N12nd1stT:1N1-11N
250 1 nncnd φN
251 npcan1 NN-1+1=N
252 250 251 syl φN-1+1=N
253 166 nn0zd φN1
254 uzid N1N1N1
255 253 254 syl φN1N1
256 peano2uz N1N1N-1+1N1
257 255 256 syl φN-1+1N1
258 252 257 eqeltrrd φNN1
259 fzss2 NN11N11N
260 258 259 syl φ1N11N
261 260 sselda φ2ndT1N12ndT1N
262 fzp1elp1 2ndT1N12ndT+11N-1+1
263 262 adantl φ2ndT1N12ndT+11N-1+1
264 252 oveq2d φ1N-1+1=1N
265 264 adantr φ2ndT1N11N-1+1=1N
266 263 265 eleqtrd φ2ndT1N12ndT+11N
267 f1veqaeq 2nd1stT:1N1-11N2ndT1N2ndT+11N2nd1stT2ndT=2nd1stT2ndT+12ndT=2ndT+1
268 249 261 266 267 syl12anc φ2ndT1N12nd1stT2ndT=2nd1stT2ndT+12ndT=2ndT+1
269 246 268 sylbid φ2ndT1N12nd1stT2ndT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT2ndT=2ndT+1
270 213 269 syl5 φ2ndT1N12nd1stT=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT=2ndT+1
271 270 necon3d φ2ndT1N12ndT2ndT+12nd1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
272 212 271 mpd φ2ndT1N12nd1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
273 2fveq3 z=T2nd1stz=2nd1stT
274 273 neeq1d z=T2nd1stz2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12nd1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
275 272 274 syl5ibrcom φ2ndT1N1z=T2nd1stz2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
276 275 necon2d φ2ndT1N12nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1zT
277 207 276 syl5 φ2ndT1N11st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndTzT
278 277 adantr φ2ndT1N1zS1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndTzT
279 206 278 impbid φ2ndT1N1zSzT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
280 eqop z0..^K1N×f|f:1N1-1 onto1N×0Nz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT1stz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
281 eqop 1stz0..^K1N×f|f:1N1-1 onto1N1stz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
282 77 281 syl z0..^K1N×f|f:1N1-1 onto1N×0N1stz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+11st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+1
283 282 anbi1d z0..^K1N×f|f:1N1-1 onto1N×0N1stz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
284 280 283 bitrd z0..^K1N×f|f:1N1-1 onto1N×0Nz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
285 76 284 syl zSz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
286 285 adantl φ2ndT1N1zSz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT1st1stz=1st1stT2nd1stz=2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndz=2ndT
287 279 286 bitr4d φ2ndT1N1zSzTz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT
288 287 ralrimiva φ2ndT1N1zSzTz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT
289 reu6i 1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndTSzSzTz=1st1stT2nd1stT2ndT2ndT+12ndT+12ndTI1N2ndT2ndT+12ndT∃!zSzT
290 11 288 289 syl2anc φ2ndT1N1∃!zSzT
291 xp2nd T0..^K1N×f|f:1N1-1 onto1N×0N2ndT0N
292 34 291 syl φ2ndT0N
293 292 biantrurd φ¬2ndT1N12ndT0N¬2ndT1N1
294 1 nnnn0d φN0
295 nn0uz 0=0
296 294 295 eleqtrdi φN0
297 fzpred N00N=00+1N
298 296 297 syl φ0N=00+1N
299 125 oveq1i 0+1N=1N
300 299 uneq2i 00+1N=01N
301 298 300 eqtrdi φ0N=01N
302 301 difeq1d φ0N1N1=01N1N1
303 difundir 01N1N1=01N11N1N1
304 0lt1 0<1
305 0re 0
306 1re 1
307 305 306 ltnlei 0<1¬10
308 304 307 mpbi ¬10
309 elfzle1 01N110
310 308 309 mto ¬01N1
311 incom 1N10=01N1
312 311 eqeq1i 1N10=01N1=
313 disjsn 1N10=¬01N1
314 disj3 01N1=0=01N1
315 312 313 314 3bitr3i ¬01N10=01N1
316 310 315 mpbi 0=01N1
317 316 uneq1i 01N1N1=01N11N1N1
318 303 317 eqtr4i 01N1N1=01N1N1
319 difundir 1N1N1N1=1N11N1N1N1
320 difid 1N11N1=
321 320 uneq1i 1N11N1N1N1=N1N1
322 uncom N1N1=N1N1
323 un0 N1N1=N1N1
324 322 323 eqtri N1N1=N1N1
325 319 321 324 3eqtri 1N1N1N1=N1N1
326 nnuz =1
327 1 326 eleqtrdi φN1
328 252 327 eqeltrd φN-1+11
329 fzsplit2 N-1+11NN11N=1N1N-1+1N
330 328 258 329 syl2anc φ1N=1N1N-1+1N
331 252 oveq1d φN-1+1N=NN
332 1 nnzd φN
333 fzsn NNN=N
334 332 333 syl φNN=N
335 331 334 eqtrd φN-1+1N=N
336 335 uneq2d φ1N1N-1+1N=1N1N
337 330 336 eqtrd φ1N=1N1N
338 337 difeq1d φ1N1N1=1N1N1N1
339 1 nnred φN
340 339 ltm1d φN1<N
341 166 nn0red φN1
342 341 339 ltnled φN1<N¬NN1
343 340 342 mpbid φ¬NN1
344 elfzle2 N1N1NN1
345 343 344 nsyl φ¬N1N1
346 incom 1N1N=N1N1
347 346 eqeq1i 1N1N=N1N1=
348 disjsn 1N1N=¬N1N1
349 disj3 N1N1=N=N1N1
350 347 348 349 3bitr3i ¬N1N1N=N1N1
351 345 350 sylib φN=N1N1
352 325 338 351 3eqtr4a φ1N1N1=N
353 352 uneq2d φ01N1N1=0N
354 318 353 eqtrid φ01N1N1=0N
355 302 354 eqtrd φ0N1N1=0N
356 355 eleq2d φ2ndT0N1N12ndT0N
357 eldif 2ndT0N1N12ndT0N¬2ndT1N1
358 elun 2ndT0N2ndT02ndTN
359 217 elsn 2ndT02ndT=0
360 217 elsn 2ndTN2ndT=N
361 359 360 orbi12i 2ndT02ndTN2ndT=02ndT=N
362 358 361 bitri 2ndT0N2ndT=02ndT=N
363 356 357 362 3bitr3g φ2ndT0N¬2ndT1N12ndT=02ndT=N
364 293 363 bitrd φ¬2ndT1N12ndT=02ndT=N
365 364 biimpa φ¬2ndT1N12ndT=02ndT=N
366 1 adantr φ2ndT=0N
367 3 adantr φ2ndT=0F:0N10K1N
368 4 adantr φ2ndT=0TS
369 6 adantlr φ2ndT=0n1NpranFpnK
370 simpr φ2ndT=02ndT=0
371 366 2 367 368 369 370 poimirlem18 φ2ndT=0∃!zSzT
372 1 adantr φ2ndT=NN
373 3 adantr φ2ndT=NF:0N10K1N
374 4 adantr φ2ndT=NTS
375 5 adantlr φ2ndT=Nn1NpranFpn0
376 simpr φ2ndT=N2ndT=N
377 372 2 373 374 375 376 poimirlem21 φ2ndT=N∃!zSzT
378 371 377 jaodan φ2ndT=02ndT=N∃!zSzT
379 365 378 syldan φ¬2ndT1N1∃!zSzT
380 290 379 pm2.61dan φ∃!zSzT