Metamath Proof Explorer


Theorem sticksstones12a

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024)

Ref Expression
Hypotheses sticksstones12a.1 φN0
sticksstones12a.2 φK
sticksstones12a.3 F=aAj1Kj+l=1jal
sticksstones12a.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
sticksstones12a.5 A=g|g:1K+10i=1K+1gi=N
sticksstones12a.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
Assertion sticksstones12a φdBFGd=d

Proof

Step Hyp Ref Expression
1 sticksstones12a.1 φN0
2 sticksstones12a.2 φK
3 sticksstones12a.3 F=aAj1Kj+l=1jal
4 sticksstones12a.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
5 sticksstones12a.5 A=g|g:1K+10i=1K+1gi=N
6 sticksstones12a.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
7 4 a1i φdBG=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
8 0red φ0
9 2 nngt0d φ0<K
10 8 9 ltned φ0K
11 10 necomd φK0
12 11 neneqd φ¬K=0
13 12 ad2antrr φdBb=d¬K=0
14 13 iffalsed φdBb=difK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
15 fveq1 b=dbK=dK
16 15 oveq2d b=dN+K-bK=N+K-dK
17 fveq1 b=db1=d1
18 17 oveq1d b=db11=d11
19 fveq1 b=dbk=dk
20 fveq1 b=dbk1=dk1
21 19 20 oveq12d b=dbkbk1=dkdk1
22 21 oveq1d b=dbk-bk1-1=dk-dk1-1
23 18 22 ifeq12d b=difk=1b11bk-bk1-1=ifk=1d11dk-dk1-1
24 16 23 ifeq12d b=difk=K+1N+K-bKifk=1b11bk-bk1-1=ifk=K+1N+K-dKifk=1d11dk-dk1-1
25 24 adantl φdBb=difk=K+1N+K-bKifk=1b11bk-bk1-1=ifk=K+1N+K-dKifk=1d11dk-dk1-1
26 25 adantr φdBb=dk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=ifk=K+1N+K-dKifk=1d11dk-dk1-1
27 26 mpteq2dva φdBb=dk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
28 14 27 eqtrd φdBb=difK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
29 simpr φdBdB
30 fzfid φdB1K+1Fin
31 30 mptexd φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1V
32 7 28 29 31 fvmptd φdBGd=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
33 32 fveq2d φdBFGd=Fk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
34 3 a1i φdBF=aAj1Kj+l=1jal
35 simpll a=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kl1ja=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
36 35 fveq1d a=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kl1jal=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
37 36 sumeq2dv a=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kl=1jal=l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
38 37 oveq2d a=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kj+l=1jal=j+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
39 38 mpteq2dva a=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kj+l=1jal=j1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
40 39 adantl φdBa=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1j1Kj+l=1jal=j1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
41 eleq1 N+K-dK=ifk=K+1N+K-dKifk=1d11dk-dk1-1N+K-dK0ifk=K+1N+K-dKifk=1d11dk-dk1-10
42 eleq1 ifk=1d11dk-dk1-1=ifk=K+1N+K-dKifk=1d11dk-dk1-1ifk=1d11dk-dk1-10ifk=K+1N+K-dKifk=1d11dk-dk1-10
43 6 eleq2i dBdf|f:1K1N+Kx1Ky1Kx<yfx<fy
44 vex dV
45 feq1 f=df:1K1N+Kd:1K1N+K
46 fveq1 f=dfx=dx
47 fveq1 f=dfy=dy
48 46 47 breq12d f=dfx<fydx<dy
49 48 imbi2d f=dx<yfx<fyx<ydx<dy
50 49 2ralbidv f=dx1Ky1Kx<yfx<fyx1Ky1Kx<ydx<dy
51 45 50 anbi12d f=df:1K1N+Kx1Ky1Kx<yfx<fyd:1K1N+Kx1Ky1Kx<ydx<dy
52 44 51 elab df|f:1K1N+Kx1Ky1Kx<yfx<fyd:1K1N+Kx1Ky1Kx<ydx<dy
53 43 52 bitri dBd:1K1N+Kx1Ky1Kx<ydx<dy
54 53 biimpi dBd:1K1N+Kx1Ky1Kx<ydx<dy
55 54 adantl φdBd:1K1N+Kx1Ky1Kx<ydx<dy
56 55 simpld φdBd:1K1N+K
57 1zzd φ1
58 57 adantr φdB1
59 2 nnnn0d φK0
60 59 nn0zd φK
61 60 adantr φdBK
62 2 nnge1d φ1K
63 62 adantr φdB1K
64 2 nnred φK
65 64 leidd φKK
66 65 adantr φdBKK
67 58 61 61 63 66 elfzd φdBK1K
68 56 67 ffvelcdmd φdBdK1N+K
69 elfzle2 dK1N+KdKN+K
70 68 69 syl φdBdKN+K
71 70 adantr φdBk1K+1dKN+K
72 71 adantr φdBk1K+1k=K+1dKN+K
73 elfznn dK1N+KdK
74 73 nnnn0d dK1N+KdK0
75 68 74 syl φdBdK0
76 75 adantr φdBk1K+1dK0
77 76 adantr φdBk1K+1k=K+1dK0
78 1 ad3antrrr φdBk1K+1k=K+1N0
79 59 ad3antrrr φdBk1K+1k=K+1K0
80 78 79 nn0addcld φdBk1K+1k=K+1N+K0
81 nn0sub dK0N+K0dKN+KN+K-dK0
82 77 80 81 syl2anc φdBk1K+1k=K+1dKN+KN+K-dK0
83 72 82 mpbid φdBk1K+1k=K+1N+K-dK0
84 eleq1 d11=ifk=1d11dk-dk1-1d110ifk=1d11dk-dk1-10
85 eleq1 dk-dk1-1=ifk=1d11dk-dk1-1dk-dk1-10ifk=1d11dk-dk1-10
86 1le1 11
87 86 a1i φdB11
88 58 61 58 87 63 elfzd φdB11K
89 56 88 ffvelcdmd φdBd11N+K
90 elfznn d11N+Kd1
91 89 90 syl φdBd1
92 nnm1nn0 d1d110
93 91 92 syl φdBd110
94 93 adantr φdBk1K+1d110
95 94 adantr φdBk1K+1¬k=K+1d110
96 95 adantr φdBk1K+1¬k=K+1k=1d110
97 56 ad3antrrr φdBk1K+1¬k=K+1¬k=1d:1K1N+K
98 1zzd φdBk1K+1¬k=K+1¬k=11
99 61 ad3antrrr φdBk1K+1¬k=K+1¬k=1K
100 elfznn k1K+1k
101 100 nnzd k1K+1k
102 101 ad3antlr φdBk1K+1¬k=K+1¬k=1k
103 elfzle1 k1K+11k
104 103 ad3antlr φdBk1K+1¬k=K+1¬k=11k
105 neqne ¬k=K+1kK+1
106 105 adantl φdBk1K+1¬k=K+1kK+1
107 106 necomd φdBk1K+1¬k=K+1K+1k
108 100 ad2antlr φdBk1K+1¬k=K+1k
109 108 nnred φdBk1K+1¬k=K+1k
110 64 ad3antrrr φdBk1K+1¬k=K+1K
111 1red φdBk1K+1¬k=K+11
112 110 111 readdcld φdBk1K+1¬k=K+1K+1
113 elfzle2 k1K+1kK+1
114 113 ad2antlr φdBk1K+1¬k=K+1kK+1
115 109 112 114 leltned φdBk1K+1¬k=K+1k<K+1K+1k
116 107 115 mpbird φdBk1K+1¬k=K+1k<K+1
117 101 ad2antlr φdBk1K+1¬k=K+1k
118 61 ad2antrr φdBk1K+1¬k=K+1K
119 zleltp1 kKkKk<K+1
120 117 118 119 syl2anc φdBk1K+1¬k=K+1kKk<K+1
121 116 120 mpbird φdBk1K+1¬k=K+1kK
122 121 adantr φdBk1K+1¬k=K+1¬k=1kK
123 98 99 102 104 122 elfzd φdBk1K+1¬k=K+1¬k=1k1K
124 97 123 ffvelcdmd φdBk1K+1¬k=K+1¬k=1dk1N+K
125 elfznn dk1N+Kdk
126 125 nnzd dk1N+Kdk
127 124 126 syl φdBk1K+1¬k=K+1¬k=1dk
128 1zzd φk1K+1¬k=11
129 60 ad2antrr φk1K+1¬k=1K
130 129 3impa φk1K+1¬k=1K
131 101 adantl φk1K+1k
132 131 adantr φk1K+1¬k=1k
133 132 3impa φk1K+1¬k=1k
134 133 128 zsubcld φk1K+1¬k=1k1
135 neqne ¬k=1k1
136 135 3ad2ant3 φk1K+1¬k=1k1
137 1red φ1
138 137 3ad2ant1 φk1K+1¬k=11
139 133 zred φk1K+1¬k=1k
140 simp2 φk1K+1¬k=1k1K+1
141 140 103 syl φk1K+1¬k=11k
142 138 139 141 leltned φk1K+1¬k=11<kk1
143 136 142 mpbird φk1K+1¬k=11<k
144 128 133 zltp1led φk1K+1¬k=11<k1+1k
145 143 144 mpbid φk1K+1¬k=11+1k
146 leaddsub 11k1+1k1k1
147 138 138 139 146 syl3anc φk1K+1¬k=11+1k1k1
148 145 147 mpbid φk1K+1¬k=11k1
149 134 zred φk1K+1¬k=1k1
150 64 3ad2ant1 φk1K+1¬k=1K
151 1red φk1K+1¬k=11
152 150 151 readdcld φk1K+1¬k=1K+1
153 152 151 resubcld φk1K+1¬k=1K+1-1
154 113 3ad2ant2 φk1K+1¬k=1kK+1
155 139 152 151 154 lesub1dd φk1K+1¬k=1k1K+1-1
156 64 recnd φK
157 156 3ad2ant1 φk1K+1¬k=1K
158 1cnd φk1K+1¬k=11
159 157 158 pncand φk1K+1¬k=1K+1-1=K
160 65 3ad2ant1 φk1K+1¬k=1KK
161 159 160 eqbrtrd φk1K+1¬k=1K+1-1K
162 149 153 150 155 161 letrd φk1K+1¬k=1k1K
163 128 130 134 148 162 elfzd φk1K+1¬k=1k11K
164 163 ad5ant135 φdBk1K+1¬k=K+1¬k=1k11K
165 97 164 ffvelcdmd φdBk1K+1¬k=K+1¬k=1dk11N+K
166 elfznn dk11N+Kdk1
167 165 166 syl φdBk1K+1¬k=K+1¬k=1dk1
168 167 nnzd φdBk1K+1¬k=K+1¬k=1dk1
169 127 168 zsubcld φdBk1K+1¬k=K+1¬k=1dkdk1
170 169 98 zsubcld φdBk1K+1¬k=K+1¬k=1dk-dk1-1
171 108 adantr φdBk1K+1¬k=K+1¬k=1k
172 171 nnred φdBk1K+1¬k=K+1¬k=1k
173 172 ltm1d φdBk1K+1¬k=K+1¬k=1k1<k
174 164 123 jca φdBk1K+1¬k=K+1¬k=1k11Kk1K
175 55 simprd φdBx1Ky1Kx<ydx<dy
176 175 ad3antrrr φdBk1K+1¬k=K+1¬k=1x1Ky1Kx<ydx<dy
177 breq1 x=k1x<yk1<y
178 fveq2 x=k1dx=dk1
179 178 breq1d x=k1dx<dydk1<dy
180 177 179 imbi12d x=k1x<ydx<dyk1<ydk1<dy
181 breq2 y=kk1<yk1<k
182 fveq2 y=kdy=dk
183 182 breq2d y=kdk1<dydk1<dk
184 181 183 imbi12d y=kk1<ydk1<dyk1<kdk1<dk
185 180 184 rspc2va k11Kk1Kx1Ky1Kx<ydx<dyk1<kdk1<dk
186 174 176 185 syl2anc φdBk1K+1¬k=K+1¬k=1k1<kdk1<dk
187 173 186 mpd φdBk1K+1¬k=K+1¬k=1dk1<dk
188 167 nnred φdBk1K+1¬k=K+1¬k=1dk1
189 127 zred φdBk1K+1¬k=K+1¬k=1dk
190 188 189 posdifd φdBk1K+1¬k=K+1¬k=1dk1<dk0<dkdk1
191 187 190 mpbid φdBk1K+1¬k=K+1¬k=10<dkdk1
192 0zd φdBk1K+1¬k=K+1¬k=10
193 192 169 zltlem1d φdBk1K+1¬k=K+1¬k=10<dkdk10dk-dk1-1
194 191 193 mpbid φdBk1K+1¬k=K+1¬k=10dk-dk1-1
195 170 194 jca φdBk1K+1¬k=K+1¬k=1dk-dk1-10dk-dk1-1
196 elnn0z dk-dk1-10dk-dk1-10dk-dk1-1
197 195 196 sylibr φdBk1K+1¬k=K+1¬k=1dk-dk1-10
198 84 85 96 197 ifbothda φdBk1K+1¬k=K+1ifk=1d11dk-dk1-10
199 41 42 83 198 ifbothda φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-10
200 eqid k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
201 199 200 fmptd φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10
202 eqidd φdBi1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
203 simpr φdBi1K+1k=ik=i
204 203 eqeq1d φdBi1K+1k=ik=K+1i=K+1
205 203 eqeq1d φdBi1K+1k=ik=1i=1
206 203 fveq2d φdBi1K+1k=idk=di
207 203 fvoveq1d φdBi1K+1k=idk1=di1
208 206 207 oveq12d φdBi1K+1k=idkdk1=didi1
209 208 oveq1d φdBi1K+1k=idk-dk1-1=di-di1-1
210 205 209 ifbieq2d φdBi1K+1k=iifk=1d11dk-dk1-1=ifi=1d11di-di1-1
211 204 210 ifbieq2d φdBi1K+1k=iifk=K+1N+K-dKifk=1d11dk-dk1-1=ifi=K+1N+K-dKifi=1d11di-di1-1
212 simpr φdBi1K+1i1K+1
213 ovexd φdBi1K+1N+K-dKV
214 ovexd φdBi1K+1d11V
215 ovexd φdBi1K+1di-di1-1V
216 214 215 ifcld φdBi1K+1ifi=1d11di-di1-1V
217 213 216 ifcld φdBi1K+1ifi=K+1N+K-dKifi=1d11di-di1-1V
218 202 211 212 217 fvmptd φdBi1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=ifi=K+1N+K-dKifi=1d11di-di1-1
219 218 sumeq2dv φdBi=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=i=1K+1ifi=K+1N+K-dKifi=1d11di-di1-1
220 eqeq1 i=ki=K+1k=K+1
221 eqeq1 i=ki=1k=1
222 fveq2 i=kdi=dk
223 fvoveq1 i=kdi1=dk1
224 222 223 oveq12d i=kdidi1=dkdk1
225 224 oveq1d i=kdi-di1-1=dk-dk1-1
226 221 225 ifbieq2d i=kifi=1d11di-di1-1=ifk=1d11dk-dk1-1
227 220 226 ifbieq2d i=kifi=K+1N+K-dKifi=1d11di-di1-1=ifk=K+1N+K-dKifk=1d11dk-dk1-1
228 nfcv _k1K+1
229 nfcv _i1K+1
230 nfcv _kifi=K+1N+K-dKifi=1d11di-di1-1
231 nfcv _iifk=K+1N+K-dKifk=1d11dk-dk1-1
232 227 228 229 230 231 cbvsum i=1K+1ifi=K+1N+K-dKifi=1d11di-di1-1=k=1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
233 232 a1i φdBi=1K+1ifi=K+1N+K-dKifi=1d11di-di1-1=k=1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
234 eqid 1=1
235 1p0e1 1+0=1
236 234 235 eqtr4i 1=1+0
237 236 a1i φ1=1+0
238 0le1 01
239 238 a1i φ01
240 137 8 64 137 62 239 le2addd φ1+0K+1
241 237 240 eqbrtrd φ1K+1
242 60 peano2zd φK+1
243 eluz 1K+1K+111K+1
244 57 242 243 syl2anc φK+111K+1
245 241 244 mpbird φK+11
246 245 adantr φdBK+11
247 199 nn0cnd φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
248 eqeq1 k=K+1k=K+1K+1=K+1
249 eqeq1 k=K+1k=1K+1=1
250 fveq2 k=K+1dk=dK+1
251 fvoveq1 k=K+1dk1=dK+1-1
252 250 251 oveq12d k=K+1dkdk1=dK+1dK+1-1
253 252 oveq1d k=K+1dk-dk1-1=dK+1-dK+1-1-1
254 249 253 ifbieq2d k=K+1ifk=1d11dk-dk1-1=ifK+1=1d11dK+1-dK+1-1-1
255 248 254 ifbieq2d k=K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=ifK+1=K+1N+K-dKifK+1=1d11dK+1-dK+1-1-1
256 246 247 255 fsumm1 φdBk=1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=k=1K+1-1ifk=K+1N+K-dKifk=1d11dk-dk1-1+ifK+1=K+1N+K-dKifK+1=1d11dK+1-dK+1-1-1
257 156 adantr φdBK
258 1cnd φdB1
259 257 258 pncand φdBK+1-1=K
260 259 oveq2d φdB1K+1-1=1K
261 260 sumeq1d φdBk=1K+1-1ifk=K+1N+K-dKifk=1d11dk-dk1-1=k=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1
262 eqidd φdBK+1=K+1
263 262 iftrued φdBifK+1=K+1N+K-dKifK+1=1d11dK+1-dK+1-1-1=N+K-dK
264 261 263 oveq12d φdBk=1K+1-1ifk=K+1N+K-dKifk=1d11dk-dk1-1+ifK+1=K+1N+K-dKifK+1=1d11dK+1-dK+1-1-1=k=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1+N+K-dK
265 elfzelz k1Kk
266 265 adantl φdBk1Kk
267 266 zred φdBk1Kk
268 64 ad2antrr φdBk1KK
269 1red φdBk1K1
270 268 269 readdcld φdBk1KK+1
271 elfzle2 k1KkK
272 271 adantl φdBk1KkK
273 268 ltp1d φdBk1KK<K+1
274 267 268 270 272 273 lelttrd φdBk1Kk<K+1
275 267 274 ltned φdBk1KkK+1
276 275 neneqd φdBk1K¬k=K+1
277 276 iffalsed φdBk1Kifk=K+1N+K-dKifk=1d11dk-dk1-1=ifk=1d11dk-dk1-1
278 277 sumeq2dv φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1=k=1Kifk=1d11dk-dk1-1
279 eqeq1 d11=ifk=1d11dk-dk1-1d11=ifk=1d1dkdk11ifk=1d11dk-dk1-1=ifk=1d1dkdk11
280 eqeq1 dk-dk1-1=ifk=1d11dk-dk1-1dk-dk1-1=ifk=1d1dkdk11ifk=1d11dk-dk1-1=ifk=1d1dkdk11
281 simpr φdBk1Kk=1k=1
282 281 iftrued φdBk1Kk=1ifk=1d1dkdk1=d1
283 282 eqcomd φdBk1Kk=1d1=ifk=1d1dkdk1
284 283 oveq1d φdBk1Kk=1d11=ifk=1d1dkdk11
285 simpr φdBk1K¬k=1¬k=1
286 285 iffalsed φdBk1K¬k=1ifk=1d1dkdk1=dkdk1
287 286 eqcomd φdBk1K¬k=1dkdk1=ifk=1d1dkdk1
288 287 oveq1d φdBk1K¬k=1dk-dk1-1=ifk=1d1dkdk11
289 279 280 284 288 ifbothda φdBk1Kifk=1d11dk-dk1-1=ifk=1d1dkdk11
290 289 sumeq2dv φdBk=1Kifk=1d11dk-dk1-1=k=1Kifk=1d1dkdk11
291 fzfid φdB1KFin
292 eleq1 d1=ifk=1d1dkdk1d1ifk=1d1dkdk1
293 eleq1 dkdk1=ifk=1d1dkdk1dkdk1ifk=1d1dkdk1
294 56 3adant3 φdBk1Kd:1K1N+K
295 88 3adant3 φdBk1K11K
296 294 295 ffvelcdmd φdBk1Kd11N+K
297 90 nnzd d11N+Kd1
298 296 297 syl φdBk1Kd1
299 298 adantr φdBk1Kk=1d1
300 simp3 φdBk1Kk1K
301 294 300 ffvelcdmd φdBk1Kdk1N+K
302 301 126 syl φdBk1Kdk
303 302 adantr φdBk1K¬k=1dk
304 294 adantr φdBk1K¬k=1d:1K1N+K
305 1zzd φdBk1K¬k=11
306 61 3adant3 φdBk1KK
307 306 adantr φdBk1K¬k=1K
308 266 3impa φdBk1Kk
309 308 adantr φdBk1K¬k=1k
310 309 305 zsubcld φdBk1K¬k=1k1
311 elfzle1 k1K1k
312 300 311 syl φdBk1K1k
313 312 adantr φdBk1K¬k=11k
314 135 adantl φdBk1K¬k=1k1
315 313 314 jca φdBk1K¬k=11kk1
316 1red φdBk1K¬k=11
317 309 zred φdBk1K¬k=1k
318 316 317 ltlend φdBk1K¬k=11<k1kk1
319 315 318 mpbird φdBk1K¬k=11<k
320 305 309 zltlem1d φdBk1K¬k=11<k1k1
321 319 320 mpbid φdBk1K¬k=11k1
322 310 zred φdBk1K¬k=1k1
323 307 zred φdBk1K¬k=1K
324 317 lem1d φdBk1K¬k=1k1k
325 300 271 syl φdBk1KkK
326 325 adantr φdBk1K¬k=1kK
327 322 317 323 324 326 letrd φdBk1K¬k=1k1K
328 305 307 310 321 327 elfzd φdBk1K¬k=1k11K
329 304 328 ffvelcdmd φdBk1K¬k=1dk11N+K
330 329 166 syl φdBk1K¬k=1dk1
331 330 nnzd φdBk1K¬k=1dk1
332 303 331 zsubcld φdBk1K¬k=1dkdk1
333 292 293 299 332 ifbothda φdBk1Kifk=1d1dkdk1
334 333 3expa φdBk1Kifk=1d1dkdk1
335 334 zcnd φdBk1Kifk=1d1dkdk1
336 258 adantr φdBk1K1
337 291 335 336 fsumsub φdBk=1Kifk=1d1dkdk11=k=1Kifk=1d1dkdk1k=1K1
338 simpr φdB1=K1=K
339 338 oveq2d φdB1=K11=1K
340 339 eqcomd φdB1=K1K=11
341 340 sumeq1d φdB1=Kk=1Kifk=1d1dkdk1=k=11ifk=1d1dkdk1
342 1zzd φdB1
343 234 a1i φdB1=1
344 343 iftrued φdBif1=1d1d1d11=d1
345 91 nncnd φdBd1
346 344 345 eqeltrd φdBif1=1d1d1d11
347 eqeq1 k=1k=11=1
348 fveq2 k=1dk=d1
349 fvoveq1 k=1dk1=d11
350 348 349 oveq12d k=1dkdk1=d1d11
351 347 350 ifbieq2d k=1ifk=1d1dkdk1=if1=1d1d1d11
352 351 fsum1 1if1=1d1d1d11k=11ifk=1d1dkdk1=if1=1d1d1d11
353 342 346 352 syl2anc φdBk=11ifk=1d1dkdk1=if1=1d1d1d11
354 353 344 eqtrd φdBk=11ifk=1d1dkdk1=d1
355 354 adantr φdB1=Kk=11ifk=1d1dkdk1=d1
356 fveq2 1=Kd1=dK
357 356 adantl φdB1=Kd1=dK
358 341 355 357 3eqtrd φdB1=Kk=1Kifk=1d1dkdk1=dK
359 2 3ad2ant1 φdB1<KK
360 nnuz =1
361 360 a1i φdB1<K=1
362 359 361 eleqtrd φdB1<KK1
363 335 3adantl3 φdB1<Kk1Kifk=1d1dkdk1
364 iftrue k=1ifk=1d1dkdk1=d1
365 362 363 364 fsum1p φdB1<Kk=1Kifk=1d1dkdk1=d1+k=1+1Kifk=1d1dkdk1
366 1red φdB1<Kk1+1K1
367 elfzle1 k1+1K1+1k
368 367 adantl φdB1<Kk1+1K1+1k
369 1zzd φdB1<Kk1+1K1
370 elfzelz k1+1Kk
371 370 adantl φdB1<Kk1+1Kk
372 369 371 zltp1led φdB1<Kk1+1K1<k1+1k
373 368 372 mpbird φdB1<Kk1+1K1<k
374 366 373 ltned φdB1<Kk1+1K1k
375 374 necomd φdB1<Kk1+1Kk1
376 375 neneqd φdB1<Kk1+1K¬k=1
377 376 iffalsed φdB1<Kk1+1Kifk=1d1dkdk1=dkdk1
378 377 sumeq2dv φdB1<Kk=1+1Kifk=1d1dkdk1=k=1+1Kdkdk1
379 378 oveq2d φdB1<Kd1+k=1+1Kifk=1d1dkdk1=d1+k=1+1Kdkdk1
380 257 3adant3 φdB1<KK
381 1cnd φdB1<K1
382 380 381 npcand φdB1<KK-1+1=K
383 382 eqcomd φdB1<KK=K-1+1
384 383 oveq2d φdB1<K1+1K=1+1K-1+1
385 384 sumeq1d φdB1<Kk=1+1Kdkdk1=k=1+1K-1+1dkdk1
386 385 oveq2d φdB1<Kd1+k=1+1Kdkdk1=d1+k=1+1K-1+1dkdk1
387 elfzelz k1+1K-1+1k
388 387 adantl φdB1<Kk1+1K-1+1k
389 388 zcnd φdB1<Kk1+1K-1+1k
390 1cnd φdB1<Kk1+1K-1+11
391 389 390 npcand φdB1<Kk1+1K-1+1k-1+1=k
392 391 eqcomd φdB1<Kk1+1K-1+1k=k-1+1
393 392 fveq2d φdB1<Kk1+1K-1+1dk=dk-1+1
394 393 oveq1d φdB1<Kk1+1K-1+1dkdk1=dk-1+1dk1
395 394 sumeq2dv φdB1<Kk=1+1K-1+1dkdk1=k=1+1K-1+1dk-1+1dk1
396 395 oveq2d φdB1<Kd1+k=1+1K-1+1dkdk1=d1+k=1+1K-1+1dk-1+1dk1
397 58 3adant3 φdB1<K1
398 61 3adant3 φdB1<KK
399 398 397 zsubcld φdB1<KK1
400 56 3adant3 φdB1<Kd:1K1N+K
401 400 adantr φdB1<Ks1K1d:1K1N+K
402 1zzd φdB1<Ks1K11
403 398 adantr φdB1<Ks1K1K
404 elfznn s1K1s
405 404 adantl φdB1<Ks1K1s
406 405 nnzd φdB1<Ks1K1s
407 406 peano2zd φdB1<Ks1K1s+1
408 1red φdB1<Ks1K11
409 405 nnred φdB1<Ks1K1s
410 407 zred φdB1<Ks1K1s+1
411 405 nnge1d φdB1<Ks1K11s
412 409 lep1d φdB1<Ks1K1ss+1
413 408 409 410 411 412 letrd φdB1<Ks1K11s+1
414 elfzle2 s1K1sK1
415 414 adantl φdB1<Ks1K1sK1
416 403 zred φdB1<Ks1K1K
417 leaddsub s1Ks+1KsK1
418 409 408 416 417 syl3anc φdB1<Ks1K1s+1KsK1
419 415 418 mpbird φdB1<Ks1K1s+1K
420 402 403 407 413 419 elfzd φdB1<Ks1K1s+11K
421 401 420 ffvelcdmd φdB1<Ks1K1ds+11N+K
422 elfznn ds+11N+Kds+1
423 421 422 syl φdB1<Ks1K1ds+1
424 423 nnzd φdB1<Ks1K1ds+1
425 416 408 resubcld φdB1<Ks1K1K1
426 416 lem1d φdB1<Ks1K1K1K
427 409 425 416 415 426 letrd φdB1<Ks1K1sK
428 402 403 406 411 427 elfzd φdB1<Ks1K1s1K
429 401 ffvelcdmda φdB1<Ks1K1s1Kds1N+K
430 428 429 mpdan φdB1<Ks1K1ds1N+K
431 elfznn ds1N+Kds
432 430 431 syl φdB1<Ks1K1ds
433 432 nnzd φdB1<Ks1K1ds
434 424 433 zsubcld φdB1<Ks1K1ds+1ds
435 434 zcnd φdB1<Ks1K1ds+1ds
436 fvoveq1 s=k1ds+1=dk-1+1
437 fveq2 s=k1ds=dk1
438 436 437 oveq12d s=k1ds+1ds=dk-1+1dk1
439 397 397 399 435 438 fsumshft φdB1<Ks=1K1ds+1ds=k=1+1K-1+1dk-1+1dk1
440 439 eqcomd φdB1<Kk=1+1K-1+1dk-1+1dk1=s=1K1ds+1ds
441 440 oveq2d φdB1<Kd1+k=1+1K-1+1dk-1+1dk1=d1+s=1K1ds+1ds
442 fveq2 o=sdo=ds
443 fveq2 o=s+1do=ds+1
444 fveq2 o=1do=d1
445 fveq2 o=K-1+1do=dK-1+1
446 382 362 eqeltrd φdB1<KK-1+11
447 56 adantr φdB1<Kd:1K1N+K
448 447 3impa φdB1<Kd:1K1N+K
449 448 ffvelcdmda φdB1<Ko1Kdo1N+K
450 449 ex φdB1<Ko1Kdo1N+K
451 382 oveq2d φdB1<K1K-1+1=1K
452 451 eleq2d φdB1<Ko1K-1+1o1K
453 452 imbi1d φdB1<Ko1K-1+1do1N+Ko1Kdo1N+K
454 450 453 mpbird φdB1<Ko1K-1+1do1N+K
455 454 imp φdB1<Ko1K-1+1do1N+K
456 elfznn do1N+Kdo
457 455 456 syl φdB1<Ko1K-1+1do
458 457 nncnd φdB1<Ko1K-1+1do
459 442 443 444 445 399 446 458 telfsum2 φdB1<Ks=1K1ds+1ds=dK-1+1d1
460 459 oveq2d φdB1<Kd1+s=1K1ds+1ds=d1+dK-1+1-d1
461 382 fveq2d φdB1<KdK-1+1=dK
462 461 oveq1d φdB1<KdK-1+1d1=dKd1
463 462 oveq2d φdB1<Kd1+dK-1+1-d1=d1+dK-d1
464 345 3adant3 φdB1<Kd1
465 68 73 syl φdBdK
466 465 nncnd φdBdK
467 466 3adant3 φdB1<KdK
468 464 467 pncan3d φdB1<Kd1+dK-d1=dK
469 eqidd φdB1<KdK=dK
470 468 469 eqtrd φdB1<Kd1+dK-d1=dK
471 463 470 eqtrd φdB1<Kd1+dK-1+1-d1=dK
472 460 471 eqtrd φdB1<Kd1+s=1K1ds+1ds=dK
473 441 472 eqtrd φdB1<Kd1+k=1+1K-1+1dk-1+1dk1=dK
474 396 473 eqtrd φdB1<Kd1+k=1+1K-1+1dkdk1=dK
475 386 474 eqtrd φdB1<Kd1+k=1+1Kdkdk1=dK
476 379 475 eqtrd φdB1<Kd1+k=1+1Kifk=1d1dkdk1=dK
477 365 476 eqtrd φdB1<Kk=1Kifk=1d1dkdk1=dK
478 477 3expa φdB1<Kk=1Kifk=1d1dkdk1=dK
479 137 adantr φdB1
480 64 adantr φdBK
481 479 480 leloed φdB1K1<K1=K
482 63 481 mpbid φdB1<K1=K
483 482 orcomd φdB1=K1<K
484 358 478 483 mpjaodan φdBk=1Kifk=1d1dkdk1=dK
485 fsumconst 1KFin1k=1K1=1K1
486 291 258 485 syl2anc φdBk=1K1=1K1
487 59 adantr φdBK0
488 hashfz1 K01K=K
489 487 488 syl φdB1K=K
490 489 oveq1d φdB1K1=K1
491 257 mulridd φdBK1=K
492 490 491 eqtrd φdB1K1=K
493 486 492 eqtrd φdBk=1K1=K
494 484 493 oveq12d φdBk=1Kifk=1d1dkdk1k=1K1=dKK
495 337 494 eqtrd φdBk=1Kifk=1d1dkdk11=dKK
496 290 495 eqtrd φdBk=1Kifk=1d11dk-dk1-1=dKK
497 466 257 subcld φdBdKK
498 497 addridd φdBdK-K+0=dKK
499 498 eqcomd φdBdKK=dK-K+0
500 0cnd φdB0
501 497 500 addcomd φdBdK-K+0=0+dK-K
502 499 501 eqtrd φdBdKK=0+dK-K
503 496 502 eqtrd φdBk=1Kifk=1d11dk-dk1-1=0+dK-K
504 500 257 466 subsub2d φdB0KdK=0+dK-K
505 504 eqcomd φdB0+dK-K=0KdK
506 503 505 eqtrd φdBk=1Kifk=1d11dk-dk1-1=0KdK
507 1 nn0cnd φN
508 507 adantr φdBN
509 508 subidd φdBNN=0
510 509 eqcomd φdB0=NN
511 510 oveq1d φdB0KdK=N-N-KdK
512 506 511 eqtrd φdBk=1Kifk=1d11dk-dk1-1=N-N-KdK
513 257 466 subcld φdBKdK
514 508 508 513 subsub4d φdBN-N-KdK=NN+K-dK
515 512 514 eqtrd φdBk=1Kifk=1d11dk-dk1-1=NN+K-dK
516 508 257 466 addsubassd φdBN+K-dK=N+K-dK
517 516 eqcomd φdBN+K-dK=N+K-dK
518 517 oveq2d φdBNN+K-dK=NN+K-dK
519 515 518 eqtrd φdBk=1Kifk=1d11dk-dk1-1=NN+K-dK
520 278 519 eqtrd φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1=NN+K-dK
521 eleq1 d11=ifk=1d11dk-dk1-1d11ifk=1d11dk-dk1-1
522 eleq1 dk-dk1-1=ifk=1d11dk-dk1-1dk-dk1-1ifk=1d11dk-dk1-1
523 1zzd φdBk1K1
524 298 523 zsubcld φdBk1Kd11
525 524 adantr φdBk1Kk=1d11
526 523 adantr φdBk1K¬k=11
527 332 526 zsubcld φdBk1K¬k=1dk-dk1-1
528 521 522 525 527 ifbothda φdBk1Kifk=1d11dk-dk1-1
529 528 3expa φdBk1Kifk=1d11dk-dk1-1
530 277 eleq1d φdBk1Kifk=K+1N+K-dKifk=1d11dk-dk1-1ifk=1d11dk-dk1-1
531 529 530 mpbird φdBk1Kifk=K+1N+K-dKifk=1d11dk-dk1-1
532 291 531 fsumzcl φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1
533 532 zcnd φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1
534 508 257 addcld φdBN+K
535 534 466 subcld φdBN+K-dK
536 533 535 508 addlsub φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1+N+K-dK=Nk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1=NN+K-dK
537 520 536 mpbird φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1+N+K-dK=N
538 eqidd φdBN=N
539 537 538 eqtrd φdBk=1Kifk=K+1N+K-dKifk=1d11dk-dk1-1+N+K-dK=N
540 264 539 eqtrd φdBk=1K+1-1ifk=K+1N+K-dKifk=1d11dk-dk1-1+ifK+1=K+1N+K-dKifK+1=1d11dK+1-dK+1-1-1=N
541 256 540 eqtrd φdBk=1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=N
542 233 541 eqtrd φdBi=1K+1ifi=K+1N+K-dKifi=1d11di-di1-1=N
543 219 542 eqtrd φdBi=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
544 201 543 jca φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
545 ovex 1K+1V
546 545 mptex k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1V
547 feq1 g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1g:1K+10k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10
548 simpl g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i1K+1g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
549 548 fveq1d g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i1K+1gi=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i
550 549 sumeq2dv g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=1K+1gi=i=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i
551 550 eqeq1d g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=1K+1gi=Ni=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
552 547 551 anbi12d g=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1g:1K+10i=1K+1gi=Nk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
553 546 552 elab k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1g|g:1K+10i=1K+1gi=Nk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
554 553 a1i φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1g|g:1K+10i=1K+1gi=Nk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1i=N
555 544 554 mpbird φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1g|g:1K+10i=1K+1gi=N
556 5 a1i φdBA=g|g:1K+10i=1K+1gi=N
557 556 eqcomd φdBg|g:1K+10i=1K+1gi=N=A
558 555 557 eleqtrd φdBk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1A
559 291 mptexd φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1lV
560 34 40 558 559 fvmptd φdBFk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=j1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l
561 eqidd φdBj1Kl1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=k1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1
562 simpr φdBj1Kl1jk=lk=l
563 562 eqeq1d φdBj1Kl1jk=lk=K+1l=K+1
564 562 eqeq1d φdBj1Kl1jk=lk=1l=1
565 562 fveq2d φdBj1Kl1jk=ldk=dl
566 562 oveq1d φdBj1Kl1jk=lk1=l1
567 566 fveq2d φdBj1Kl1jk=ldk1=dl1
568 565 567 oveq12d φdBj1Kl1jk=ldkdk1=dldl1
569 568 oveq1d φdBj1Kl1jk=ldk-dk1-1=dl-dl1-1
570 564 569 ifbieq2d φdBj1Kl1jk=lifk=1d11dk-dk1-1=ifl=1d11dl-dl1-1
571 563 570 ifbieq2d φdBj1Kl1jk=lifk=K+1N+K-dKifk=1d11dk-dk1-1=ifl=K+1N+K-dKifl=1d11dl-dl1-1
572 1zzd φdBj1Kl1j1
573 60 3ad2ant1 φdBj1KK
574 573 adantr φdBj1Kl1jK
575 574 peano2zd φdBj1Kl1jK+1
576 elfzelz l1jl
577 576 adantl φdBj1Kl1jl
578 elfzle1 l1j1l
579 578 adantl φdBj1Kl1j1l
580 577 zred φdBj1Kl1jl
581 simp3 φdBj1Kj1K
582 elfznn j1Kj
583 581 582 syl φdBj1Kj
584 583 nnred φdBj1Kj
585 584 adantr φdBj1Kl1jj
586 575 zred φdBj1Kl1jK+1
587 elfzle2 l1jlj
588 587 adantl φdBj1Kl1jlj
589 64 3ad2ant1 φdBj1KK
590 1red φdBj1K1
591 589 590 readdcld φdBj1KK+1
592 elfzle2 j1KjK
593 581 592 syl φdBj1KjK
594 589 lep1d φdBj1KKK+1
595 584 589 591 593 594 letrd φdBj1KjK+1
596 595 adantr φdBj1Kl1jjK+1
597 580 585 586 588 596 letrd φdBj1Kl1jlK+1
598 572 575 577 579 597 elfzd φdBj1Kl1jl1K+1
599 ovexd φdBj1Kl1jN+K-dKV
600 ovexd φdBj1Kl1jd11V
601 ovexd φdBj1Kl1jdl-dl1-1V
602 600 601 ifcld φdBj1Kl1jifl=1d11dl-dl1-1V
603 599 602 ifcld φdBj1Kl1jifl=K+1N+K-dKifl=1d11dl-dl1-1V
604 561 571 598 603 fvmptd φdBj1Kl1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=ifl=K+1N+K-dKifl=1d11dl-dl1-1
605 604 sumeq2dv φdBj1Kl=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=l=1jifl=K+1N+K-dKifl=1d11dl-dl1-1
606 605 oveq2d φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=j+l=1jifl=K+1N+K-dKifl=1d11dl-dl1-1
607 elfznn l1jl
608 607 adantl φdBj1Kl1jl
609 608 nnred φdBj1Kl1jl
610 589 adantr φdBj1Kl1jK
611 1red φdBj1Kl1j1
612 610 611 readdcld φdBj1Kl1jK+1
613 583 adantr φdBj1Kl1jj
614 613 nnred φdBj1Kl1jj
615 593 adantr φdBj1Kl1jjK
616 609 614 610 588 615 letrd φdBj1Kl1jlK
617 610 ltp1d φdBj1Kl1jK<K+1
618 609 610 612 616 617 lelttrd φdBj1Kl1jl<K+1
619 609 618 ltned φdBj1Kl1jlK+1
620 619 neneqd φdBj1Kl1j¬l=K+1
621 620 iffalsed φdBj1Kl1jifl=K+1N+K-dKifl=1d11dl-dl1-1=ifl=1d11dl-dl1-1
622 621 sumeq2dv φdBj1Kl=1jifl=K+1N+K-dKifl=1d11dl-dl1-1=l=1jifl=1d11dl-dl1-1
623 622 oveq2d φdBj1Kj+l=1jifl=K+1N+K-dKifl=1d11dl-dl1-1=j+l=1jifl=1d11dl-dl1-1
624 583 nnge1d φdBj1K1j
625 57 3ad2ant1 φdBj1K1
626 583 nnzd φdBj1Kj
627 eluz 1jj11j
628 625 626 627 syl2anc φdBj1Kj11j
629 624 628 mpbird φdBj1Kj1
630 eleq1 d11=ifl=1d11dl-dl1-1d11ifl=1d11dl-dl1-1
631 eleq1 dl-dl1-1=ifl=1d11dl-dl1-1dl-dl1-1ifl=1d11dl-dl1-1
632 56 3adant3 φdBj1Kd:1K1N+K
633 simp1 φdBj1Kφ
634 633 62 syl φdBj1K1K
635 633 60 syl φdBj1KK
636 eluz 1KK11K
637 625 635 636 syl2anc φdBj1KK11K
638 634 637 mpbird φdBj1KK1
639 eluzfz1 K111K
640 638 639 syl φdBj1K11K
641 632 640 ffvelcdmd φdBj1Kd11N+K
642 641 90 syl φdBj1Kd1
643 642 nnzd φdBj1Kd1
644 643 625 zsubcld φdBj1Kd11
645 644 zcnd φdBj1Kd11
646 645 adantr φdBj1Kl1jd11
647 646 adantr φdBj1Kl1jl=1d11
648 632 adantr φdBj1Kl1jd:1K1N+K
649 635 adantr φdBj1Kl1jK
650 608 nnzd φdBj1Kl1jl
651 608 nnge1d φdBj1Kl1j1l
652 572 649 650 651 616 elfzd φdBj1Kl1jl1K
653 648 652 ffvelcdmd φdBj1Kl1jdl1N+K
654 elfzelz dl1N+Kdl
655 653 654 syl φdBj1Kl1jdl
656 655 adantr φdBj1Kl1j¬l=1dl
657 648 adantr φdBj1Kl1j¬l=1d:1K1N+K
658 1zzd φdBj1Kl1j¬l=11
659 649 adantr φdBj1Kl1j¬l=1K
660 650 adantr φdBj1Kl1j¬l=1l
661 660 658 zsubcld φdBj1Kl1j¬l=1l1
662 neqne ¬l=1l1
663 662 adantl φdBj1Kl1j¬l=1l1
664 611 adantr φdBj1Kl1j¬l=11
665 609 adantr φdBj1Kl1j¬l=1l
666 651 adantr φdBj1Kl1j¬l=11l
667 664 665 666 leltned φdBj1Kl1j¬l=11<ll1
668 663 667 mpbird φdBj1Kl1j¬l=11<l
669 658 660 zltlem1d φdBj1Kl1j¬l=11<l1l1
670 668 669 mpbid φdBj1Kl1j¬l=11l1
671 661 zred φdBj1Kl1j¬l=1l1
672 610 adantr φdBj1Kl1j¬l=1K
673 665 lem1d φdBj1Kl1j¬l=1l1l
674 616 adantr φdBj1Kl1j¬l=1lK
675 671 665 672 673 674 letrd φdBj1Kl1j¬l=1l1K
676 658 659 661 670 675 elfzd φdBj1Kl1j¬l=1l11K
677 657 676 ffvelcdmd φdBj1Kl1j¬l=1dl11N+K
678 elfzelz dl11N+Kdl1
679 677 678 syl φdBj1Kl1j¬l=1dl1
680 656 679 zsubcld φdBj1Kl1j¬l=1dldl1
681 680 658 zsubcld φdBj1Kl1j¬l=1dl-dl1-1
682 681 zcnd φdBj1Kl1j¬l=1dl-dl1-1
683 630 631 647 682 ifbothda φdBj1Kl1jifl=1d11dl-dl1-1
684 iftrue l=1ifl=1d11dl-dl1-1=d11
685 629 683 684 fsum1p φdBj1Kl=1jifl=1d11dl-dl1-1=d1-1+l=1+1jifl=1d11dl-dl1-1
686 685 oveq2d φdBj1Kj+l=1jifl=1d11dl-dl1-1=j+d11+l=1+1jifl=1d11dl-dl1-1
687 633 137 syl φdBj1K1
688 687 adantr φdBj1Kl1+1j1
689 688 688 readdcld φdBj1Kl1+1j1+1
690 elfzelz l1+1jl
691 690 adantl φdBj1Kl1+1jl
692 691 zred φdBj1Kl1+1jl
693 688 ltp1d φdBj1Kl1+1j1<1+1
694 elfzle1 l1+1j1+1l
695 694 adantl φdBj1Kl1+1j1+1l
696 688 689 692 693 695 ltletrd φdBj1Kl1+1j1<l
697 688 696 ltned φdBj1Kl1+1j1l
698 697 necomd φdBj1Kl1+1jl1
699 698 neneqd φdBj1Kl1+1j¬l=1
700 699 iffalsed φdBj1Kl1+1jifl=1d11dl-dl1-1=dl-dl1-1
701 700 sumeq2dv φdBj1Kl=1+1jifl=1d11dl-dl1-1=l=1+1jdl-dl1-1
702 701 oveq2d φdBj1Kd1-1+l=1+1jifl=1d11dl-dl1-1=d1-1+l=1+1jdl-dl1-1
703 702 oveq2d φdBj1Kj+d11+l=1+1jifl=1d11dl-dl1-1=j+d11+l=1+1jdl-dl1-1
704 fzfid φdBj1K1+1jFin
705 632 adantr φdBj1Kl1+1jd:1K1N+K
706 1zzd φdBj1Kl1+1j1
707 635 adantr φdBj1Kl1+1jK
708 688 689 693 ltled φdBj1Kl1+1j11+1
709 688 689 692 708 695 letrd φdBj1Kl1+1j1l
710 584 adantr φdBj1Kl1+1jj
711 589 adantr φdBj1Kl1+1jK
712 elfzle2 l1+1jlj
713 712 adantl φdBj1Kl1+1jlj
714 593 adantr φdBj1Kl1+1jjK
715 692 710 711 713 714 letrd φdBj1Kl1+1jlK
716 706 707 691 709 715 elfzd φdBj1Kl1+1jl1K
717 705 716 ffvelcdmd φdBj1Kl1+1jdl1N+K
718 717 654 syl φdBj1Kl1+1jdl
719 718 zcnd φdBj1Kl1+1jdl
720 691 706 zsubcld φdBj1Kl1+1jl1
721 leaddsub 11l1+1l1l1
722 688 688 692 721 syl3anc φdBj1Kl1+1j1+1l1l1
723 695 722 mpbid φdBj1Kl1+1j1l1
724 692 688 resubcld φdBj1Kl1+1jl1
725 692 lem1d φdBj1Kl1+1jl1l
726 724 692 711 725 715 letrd φdBj1Kl1+1jl1K
727 706 707 720 723 726 elfzd φdBj1Kl1+1jl11K
728 705 727 ffvelcdmd φdBj1Kl1+1jdl11N+K
729 678 zcnd dl11N+Kdl1
730 728 729 syl φdBj1Kl1+1jdl1
731 719 730 subcld φdBj1Kl1+1jdldl1
732 1cnd φdBj1Kl1+1j1
733 704 731 732 fsumsub φdBj1Kl=1+1jdl-dl1-1=l=1+1jdldl1l=1+1j1
734 733 oveq2d φdBj1Kd1-1+l=1+1jdl-dl1-1=d11+l=1+1jdldl1-l=1+1j1
735 734 oveq2d φdBj1Kj+d11+l=1+1jdl-dl1-1=j+d11+l=1+1jdldl1l=1+1j1
736 1cnd φdBj1K1
737 fsumconst 1+1jFin1l=1+1j1=1+1j1
738 704 736 737 syl2anc φdBj1Kl=1+1j1=1+1j1
739 hashfzp1 j11+1j=j1
740 629 739 syl φdBj1K1+1j=j1
741 740 oveq1d φdBj1K1+1j1=j11
742 583 nncnd φdBj1Kj
743 742 736 subcld φdBj1Kj1
744 743 mulridd φdBj1Kj11=j1
745 741 744 eqtrd φdBj1K1+1j1=j1
746 738 745 eqtrd φdBj1Kl=1+1j1=j1
747 746 oveq2d φdBj1Kl=1+1jdldl1l=1+1j1=l=1+1jdldl1j1
748 747 oveq2d φdBj1Kd11+l=1+1jdldl1-l=1+1j1=d11+l=1+1jdldl1-j1
749 748 oveq2d φdBj1Kj+d11+l=1+1jdldl1l=1+1j1=j+d11+l=1+1jdldl1j1
750 704 731 fsumcl φdBj1Kl=1+1jdldl1
751 645 750 743 addsubassd φdBj1Kd11+l=1+1jdldl1-j1=d11+l=1+1jdldl1-j1
752 751 eqcomd φdBj1Kd11+l=1+1jdldl1-j1=d11+l=1+1jdldl1-j1
753 752 oveq2d φdBj1Kj+d11+l=1+1jdldl1j1=j+d1-1+l=1+1jdldl1-j1
754 645 750 addcld φdBj1Kd1-1+l=1+1jdldl1
755 742 754 743 addsubassd φdBj1Kj+d1-1+l=1+1jdldl1-j1=j+d1-1+l=1+1jdldl1-j1
756 755 eqcomd φdBj1Kj+d1-1+l=1+1jdldl1-j1=j+d1-1+l=1+1jdldl1-j1
757 742 754 743 addsubd φdBj1Kj+d1-1+l=1+1jdldl1-j1=jj1+d11+l=1+1jdldl1
758 742 736 nncand φdBj1Kjj1=1
759 1zzd φdBj1K1
760 626 625 zsubcld φdBj1Kj1
761 632 adantr φdBj1Kl1j1d:1K1N+K
762 1zzd φdBj1Kl1j11
763 635 adantr φdBj1Kl1j1K
764 elfzelz l1j1l
765 764 adantl φdBj1Kl1j1l
766 765 peano2zd φdBj1Kl1j1l+1
767 1red φdBj1Kl1j11
768 765 zred φdBj1Kl1j1l
769 768 767 readdcld φdBj1Kl1j1l+1
770 elfzle1 l1j11l
771 770 adantl φdBj1Kl1j11l
772 768 lep1d φdBj1Kl1j1ll+1
773 767 768 769 771 772 letrd φdBj1Kl1j11l+1
774 584 adantr φdBj1Kl1j1j
775 774 767 resubcld φdBj1Kl1j1j1
776 589 adantr φdBj1Kl1j1K
777 776 767 resubcld φdBj1Kl1j1K1
778 elfzle2 l1j1lj1
779 778 adantl φdBj1Kl1j1lj1
780 593 adantr φdBj1Kl1j1jK
781 774 776 767 780 lesub1dd φdBj1Kl1j1j1K1
782 768 775 777 779 781 letrd φdBj1Kl1j1lK1
783 leaddsub l1Kl+1KlK1
784 768 767 776 783 syl3anc φdBj1Kl1j1l+1KlK1
785 782 784 mpbird φdBj1Kl1j1l+1K
786 762 763 766 773 785 elfzd φdBj1Kl1j1l+11K
787 761 786 ffvelcdmd φdBj1Kl1j1dl+11N+K
788 elfzelz dl+11N+Kdl+1
789 787 788 syl φdBj1Kl1j1dl+1
790 584 687 resubcld φdBj1Kj1
791 584 lem1d φdBj1Kj1j
792 790 584 589 791 593 letrd φdBj1Kj1K
793 792 adantr φdBj1Kl1j1j1K
794 768 775 776 779 793 letrd φdBj1Kl1j1lK
795 762 763 765 771 794 elfzd φdBj1Kl1j1l1K
796 761 795 ffvelcdmd φdBj1Kl1j1dl1N+K
797 796 654 syl φdBj1Kl1j1dl
798 789 797 zsubcld φdBj1Kl1j1dl+1dl
799 798 zcnd φdBj1Kl1j1dl+1dl
800 fvoveq1 l=w1dl+1=dw-1+1
801 fveq2 l=w1dl=dw1
802 800 801 oveq12d l=w1dl+1dl=dw-1+1dw1
803 759 759 760 799 802 fsumshft φdBj1Kl=1j1dl+1dl=w=1+1j-1+1dw-1+1dw1
804 oveq1 w=lw1=l1
805 804 fvoveq1d w=ldw-1+1=dl-1+1
806 804 fveq2d w=ldw1=dl1
807 805 806 oveq12d w=ldw-1+1dw1=dl-1+1dl1
808 nfcv _l1+1j-1+1
809 nfcv _w1+1j-1+1
810 nfcv _ldw-1+1dw1
811 nfcv _wdl-1+1dl1
812 807 808 809 810 811 cbvsum w=1+1j-1+1dw-1+1dw1=l=1+1j-1+1dl-1+1dl1
813 812 a1i φdBj1Kw=1+1j-1+1dw-1+1dw1=l=1+1j-1+1dl-1+1dl1
814 803 813 eqtrd φdBj1Kl=1j1dl+1dl=l=1+1j-1+1dl-1+1dl1
815 742 736 npcand φdBj1Kj-1+1=j
816 815 oveq2d φdBj1K1+1j-1+1=1+1j
817 816 sumeq1d φdBj1Kl=1+1j-1+1dl-1+1dl1=l=1+1jdl-1+1dl1
818 692 recnd φdBj1Kl1+1jl
819 818 732 npcand φdBj1Kl1+1jl-1+1=l
820 819 fveq2d φdBj1Kl1+1jdl-1+1=dl
821 820 oveq1d φdBj1Kl1+1jdl-1+1dl1=dldl1
822 821 sumeq2dv φdBj1Kl=1+1jdl-1+1dl1=l=1+1jdldl1
823 817 822 eqtrd φdBj1Kl=1+1j-1+1dl-1+1dl1=l=1+1jdldl1
824 814 823 eqtrd φdBj1Kl=1j1dl+1dl=l=1+1jdldl1
825 824 eqcomd φdBj1Kl=1+1jdldl1=l=1j1dl+1dl
826 825 oveq2d φdBj1Kd1-1+l=1+1jdldl1=d1-1+l=1j1dl+1dl
827 758 826 oveq12d φdBj1Kjj1+d11+l=1+1jdldl1=1+d11+l=1j1dl+1dl
828 fveq2 r=ldr=dl
829 fveq2 r=l+1dr=dl+1
830 fveq2 r=1dr=d1
831 fveq2 r=j-1+1dr=dj-1+1
832 815 629 eqeltrd φdBj1Kj-1+11
833 632 adantr φdBj1Kr1j-1+1d:1K1N+K
834 1zzd φdBj1Kr1j-1+11
835 635 adantr φdBj1Kr1j-1+1K
836 elfzelz r1j-1+1r
837 836 adantl φdBj1Kr1j-1+1r
838 elfzle1 r1j-1+11r
839 838 adantl φdBj1Kr1j-1+11r
840 837 zred φdBj1Kr1j-1+1r
841 584 adantr φdBj1Kr1j-1+1j
842 1red φdBj1Kr1j-1+11
843 841 842 resubcld φdBj1Kr1j-1+1j1
844 843 842 readdcld φdBj1Kr1j-1+1j-1+1
845 589 adantr φdBj1Kr1j-1+1K
846 elfzle2 r1j-1+1rj-1+1
847 846 adantl φdBj1Kr1j-1+1rj-1+1
848 815 593 eqbrtrd φdBj1Kj-1+1K
849 848 adantr φdBj1Kr1j-1+1j-1+1K
850 840 844 845 847 849 letrd φdBj1Kr1j-1+1rK
851 834 835 837 839 850 elfzd φdBj1Kr1j-1+1r1K
852 833 851 ffvelcdmd φdBj1Kr1j-1+1dr1N+K
853 elfzelz dr1N+Kdr
854 852 853 syl φdBj1Kr1j-1+1dr
855 854 zcnd φdBj1Kr1j-1+1dr
856 828 829 830 831 760 832 855 telfsum2 φdBj1Kl=1j1dl+1dl=dj-1+1d1
857 856 oveq2d φdBj1Kd1-1+l=1j1dl+1dl=d11+dj-1+1-d1
858 857 oveq2d φdBj1K1+d11+l=1j1dl+1dl=1+d11+dj-1+1d1
859 815 fveq2d φdBj1Kdj-1+1=dj
860 632 581 ffvelcdmd φdBj1Kdj1N+K
861 elfzelz dj1N+Kdj
862 860 861 syl φdBj1Kdj
863 859 862 eqeltrd φdBj1Kdj-1+1
864 863 zcnd φdBj1Kdj-1+1
865 642 nnred φdBj1Kd1
866 865 recnd φdBj1Kd1
867 864 866 subcld φdBj1Kdj-1+1d1
868 736 645 867 addassd φdBj1K1+d11+dj-1+1d1=1+d11+dj-1+1d1
869 868 eqcomd φdBj1K1+d11+dj-1+1d1=1+d11+dj-1+1d1
870 736 866 pncan3d φdBj1K1+d1-1=d1
871 870 oveq1d φdBj1K1+d11+dj-1+1d1=d1+dj-1+1-d1
872 866 864 pncan3d φdBj1Kd1+dj-1+1-d1=dj-1+1
873 872 859 eqtrd φdBj1Kd1+dj-1+1-d1=dj
874 871 873 eqtrd φdBj1K1+d11+dj-1+1d1=dj
875 869 874 eqtrd φdBj1K1+d11+dj-1+1d1=dj
876 858 875 eqtrd φdBj1K1+d11+l=1j1dl+1dl=dj
877 827 876 eqtrd φdBj1Kjj1+d11+l=1+1jdldl1=dj
878 757 877 eqtrd φdBj1Kj+d1-1+l=1+1jdldl1-j1=dj
879 756 878 eqtrd φdBj1Kj+d1-1+l=1+1jdldl1-j1=dj
880 753 879 eqtrd φdBj1Kj+d11+l=1+1jdldl1j1=dj
881 749 880 eqtrd φdBj1Kj+d11+l=1+1jdldl1l=1+1j1=dj
882 735 881 eqtrd φdBj1Kj+d11+l=1+1jdl-dl1-1=dj
883 703 882 eqtrd φdBj1Kj+d11+l=1+1jifl=1d11dl-dl1-1=dj
884 686 883 eqtrd φdBj1Kj+l=1jifl=1d11dl-dl1-1=dj
885 623 884 eqtrd φdBj1Kj+l=1jifl=K+1N+K-dKifl=1d11dl-dl1-1=dj
886 606 885 eqtrd φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=dj
887 886 3expa φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=dj
888 887 mpteq2dva φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=j1Kdj
889 nfcv _qdj
890 nfcv _jdq
891 fveq2 j=qdj=dq
892 889 890 891 cbvmpt j1Kdj=q1Kdq
893 892 a1i φdBj1Kdj=q1Kdq
894 888 893 eqtrd φdBj1Kj+l=1jk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1l=q1Kdq
895 560 894 eqtrd φdBFk1K+1ifk=K+1N+K-dKifk=1d11dk-dk1-1=q1Kdq
896 33 895 eqtrd φdBFGd=q1Kdq
897 56 ffnd φdBdFn1K
898 dffn5 dFn1Kd=q1Kdq
899 898 biimpi dFn1Kd=q1Kdq
900 897 899 syl φdBd=q1Kdq
901 900 eqcomd φdBq1Kdq=d
902 896 901 eqtrd φdBFGd=d
903 902 ralrimiva φdBFGd=d