Metamath Proof Explorer


Theorem heibor1lem

Description: Lemma for heibor1 . A compact metric space is complete. This proof works by considering the collection cls ( F " ( ZZ>=n ) ) for each n e. NN , which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain ( F " ( ZZ>=m ) ) for some m . Thus, by compactness, the intersection contains a point y , which must then be the convergent point of F . (Contributed by Jeff Madsen, 17-Jan-2014) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor1.3 φDMetX
heibor1.4 φJComp
heibor1.5 φFCauD
heibor1.6 φF:X
Assertion heibor1lem φFdomtJ

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor1.3 φDMetX
3 heibor1.4 φJComp
4 heibor1.5 φFCauD
5 heibor1.6 φF:X
6 metxmet DMetXD∞MetX
7 2 6 syl φD∞MetX
8 1 mopntop D∞MetXJTop
9 7 8 syl φJTop
10 imassrn FuranF
11 5 frnd φranFX
12 1 mopnuni D∞MetXX=J
13 7 12 syl φX=J
14 11 13 sseqtrd φranFJ
15 10 14 sstrid φFuJ
16 eqid J=J
17 16 clscld JTopFuJclsJFuClsdJ
18 9 15 17 syl2anc φclsJFuClsdJ
19 eleq1a clsJFuClsdJk=clsJFukClsdJ
20 18 19 syl φk=clsJFukClsdJ
21 20 rexlimdvw φurank=clsJFukClsdJ
22 21 abssdv φk|urank=clsJFuClsdJ
23 fvex ClsdJV
24 23 elpw2 k|urank=clsJFu𝒫ClsdJk|urank=clsJFuClsdJ
25 22 24 sylibr φk|urank=clsJFu𝒫ClsdJ
26 elin r𝒫k|urank=clsJFuFinr𝒫k|urank=clsJFurFin
27 velpw r𝒫k|urank=clsJFurk|urank=clsJFu
28 ssabral rk|urank=clsJFukrurank=clsJFu
29 27 28 bitri r𝒫k|urank=clsJFukrurank=clsJFu
30 29 anbi1i r𝒫k|urank=clsJFurFinkrurank=clsJFurFin
31 26 30 bitri r𝒫k|urank=clsJFuFinkrurank=clsJFurFin
32 raleq m=kmurank=clsJFukurank=clsJFu
33 32 anbi2d m=φkmurank=clsJFuφkurank=clsJFu
34 inteq m=m=
35 34 sseq2d m=FkmFk
36 35 rexbidv m=kranFkmkranFk
37 33 36 imbi12d m=φkmurank=clsJFukranFkmφkurank=clsJFukranFk
38 raleq m=ykmurank=clsJFukyurank=clsJFu
39 38 anbi2d m=yφkmurank=clsJFuφkyurank=clsJFu
40 inteq m=ym=y
41 40 sseq2d m=yFkmFky
42 41 rexbidv m=ykranFkmkranFky
43 39 42 imbi12d m=yφkmurank=clsJFukranFkmφkyurank=clsJFukranFky
44 raleq m=ynkmurank=clsJFukynurank=clsJFu
45 44 anbi2d m=ynφkmurank=clsJFuφkynurank=clsJFu
46 inteq m=ynm=yn
47 46 sseq2d m=ynFkmFkyn
48 47 rexbidv m=ynkranFkmkranFkyn
49 45 48 imbi12d m=ynφkmurank=clsJFukranFkmφkynurank=clsJFukranFkyn
50 raleq m=rkmurank=clsJFukrurank=clsJFu
51 50 anbi2d m=rφkmurank=clsJFuφkrurank=clsJFu
52 inteq m=rm=r
53 52 sseq2d m=rFkmFkr
54 53 rexbidv m=rkranFkmkranFkr
55 51 54 imbi12d m=rφkmurank=clsJFukranFkmφkrurank=clsJFukranFkr
56 uzf :𝒫
57 ffn :𝒫Fn
58 56 57 ax-mp Fn
59 0z 0
60 fnfvelrn Fn00ran
61 58 59 60 mp2an 0ran
62 ssv F0V
63 int0 =V
64 62 63 sseqtrri F0
65 imaeq2 k=0Fk=F0
66 65 sseq1d k=0FkF0
67 66 rspcev 0ranF0kranFk
68 61 64 67 mp2an kranFk
69 68 a1i φkurank=clsJFukranFk
70 ssun1 yyn
71 ssralv yynkynurank=clsJFukyurank=clsJFu
72 70 71 ax-mp kynurank=clsJFukyurank=clsJFu
73 72 anim2i φkynurank=clsJFuφkyurank=clsJFu
74 73 imim1i φkyurank=clsJFukranFkyφkynurank=clsJFukranFky
75 ssun2 nyn
76 ssralv nynkynurank=clsJFuknurank=clsJFu
77 75 76 ax-mp kynurank=clsJFuknurank=clsJFu
78 vex nV
79 eqeq1 k=nk=clsJFun=clsJFu
80 79 rexbidv k=nurank=clsJFuurann=clsJFu
81 78 80 ralsn knurank=clsJFuurann=clsJFu
82 77 81 sylib kynurank=clsJFuurann=clsJFu
83 uzin2 urankranukran
84 10 11 sstrid φFuX
85 84 13 sseqtrd φFuJ
86 16 sscls JTopFuJFuclsJFu
87 9 85 86 syl2anc φFuclsJFu
88 sseq2 n=clsJFuFunFuclsJFu
89 87 88 syl5ibrcom φn=clsJFuFun
90 inss2 ukk
91 inss1 uku
92 imass2 ukkFukFk
93 imass2 ukuFukFu
94 92 93 anim12i ukkukuFukFkFukFu
95 ssin FukFkFukFuFukFkFu
96 94 95 sylib ukkukuFukFkFu
97 90 91 96 mp2an FukFkFu
98 ss2in FkyFunFkFuyn
99 97 98 sstrid FkyFunFukyn
100 78 intunsn yn=yn
101 99 100 sseqtrrdi FkyFunFukyn
102 101 expcom FunFkyFukyn
103 89 102 syl6 φn=clsJFuFkyFukyn
104 103 impd φn=clsJFuFkyFukyn
105 imaeq2 m=ukFm=Fuk
106 105 sseq1d m=ukFmynFukyn
107 106 rspcev ukranFukynmranFmyn
108 107 expcom FukynukranmranFmyn
109 104 108 syl6 φn=clsJFuFkyukranmranFmyn
110 109 com23 φukrann=clsJFuFkymranFmyn
111 83 110 syl5 φurankrann=clsJFuFkymranFmyn
112 111 rexlimdvv φurankrann=clsJFuFkymranFmyn
113 reeanv urankrann=clsJFuFkyurann=clsJFukranFky
114 imaeq2 m=kFm=Fk
115 114 sseq1d m=kFmynFkyn
116 115 cbvrexvw mranFmynkranFkyn
117 112 113 116 3imtr3g φurann=clsJFukranFkykranFkyn
118 117 expd φurann=clsJFukranFkykranFkyn
119 82 118 syl5 φkynurank=clsJFukranFkykranFkyn
120 119 imp φkynurank=clsJFukranFkykranFkyn
121 74 120 sylcom φkyurank=clsJFukranFkyφkynurank=clsJFukranFkyn
122 121 a1i yFinφkyurank=clsJFukranFkyφkynurank=clsJFukranFkyn
123 37 43 49 55 69 122 findcard2 rFinφkrurank=clsJFukranFkr
124 123 com12 φkrurank=clsJFurFinkranFkr
125 124 impr φkrurank=clsJFurFinkranFkr
126 5 ffnd φFFn
127 inss1 kk
128 imass2 kkFkFk
129 127 128 ax-mp FkFk
130 nnuz =1
131 1z 1
132 fnfvelrn Fn11ran
133 58 131 132 mp2an 1ran
134 130 133 eqeltri ran
135 uzin2 kranrankran
136 134 135 mpan2 krankran
137 uzn0 krank
138 136 137 syl krank
139 n0 kyyk
140 138 139 sylib kranyyk
141 fnfun FFnFunF
142 inss2 k
143 fndm FFndomF=
144 142 143 sseqtrrid FFnkdomF
145 funfvima2 FunFkdomFykFyFk
146 141 144 145 syl2anc FFnykFyFk
147 ne0i FyFkFk
148 146 147 syl6 FFnykFk
149 148 exlimdv FFnyykFk
150 140 149 syl5 FFnkranFk
151 150 imp FFnkranFk
152 ssn0 FkFkFkFk
153 129 151 152 sylancr FFnkranFk
154 ssn0 FkrFkr
155 154 expcom FkFkrr
156 153 155 syl FFnkranFkrr
157 156 rexlimdva FFnkranFkrr
158 126 157 syl φkranFkrr
159 158 adantr φkrurank=clsJFurFinkranFkrr
160 125 159 mpd φkrurank=clsJFurFinr
161 160 necomd φkrurank=clsJFurFinr
162 161 neneqd φkrurank=clsJFurFin¬=r
163 31 162 sylan2b φr𝒫k|urank=clsJFuFin¬=r
164 163 nrexdv φ¬r𝒫k|urank=clsJFuFin=r
165 0ex V
166 zex V
167 166 pwex 𝒫V
168 frn :𝒫ran𝒫
169 56 168 ax-mp ran𝒫
170 167 169 ssexi ranV
171 170 abrexex k|urank=clsJFuV
172 elfi Vk|urank=clsJFuVfik|urank=clsJFur𝒫k|urank=clsJFuFin=r
173 165 171 172 mp2an fik|urank=clsJFur𝒫k|urank=clsJFuFin=r
174 164 173 sylnibr φ¬fik|urank=clsJFu
175 cmptop JCompJTop
176 cmpfi JTopJCompm𝒫ClsdJ¬fimm
177 175 176 syl JCompJCompm𝒫ClsdJ¬fimm
178 177 ibi JCompm𝒫ClsdJ¬fimm
179 fveq2 m=k|urank=clsJFufim=fik|urank=clsJFu
180 179 eleq2d m=k|urank=clsJFufimfik|urank=clsJFu
181 180 notbid m=k|urank=clsJFu¬fim¬fik|urank=clsJFu
182 inteq m=k|urank=clsJFum=k|urank=clsJFu
183 182 neeq1d m=k|urank=clsJFumk|urank=clsJFu
184 n0 k|urank=clsJFuyyk|urank=clsJFu
185 183 184 bitrdi m=k|urank=clsJFumyyk|urank=clsJFu
186 181 185 imbi12d m=k|urank=clsJFu¬fimm¬fik|urank=clsJFuyyk|urank=clsJFu
187 186 rspccv m𝒫ClsdJ¬fimmk|urank=clsJFu𝒫ClsdJ¬fik|urank=clsJFuyyk|urank=clsJFu
188 178 187 syl JCompk|urank=clsJFu𝒫ClsdJ¬fik|urank=clsJFuyyk|urank=clsJFu
189 3 25 174 188 syl3c φyyk|urank=clsJFu
190 lmrel ReltJ
191 r19.23v urank=clsJFuykurank=clsJFuyk
192 191 albii kurank=clsJFuykkurank=clsJFuyk
193 fvex clsJFuV
194 eleq2 k=clsJFuykyclsJFu
195 193 194 ceqsalv kk=clsJFuykyclsJFu
196 195 ralbii urankk=clsJFuykuranyclsJFu
197 ralcom4 urankk=clsJFuykkurank=clsJFuyk
198 196 197 bitr3i uranyclsJFukurank=clsJFuyk
199 vex yV
200 199 elintab yk|urank=clsJFukurank=clsJFuyk
201 192 198 200 3bitr4i uranyclsJFuyk|urank=clsJFu
202 eqid clsJF=clsJF
203 imaeq2 u=Fu=F
204 203 fveq2d u=clsJFu=clsJF
205 204 rspceeqv ranclsJF=clsJFuranclsJF=clsJFu
206 134 202 205 mp2an uranclsJF=clsJFu
207 fvex clsJFV
208 eqeq1 k=clsJFk=clsJFuclsJF=clsJFu
209 208 rexbidv k=clsJFurank=clsJFuuranclsJF=clsJFu
210 207 209 elab clsJFk|urank=clsJFuuranclsJF=clsJFu
211 206 210 mpbir clsJFk|urank=clsJFu
212 intss1 clsJFk|urank=clsJFuk|urank=clsJFuclsJF
213 211 212 ax-mp k|urank=clsJFuclsJF
214 imassrn FranF
215 214 14 sstrid φFJ
216 16 clsss3 JTopFJclsJFJ
217 9 215 216 syl2anc φclsJFJ
218 217 13 sseqtrrd φclsJFX
219 213 218 sstrid φk|urank=clsJFuX
220 219 sselda φyk|urank=clsJFuyX
221 201 220 sylan2b φuranyclsJFuyX
222 1zzd φ1
223 130 7 222 iscau3 φFCauDFX𝑝𝑚y+mkmkdomFFkXnkFkDFn<y
224 4 223 mpbid φFX𝑝𝑚y+mkmkdomFFkXnkFkDFn<y
225 224 simprd φy+mkmkdomFFkXnkFkDFn<y
226 simp3 kdomFFkXnkFkDFn<ynkFkDFn<y
227 226 ralimi kmkdomFFkXnkFkDFn<ykmnkFkDFn<y
228 227 reximi mkmkdomFFkXnkFkDFn<ymkmnkFkDFn<y
229 228 ralimi y+mkmkdomFFkXnkFkDFn<yy+mkmnkFkDFn<y
230 225 229 syl φy+mkmnkFkDFn<y
231 230 adantr φuranyclsJFuy+mkmnkFkDFn<y
232 rphalfcl r+r2+
233 breq2 y=r2FkDFn<yFkDFn<r2
234 233 2ralbidv y=r2kmnkFkDFn<ykmnkFkDFn<r2
235 234 rexbidv y=r2mkmnkFkDFn<ymkmnkFkDFn<r2
236 235 rspccva y+mkmnkFkDFn<yr2+mkmnkFkDFn<r2
237 231 232 236 syl2an φuranyclsJFur+mkmnkFkDFn<r2
238 5 ffund φFunF
239 238 ad2antrr φuranyclsJFur+mFunF
240 9 ad2antrr φuranyclsJFur+mJTop
241 imassrn FmranF
242 241 14 sstrid φFmJ
243 242 ad2antrr φuranyclsJFur+mFmJ
244 nnz mm
245 fnfvelrn Fnmmran
246 58 244 245 sylancr mmran
247 246 ad2antll φuranyclsJFur+mmran
248 simplr φuranyclsJFur+muranyclsJFu
249 imaeq2 u=mFu=Fm
250 249 fveq2d u=mclsJFu=clsJFm
251 250 eleq2d u=myclsJFuyclsJFm
252 251 rspcv mranuranyclsJFuyclsJFm
253 247 248 252 sylc φuranyclsJFur+myclsJFm
254 7 ad2antrr φuranyclsJFur+mD∞MetX
255 221 adantr φuranyclsJFur+myX
256 232 ad2antrl φuranyclsJFur+mr2+
257 256 rpxrd φuranyclsJFur+mr2*
258 1 blopn D∞MetXyXr2*yballDr2J
259 254 255 257 258 syl3anc φuranyclsJFur+myballDr2J
260 blcntr D∞MetXyXr2+yyballDr2
261 254 255 256 260 syl3anc φuranyclsJFur+myyballDr2
262 16 clsndisj JTopFmJyclsJFmyballDr2JyyballDr2yballDr2Fm
263 240 243 253 259 261 262 syl32anc φuranyclsJFur+myballDr2Fm
264 n0 yballDr2FmnnyballDr2Fm
265 inss2 yballDr2FmFm
266 265 sseli nyballDr2FmnFm
267 fvelima FunFnFmkmFk=n
268 266 267 sylan2 FunFnyballDr2FmkmFk=n
269 inss1 yballDr2FmyballDr2
270 269 sseli nyballDr2FmnyballDr2
271 270 adantl FunFnyballDr2FmnyballDr2
272 eleq1a nyballDr2Fk=nFkyballDr2
273 271 272 syl FunFnyballDr2FmFk=nFkyballDr2
274 273 reximdv FunFnyballDr2FmkmFk=nkmFkyballDr2
275 268 274 mpd FunFnyballDr2FmkmFkyballDr2
276 275 ex FunFnyballDr2FmkmFkyballDr2
277 276 exlimdv FunFnnyballDr2FmkmFkyballDr2
278 264 277 biimtrid FunFyballDr2FmkmFkyballDr2
279 239 263 278 sylc φuranyclsJFur+mkmFkyballDr2
280 r19.29 kmnkFkDFn<r2kmFkyballDr2kmnkFkDFn<r2FkyballDr2
281 uznnssnn mm
282 281 ad2antll φyXr+mm
283 simprlr φyXr+mkmFkyballDr2nkFkyballDr2
284 7 ad3antrrr φyXr+mkmFkyballDr2nkD∞MetX
285 simplrl φyXr+mkmFkyballDr2nkr+
286 285 232 syl φyXr+mkmFkyballDr2nkr2+
287 286 rpxrd φyXr+mkmFkyballDr2nkr2*
288 simpllr φyXr+mkmFkyballDr2nkyX
289 5 ad3antrrr φyXr+mkmFkyballDr2nkF:X
290 eluznn mkmk
291 290 ad2ant2lr r+mkmFkyballDr2k
292 291 ad2ant2lr φyXr+mkmFkyballDr2nkk
293 289 292 ffvelcdmd φyXr+mkmFkyballDr2nkFkX
294 elbl3 D∞MetXr2*yXFkXFkyballDr2FkDy<r2
295 284 287 288 293 294 syl22anc φyXr+mkmFkyballDr2nkFkyballDr2FkDy<r2
296 283 295 mpbid φyXr+mkmFkyballDr2nkFkDy<r2
297 2 ad3antrrr φyXr+mkmFkyballDr2nkDMetX
298 simprr φyXr+mkmFkyballDr2nknk
299 eluznn knkn
300 292 298 299 syl2anc φyXr+mkmFkyballDr2nkn
301 289 300 ffvelcdmd φyXr+mkmFkyballDr2nkFnX
302 metcl DMetXFkXFnXFkDFn
303 297 293 301 302 syl3anc φyXr+mkmFkyballDr2nkFkDFn
304 metcl DMetXFkXyXFkDy
305 297 293 288 304 syl3anc φyXr+mkmFkyballDr2nkFkDy
306 286 rpred φyXr+mkmFkyballDr2nkr2
307 lt2add FkDFnFkDyr2r2FkDFn<r2FkDy<r2FkDFn+FkDy<r2+r2
308 303 305 306 306 307 syl22anc φyXr+mkmFkyballDr2nkFkDFn<r2FkDy<r2FkDFn+FkDy<r2+r2
309 296 308 mpan2d φyXr+mkmFkyballDr2nkFkDFn<r2FkDFn+FkDy<r2+r2
310 285 rpcnd φyXr+mkmFkyballDr2nkr
311 310 2halvesd φyXr+mkmFkyballDr2nkr2+r2=r
312 311 breq2d φyXr+mkmFkyballDr2nkFkDFn+FkDy<r2+r2FkDFn+FkDy<r
313 309 312 sylibd φyXr+mkmFkyballDr2nkFkDFn<r2FkDFn+FkDy<r
314 mettri2 DMetXFkXFnXyXFnDyFkDFn+FkDy
315 297 293 301 288 314 syl13anc φyXr+mkmFkyballDr2nkFnDyFkDFn+FkDy
316 metcl DMetXFnXyXFnDy
317 297 301 288 316 syl3anc φyXr+mkmFkyballDr2nkFnDy
318 303 305 readdcld φyXr+mkmFkyballDr2nkFkDFn+FkDy
319 285 rpred φyXr+mkmFkyballDr2nkr
320 lelttr FnDyFkDFn+FkDyrFnDyFkDFn+FkDyFkDFn+FkDy<rFnDy<r
321 317 318 319 320 syl3anc φyXr+mkmFkyballDr2nkFnDyFkDFn+FkDyFkDFn+FkDy<rFnDy<r
322 315 321 mpand φyXr+mkmFkyballDr2nkFkDFn+FkDy<rFnDy<r
323 313 322 syld φyXr+mkmFkyballDr2nkFkDFn<r2FnDy<r
324 323 anassrs φyXr+mkmFkyballDr2nkFkDFn<r2FnDy<r
325 324 ralimdva φyXr+mkmFkyballDr2nkFkDFn<r2nkFnDy<r
326 325 expr φyXr+mkmFkyballDr2nkFkDFn<r2nkFnDy<r
327 326 com23 φyXr+mkmnkFkDFn<r2FkyballDr2nkFnDy<r
328 327 impd φyXr+mkmnkFkDFn<r2FkyballDr2nkFnDy<r
329 328 reximdva φyXr+mkmnkFkDFn<r2FkyballDr2kmnkFnDy<r
330 ssrexv mkmnkFnDy<rknkFnDy<r
331 282 329 330 sylsyld φyXr+mkmnkFkDFn<r2FkyballDr2knkFnDy<r
332 221 331 syldanl φuranyclsJFur+mkmnkFkDFn<r2FkyballDr2knkFnDy<r
333 280 332 syl5 φuranyclsJFur+mkmnkFkDFn<r2kmFkyballDr2knkFnDy<r
334 279 333 mpan2d φuranyclsJFur+mkmnkFkDFn<r2knkFnDy<r
335 334 anassrs φuranyclsJFur+mkmnkFkDFn<r2knkFnDy<r
336 335 rexlimdva φuranyclsJFur+mkmnkFkDFn<r2knkFnDy<r
337 237 336 mpd φuranyclsJFur+knkFnDy<r
338 337 ralrimiva φuranyclsJFur+knkFnDy<r
339 eqidd φnFn=Fn
340 1 7 130 222 339 5 lmmbrf φFtJyyXr+knkFnDy<r
341 340 adantr φuranyclsJFuFtJyyXr+knkFnDy<r
342 221 338 341 mpbir2and φuranyclsJFuFtJy
343 201 342 sylan2br φyk|urank=clsJFuFtJy
344 releldm ReltJFtJyFdomtJ
345 190 343 344 sylancr φyk|urank=clsJFuFdomtJ
346 189 345 exlimddv φFdomtJ