Metamath Proof Explorer


Theorem subfacp1lem5

Description: Lemma for subfacp1 . In subfacp1lem6 we cut up the set of all derangements on 1 ... ( N + 1 ) first according to the value at 1 , and then by whether or not ( f( f1 ) ) = 1 . In this lemma, we show that the subset of all N + 1 derangements with ( f( f1 ) ) =/= 1 for fixed M = ( f1 ) is in bijection with derangements of 2 ... ( N + 1 ) , because pre-composing with the function F swaps 1 and M and turns the function into a bijection with ( f1 ) = 1 and ( fx ) =/= x for all other x , so dropping the point at 1 yields a derangement on the N remaining points. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
subfacp1lem5.b B=gA|g1=MgM1
subfacp1lem5.f F=IK1MM1
subfacp1lem5.c C=f|f:2N+11-1 onto2N+1y2N+1fyy
Assertion subfacp1lem5 φB=SN

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 subfacp1lem5.b B=gA|g1=MgM1
9 subfacp1lem5.f F=IK1MM1
10 subfacp1lem5.c C=f|f:2N+11-1 onto2N+1y2N+1fyy
11 fzfi 1N+1Fin
12 deranglem 1N+1Finf|f:1N+11-1 onto1N+1y1N+1fyyFin
13 11 12 ax-mp f|f:1N+11-1 onto1N+1y1N+1fyyFin
14 3 13 eqeltri AFin
15 8 ssrab3 BA
16 ssfi AFinBABFin
17 14 15 16 mp2an BFin
18 17 elexi BV
19 18 a1i φBV
20 eqid bBFb2N+1=bBFb2N+1
21 f1oi IK:K1-1 ontoK
22 21 a1i φIK:K1-1 ontoK
23 1 2 3 4 5 6 7 9 22 subfacp1lem2a φF:1N+11-1 onto1N+1F1=MFM=1
24 23 simp1d φF:1N+11-1 onto1N+1
25 simpr φbBbB
26 fveq1 g=bg1=b1
27 26 eqeq1d g=bg1=Mb1=M
28 fveq1 g=bgM=bM
29 28 neeq1d g=bgM1bM1
30 27 29 anbi12d g=bg1=MgM1b1=MbM1
31 30 8 elrab2 bBbAb1=MbM1
32 25 31 sylib φbBbAb1=MbM1
33 32 simpld φbBbA
34 vex bV
35 f1oeq1 f=bf:1N+11-1 onto1N+1b:1N+11-1 onto1N+1
36 fveq1 f=bfy=by
37 36 neeq1d f=bfyybyy
38 37 ralbidv f=by1N+1fyyy1N+1byy
39 35 38 anbi12d f=bf:1N+11-1 onto1N+1y1N+1fyyb:1N+11-1 onto1N+1y1N+1byy
40 34 39 3 elab2 bAb:1N+11-1 onto1N+1y1N+1byy
41 33 40 sylib φbBb:1N+11-1 onto1N+1y1N+1byy
42 41 simpld φbBb:1N+11-1 onto1N+1
43 f1oco F:1N+11-1 onto1N+1b:1N+11-1 onto1N+1Fb:1N+11-1 onto1N+1
44 24 42 43 syl2an2r φbBFb:1N+11-1 onto1N+1
45 f1of1 Fb:1N+11-1 onto1N+1Fb:1N+11-11N+1
46 df-f1 Fb:1N+11-11N+1Fb:1N+11N+1FunFb-1
47 46 simprbi Fb:1N+11-11N+1FunFb-1
48 44 45 47 3syl φbBFunFb-1
49 f1ofn Fb:1N+11-1 onto1N+1FbFn1N+1
50 fnresdm FbFn1N+1Fb1N+1=Fb
51 f1oeq1 Fb1N+1=FbFb1N+1:1N+11-1 onto1N+1Fb:1N+11-1 onto1N+1
52 44 49 50 51 4syl φbBFb1N+1:1N+11-1 onto1N+1Fb:1N+11-1 onto1N+1
53 44 52 mpbird φbBFb1N+1:1N+11-1 onto1N+1
54 f1ofo Fb1N+1:1N+11-1 onto1N+1Fb1N+1:1N+1onto1N+1
55 53 54 syl φbBFb1N+1:1N+1onto1N+1
56 1ex 1V
57 56 56 f1osn 11:11-1 onto1
58 44 49 syl φbBFbFn1N+1
59 4 peano2nnd φN+1
60 nnuz =1
61 59 60 eleqtrdi φN+11
62 eluzfz1 N+1111N+1
63 61 62 syl φ11N+1
64 63 adantr φbB11N+1
65 fnressn FbFn1N+111N+1Fb1=1Fb1
66 58 64 65 syl2anc φbBFb1=1Fb1
67 f1of b:1N+11-1 onto1N+1b:1N+11N+1
68 42 67 syl φbBb:1N+11N+1
69 68 64 fvco3d φbBFb1=Fb1
70 32 simprd φbBb1=MbM1
71 70 simpld φbBb1=M
72 71 fveq2d φbBFb1=FM
73 23 simp3d φFM=1
74 73 adantr φbBFM=1
75 69 72 74 3eqtrd φbBFb1=1
76 75 opeq2d φbB1Fb1=11
77 76 sneqd φbB1Fb1=11
78 66 77 eqtrd φbBFb1=11
79 78 f1oeq1d φbBFb1:11-1 onto111:11-1 onto1
80 57 79 mpbiri φbBFb1:11-1 onto1
81 f1ofo Fb1:11-1 onto1Fb1:1onto1
82 80 81 syl φbBFb1:1onto1
83 resdif FunFb-1Fb1N+1:1N+1onto1N+1Fb1:1onto1Fb1N+11:1N+111-1 onto1N+11
84 48 55 82 83 syl3anc φbBFb1N+11:1N+111-1 onto1N+11
85 fzsplit 11N+11N+1=111+1N+1
86 63 85 syl φ1N+1=111+1N+1
87 1z 1
88 fzsn 111=1
89 87 88 ax-mp 11=1
90 1p1e2 1+1=2
91 90 oveq1i 1+1N+1=2N+1
92 89 91 uneq12i 111+1N+1=12N+1
93 86 92 eqtr2di φ12N+1=1N+1
94 63 snssd φ11N+1
95 incom 12N+1=2N+11
96 1lt2 1<2
97 1re 1
98 2re 2
99 97 98 ltnlei 1<2¬21
100 96 99 mpbi ¬21
101 elfzle1 12N+121
102 100 101 mto ¬12N+1
103 disjsn 2N+11=¬12N+1
104 102 103 mpbir 2N+11=
105 95 104 eqtri 12N+1=
106 uneqdifeq 11N+112N+1=12N+1=1N+11N+11=2N+1
107 94 105 106 sylancl φ12N+1=1N+11N+11=2N+1
108 93 107 mpbid φ1N+11=2N+1
109 108 adantr φbB1N+11=2N+1
110 reseq2 1N+11=2N+1Fb1N+11=Fb2N+1
111 110 f1oeq1d 1N+11=2N+1Fb1N+11:1N+111-1 onto1N+11Fb2N+1:1N+111-1 onto1N+11
112 f1oeq2 1N+11=2N+1Fb2N+1:1N+111-1 onto1N+11Fb2N+1:2N+11-1 onto1N+11
113 f1oeq3 1N+11=2N+1Fb2N+1:2N+11-1 onto1N+11Fb2N+1:2N+11-1 onto2N+1
114 111 112 113 3bitrd 1N+11=2N+1Fb1N+11:1N+111-1 onto1N+11Fb2N+1:2N+11-1 onto2N+1
115 109 114 syl φbBFb1N+11:1N+111-1 onto1N+11Fb2N+1:2N+11-1 onto2N+1
116 84 115 mpbid φbBFb2N+1:2N+11-1 onto2N+1
117 68 adantr φbBy2N+1b:1N+11N+1
118 fzp1ss 11+1N+11N+1
119 87 118 ax-mp 1+1N+11N+1
120 91 119 eqsstrri 2N+11N+1
121 simpr φbBy2N+1y2N+1
122 120 121 sselid φbBy2N+1y1N+1
123 117 122 fvco3d φbBy2N+1Fby=Fby
124 1 2 3 4 5 6 7 8 9 subfacp1lem4 φF-1=F
125 124 fveq1d φF-1y=Fy
126 125 ad2antrr φbBy2N+1F-1y=Fy
127 70 simprd φbBbM1
128 127 74 neeqtrrd φbBbMFM
129 128 adantr φbBy2N+1bMFM
130 fveq2 y=Mby=bM
131 fveq2 y=MFy=FM
132 130 131 neeq12d y=MbyFybMFM
133 129 132 syl5ibrcom φbBy2N+1y=MbyFy
134 120 sseli y2N+1y1N+1
135 41 simprd φbBy1N+1byy
136 135 r19.21bi φbBy1N+1byy
137 134 136 sylan2 φbBy2N+1byy
138 137 adantrr φbBy2N+1yMbyy
139 7 eleq2i yKy2N+1M
140 eldifsn y2N+1My2N+1yM
141 139 140 bitri yKy2N+1yM
142 1 2 3 4 5 6 7 9 22 subfacp1lem2b φyKFy=IKy
143 fvresi yKIKy=y
144 143 adantl φyKIKy=y
145 142 144 eqtrd φyKFy=y
146 141 145 sylan2br φy2N+1yMFy=y
147 146 adantlr φbBy2N+1yMFy=y
148 138 147 neeqtrrd φbBy2N+1yMbyFy
149 148 expr φbBy2N+1yMbyFy
150 133 149 pm2.61dne φbBy2N+1byFy
151 150 necomd φbBy2N+1Fyby
152 126 151 eqnetrd φbBy2N+1F-1yby
153 24 adantr φbBF:1N+11-1 onto1N+1
154 ffvelcdm b:1N+11N+1y1N+1by1N+1
155 68 134 154 syl2an φbBy2N+1by1N+1
156 f1ocnvfv F:1N+11-1 onto1N+1by1N+1Fby=yF-1y=by
157 153 155 156 syl2an2r φbBy2N+1Fby=yF-1y=by
158 157 necon3d φbBy2N+1F-1ybyFbyy
159 152 158 mpd φbBy2N+1Fbyy
160 123 159 eqnetrd φbBy2N+1Fbyy
161 160 ralrimiva φbBy2N+1Fbyy
162 f1of IK:K1-1 ontoKIK:KK
163 21 162 ax-mp IK:KK
164 fzfi 2N+1Fin
165 difexg 2N+1Fin2N+1MV
166 164 165 ax-mp 2N+1MV
167 7 166 eqeltri KV
168 fex IK:KKKVIKV
169 163 167 168 mp2an IKV
170 prex 1MM1V
171 169 170 unex IK1MM1V
172 9 171 eqeltri FV
173 172 34 coex FbV
174 173 resex Fb2N+1V
175 f1oeq1 f=Fb2N+1f:2N+11-1 onto2N+1Fb2N+1:2N+11-1 onto2N+1
176 fveq1 f=Fb2N+1fy=Fb2N+1y
177 fvres y2N+1Fb2N+1y=Fby
178 176 177 sylan9eq f=Fb2N+1y2N+1fy=Fby
179 178 neeq1d f=Fb2N+1y2N+1fyyFbyy
180 179 ralbidva f=Fb2N+1y2N+1fyyy2N+1Fbyy
181 175 180 anbi12d f=Fb2N+1f:2N+11-1 onto2N+1y2N+1fyyFb2N+1:2N+11-1 onto2N+1y2N+1Fbyy
182 174 181 10 elab2 Fb2N+1CFb2N+1:2N+11-1 onto2N+1y2N+1Fbyy
183 116 161 182 sylanbrc φbBFb2N+1C
184 simpr φcCcC
185 vex cV
186 f1oeq1 f=cf:2N+11-1 onto2N+1c:2N+11-1 onto2N+1
187 fveq1 f=cfy=cy
188 187 neeq1d f=cfyycyy
189 188 ralbidv f=cy2N+1fyyy2N+1cyy
190 186 189 anbi12d f=cf:2N+11-1 onto2N+1y2N+1fyyc:2N+11-1 onto2N+1y2N+1cyy
191 185 190 10 elab2 cCc:2N+11-1 onto2N+1y2N+1cyy
192 184 191 sylib φcCc:2N+11-1 onto2N+1y2N+1cyy
193 192 simpld φcCc:2N+11-1 onto2N+1
194 f1oun 11:11-1 onto1c:2N+11-1 onto2N+112N+1=12N+1=11c:12N+11-1 onto12N+1
195 105 105 194 mpanr12 11:11-1 onto1c:2N+11-1 onto2N+111c:12N+11-1 onto12N+1
196 57 193 195 sylancr φcC11c:12N+11-1 onto12N+1
197 f1oeq2 12N+1=1N+111c:12N+11-1 onto12N+111c:1N+11-1 onto12N+1
198 f1oeq3 12N+1=1N+111c:1N+11-1 onto12N+111c:1N+11-1 onto1N+1
199 197 198 bitrd 12N+1=1N+111c:12N+11-1 onto12N+111c:1N+11-1 onto1N+1
200 93 199 syl φ11c:12N+11-1 onto12N+111c:1N+11-1 onto1N+1
201 200 biimpa φ11c:12N+11-1 onto12N+111c:1N+11-1 onto1N+1
202 196 201 syldan φcC11c:1N+11-1 onto1N+1
203 f1oco F:1N+11-1 onto1N+111c:1N+11-1 onto1N+1F11c:1N+11-1 onto1N+1
204 24 202 203 syl2an2r φcCF11c:1N+11-1 onto1N+1
205 f1of 11c:1N+11-1 onto1N+111c:1N+11N+1
206 202 205 syl φcC11c:1N+11N+1
207 fvco3 11c:1N+11N+1y1N+1F11cy=F11cy
208 206 207 sylan φcCy1N+1F11cy=F11cy
209 125 ad2antrr φcCy1N+1F-1y=Fy
210 simpr φcCy1N+1y1N+1
211 93 ad2antrr φcCy1N+112N+1=1N+1
212 210 211 eleqtrrd φcCy1N+1y12N+1
213 elun y12N+1y1y2N+1
214 212 213 sylib φcCy1N+1y1y2N+1
215 nelne2 M2N+1¬12N+1M1
216 5 102 215 sylancl φM1
217 216 adantr φcCM1
218 23 simp2d φF1=M
219 218 adantr φcCF1=M
220 f1ofun 11c:12N+11-1 onto12N+1Fun11c
221 196 220 syl φcCFun11c
222 ssun1 1111c
223 56 snid 11
224 56 dmsnop dom11=1
225 223 224 eleqtrri 1dom11
226 funssfv Fun11c1111c1dom1111c1=111
227 222 225 226 mp3an23 Fun11c11c1=111
228 221 227 syl φcC11c1=111
229 56 56 fvsn 111=1
230 228 229 eqtrdi φcC11c1=1
231 217 219 230 3netr4d φcCF111c1
232 elsni y1y=1
233 232 fveq2d y1Fy=F1
234 232 fveq2d y111cy=11c1
235 233 234 neeq12d y1Fy11cyF111c1
236 231 235 syl5ibrcom φcCy1Fy11cy
237 236 imp φcCy1Fy11cy
238 221 adantr φcCy2N+1Fun11c
239 ssun2 c11c
240 239 a1i φcCy2N+1c11c
241 f1odm c:2N+11-1 onto2N+1domc=2N+1
242 193 241 syl φcCdomc=2N+1
243 242 eleq2d φcCydomcy2N+1
244 243 biimpar φcCy2N+1ydomc
245 funssfv Fun11cc11cydomc11cy=cy
246 238 240 244 245 syl3anc φcCy2N+111cy=cy
247 f1of c:2N+11-1 onto2N+1c:2N+12N+1
248 193 247 syl φcCc:2N+12N+1
249 5 adantr φcCM2N+1
250 248 249 ffvelcdmd φcCcM2N+1
251 nelne2 cM2N+1¬12N+1cM1
252 250 102 251 sylancl φcCcM1
253 252 adantr φcCy2N+1cM1
254 73 ad2antrr φcCy2N+1FM=1
255 253 254 neeqtrrd φcCy2N+1cMFM
256 fveq2 y=Mcy=cM
257 256 131 neeq12d y=McyFycMFM
258 255 257 syl5ibrcom φcCy2N+1y=McyFy
259 192 simprd φcCy2N+1cyy
260 259 r19.21bi φcCy2N+1cyy
261 260 adantrr φcCy2N+1yMcyy
262 146 adantlr φcCy2N+1yMFy=y
263 261 262 neeqtrrd φcCy2N+1yMcyFy
264 263 expr φcCy2N+1yMcyFy
265 258 264 pm2.61dne φcCy2N+1cyFy
266 246 265 eqnetrd φcCy2N+111cyFy
267 266 necomd φcCy2N+1Fy11cy
268 237 267 jaodan φcCy1y2N+1Fy11cy
269 214 268 syldan φcCy1N+1Fy11cy
270 209 269 eqnetrd φcCy1N+1F-1y11cy
271 24 adantr φcCF:1N+11-1 onto1N+1
272 206 ffvelcdmda φcCy1N+111cy1N+1
273 f1ocnvfv F:1N+11-1 onto1N+111cy1N+1F11cy=yF-1y=11cy
274 271 272 273 syl2an2r φcCy1N+1F11cy=yF-1y=11cy
275 274 necon3d φcCy1N+1F-1y11cyF11cyy
276 270 275 mpd φcCy1N+1F11cyy
277 208 276 eqnetrd φcCy1N+1F11cyy
278 277 ralrimiva φcCy1N+1F11cyy
279 snex 11V
280 279 185 unex 11cV
281 172 280 coex F11cV
282 f1oeq1 f=F11cf:1N+11-1 onto1N+1F11c:1N+11-1 onto1N+1
283 fveq1 f=F11cfy=F11cy
284 283 neeq1d f=F11cfyyF11cyy
285 284 ralbidv f=F11cy1N+1fyyy1N+1F11cyy
286 282 285 anbi12d f=F11cf:1N+11-1 onto1N+1y1N+1fyyF11c:1N+11-1 onto1N+1y1N+1F11cyy
287 281 286 3 elab2 F11cAF11c:1N+11-1 onto1N+1y1N+1F11cyy
288 204 278 287 sylanbrc φcCF11cA
289 63 adantr φcC11N+1
290 206 289 fvco3d φcCF11c1=F11c1
291 230 fveq2d φcCF11c1=F1
292 290 291 219 3eqtrd φcCF11c1=M
293 120 5 sselid φM1N+1
294 293 adantr φcCM1N+1
295 206 294 fvco3d φcCF11cM=F11cM
296 239 a1i φcCc11c
297 249 242 eleqtrrd φcCMdomc
298 funssfv Fun11cc11cMdomc11cM=cM
299 221 296 297 298 syl3anc φcC11cM=cM
300 299 fveq2d φcCF11cM=FcM
301 295 300 eqtrd φcCF11cM=FcM
302 124 fveq1d φF-11=F1
303 302 218 eqtrd φF-11=M
304 303 adantr φcCF-11=M
305 id y=My=M
306 256 305 neeq12d y=McyycMM
307 306 259 249 rspcdva φcCcMM
308 307 necomd φcCMcM
309 304 308 eqnetrd φcCF-11cM
310 120 250 sselid φcCcM1N+1
311 f1ocnvfv F:1N+11-1 onto1N+1cM1N+1FcM=1F-11=cM
312 24 310 311 syl2an2r φcCFcM=1F-11=cM
313 312 necon3d φcCF-11cMFcM1
314 309 313 mpd φcCFcM1
315 301 314 eqnetrd φcCF11cM1
316 292 315 jca φcCF11c1=MF11cM1
317 fveq1 g=F11cg1=F11c1
318 317 eqeq1d g=F11cg1=MF11c1=M
319 fveq1 g=F11cgM=F11cM
320 319 neeq1d g=F11cgM1F11cM1
321 318 320 anbi12d g=F11cg1=MgM1F11c1=MF11cM1
322 321 8 elrab2 F11cBF11cAF11c1=MF11cM1
323 288 316 322 sylanbrc φcCF11cB
324 24 adantr φbBcCF:1N+11-1 onto1N+1
325 f1of1 F:1N+11-1 onto1N+1F:1N+11-11N+1
326 324 325 syl φbBcCF:1N+11-11N+1
327 f1of F:1N+11-1 onto1N+1F:1N+11N+1
328 324 327 syl φbBcCF:1N+11N+1
329 68 adantrr φbBcCb:1N+11N+1
330 328 329 fcod φbBcCFb:1N+11N+1
331 206 adantrl φbBcC11c:1N+11N+1
332 cocan1 F:1N+11-11N+1Fb:1N+11N+111c:1N+11N+1FFb=F11cFb=11c
333 326 330 331 332 syl3anc φbBcCFFb=F11cFb=11c
334 coass FFb=FFb
335 124 coeq1d φF-1F=FF
336 f1ococnv1 F:1N+11-1 onto1N+1F-1F=I1N+1
337 24 336 syl φF-1F=I1N+1
338 335 337 eqtr3d φFF=I1N+1
339 338 adantr φbBcCFF=I1N+1
340 339 coeq1d φbBcCFFb=I1N+1b
341 fcoi2 b:1N+11N+1I1N+1b=b
342 329 341 syl φbBcCI1N+1b=b
343 340 342 eqtrd φbBcCFFb=b
344 334 343 eqtr3id φbBcCFFb=b
345 344 eqeq1d φbBcCFFb=F11cb=F11c
346 75 adantrr φbBcCFb1=1
347 230 adantrl φbBcC11c1=1
348 346 347 eqtr4d φbBcCFb1=11c1
349 fveq2 y=1Fby=Fb1
350 fveq2 y=111cy=11c1
351 349 350 eqeq12d y=1Fby=11cyFb1=11c1
352 56 351 ralsn y1Fby=11cyFb1=11c1
353 348 352 sylibr φbBcCy1Fby=11cy
354 353 biantrurd φbBcCy2N+1Fby=11cyy1Fby=11cyy2N+1Fby=11cy
355 ralunb y12N+1Fby=11cyy1Fby=11cyy2N+1Fby=11cy
356 354 355 bitr4di φbBcCy2N+1Fby=11cyy12N+1Fby=11cy
357 177 adantl φbBcCy2N+1Fb2N+1y=Fby
358 357 eqcomd φbBcCy2N+1Fby=Fb2N+1y
359 246 adantlrl φbBcCy2N+111cy=cy
360 358 359 eqeq12d φbBcCy2N+1Fby=11cyFb2N+1y=cy
361 360 ralbidva φbBcCy2N+1Fby=11cyy2N+1Fb2N+1y=cy
362 93 adantr φbBcC12N+1=1N+1
363 362 raleqdv φbBcCy12N+1Fby=11cyy1N+1Fby=11cy
364 356 361 363 3bitr3rd φbBcCy1N+1Fby=11cyy2N+1Fb2N+1y=cy
365 58 adantrr φbBcCFbFn1N+1
366 202 adantrl φbBcC11c:1N+11-1 onto1N+1
367 f1ofn 11c:1N+11-1 onto1N+111cFn1N+1
368 366 367 syl φbBcC11cFn1N+1
369 eqfnfv FbFn1N+111cFn1N+1Fb=11cy1N+1Fby=11cy
370 365 368 369 syl2anc φbBcCFb=11cy1N+1Fby=11cy
371 fnssres FbFn1N+12N+11N+1Fb2N+1Fn2N+1
372 365 120 371 sylancl φbBcCFb2N+1Fn2N+1
373 193 adantrl φbBcCc:2N+11-1 onto2N+1
374 f1ofn c:2N+11-1 onto2N+1cFn2N+1
375 373 374 syl φbBcCcFn2N+1
376 eqfnfv Fb2N+1Fn2N+1cFn2N+1Fb2N+1=cy2N+1Fb2N+1y=cy
377 372 375 376 syl2anc φbBcCFb2N+1=cy2N+1Fb2N+1y=cy
378 364 370 377 3bitr4d φbBcCFb=11cFb2N+1=c
379 eqcom Fb2N+1=cc=Fb2N+1
380 378 379 bitrdi φbBcCFb=11cc=Fb2N+1
381 333 345 380 3bitr3d φbBcCb=F11cc=Fb2N+1
382 20 183 323 381 f1o2d φbBFb2N+1:B1-1 ontoC
383 19 382 hasheqf1od φB=C
384 1 2 derangen2 2N+1FinD2N+1=S2N+1
385 1 derangval 2N+1FinD2N+1=f|f:2N+11-1 onto2N+1y2N+1fyy
386 10 fveq2i C=f|f:2N+11-1 onto2N+1y2N+1fyy
387 385 386 eqtr4di 2N+1FinD2N+1=C
388 384 387 eqtr3d 2N+1FinS2N+1=C
389 164 388 ax-mp S2N+1=C
390 4 60 eleqtrdi φN1
391 eluzp1p1 N1N+11+1
392 390 391 syl φN+11+1
393 df-2 2=1+1
394 393 fveq2i 2=1+1
395 392 394 eleqtrrdi φN+12
396 hashfz N+122N+1=N+1-2+1
397 395 396 syl φ2N+1=N+1-2+1
398 59 nncnd φN+1
399 2cnd φ2
400 1cnd φ1
401 398 399 400 subsubd φN+1-21=N+1-2+1
402 2m1e1 21=1
403 402 oveq2i N+1-21=N+1-1
404 4 nncnd φN
405 ax-1cn 1
406 pncan N1N+1-1=N
407 404 405 406 sylancl φN+1-1=N
408 403 407 eqtrid φN+1-21=N
409 397 401 408 3eqtr2d φ2N+1=N
410 409 fveq2d φS2N+1=SN
411 389 410 eqtr3id φC=SN
412 383 411 eqtrd φB=SN