Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inequality of arithmetic and geometric means
amgmlem
Next ⟩
amgm
Metamath Proof Explorer
Ascii
Unicode
Theorem
amgmlem
Description:
Lemma for
amgm
.
(Contributed by
Mario Carneiro
, 21-Jun-2015)
Ref
Expression
Hypotheses
amgm.1
⊢
M
=
mulGrp
ℂ
fld
amgm.2
⊢
φ
→
A
∈
Fin
amgm.3
⊢
φ
→
A
≠
∅
amgm.4
⊢
φ
→
F
:
A
⟶
ℝ
+
Assertion
amgmlem
⊢
φ
→
∑
M
F
1
A
≤
∑
ℂ
fld
F
A
Proof
Step
Hyp
Ref
Expression
1
amgm.1
⊢
M
=
mulGrp
ℂ
fld
2
amgm.2
⊢
φ
→
A
∈
Fin
3
amgm.3
⊢
φ
→
A
≠
∅
4
amgm.4
⊢
φ
→
F
:
A
⟶
ℝ
+
5
cnfld0
⊢
0
=
0
ℂ
fld
6
cnring
⊢
ℂ
fld
∈
Ring
7
ringabl
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
Abel
8
6
7
mp1i
⊢
φ
→
ℂ
fld
∈
Abel
9
resubdrg
⊢
ℝ
∈
SubRing
ℂ
fld
∧
ℝ
fld
∈
DivRing
10
9
simpli
⊢
ℝ
∈
SubRing
ℂ
fld
11
subrgsubg
⊢
ℝ
∈
SubRing
ℂ
fld
→
ℝ
∈
SubGrp
ℂ
fld
12
10
11
mp1i
⊢
φ
→
ℝ
∈
SubGrp
ℂ
fld
13
4
ffvelcdmda
⊢
φ
∧
k
∈
A
→
F
k
∈
ℝ
+
14
13
relogcld
⊢
φ
∧
k
∈
A
→
log
F
k
∈
ℝ
15
14
renegcld
⊢
φ
∧
k
∈
A
→
−
log
F
k
∈
ℝ
16
15
fmpttd
⊢
φ
→
k
∈
A
⟼
−
log
F
k
:
A
⟶
ℝ
17
c0ex
⊢
0
∈
V
18
17
a1i
⊢
φ
→
0
∈
V
19
16
2
18
fdmfifsupp
⊢
φ
→
finSupp
0
k
∈
A
⟼
−
log
F
k
20
5
8
2
12
16
19
gsumsubgcl
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
∈
ℝ
21
20
recnd
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
∈
ℂ
22
hashnncl
⊢
A
∈
Fin
→
A
∈
ℕ
↔
A
≠
∅
23
2
22
syl
⊢
φ
→
A
∈
ℕ
↔
A
≠
∅
24
3
23
mpbird
⊢
φ
→
A
∈
ℕ
25
24
nncnd
⊢
φ
→
A
∈
ℂ
26
24
nnne0d
⊢
φ
→
A
≠
0
27
21
25
26
divnegd
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
A
=
−
∑
ℂ
fld
k
∈
A
−
log
F
k
A
28
14
recnd
⊢
φ
∧
k
∈
A
→
log
F
k
∈
ℂ
29
2
28
gsumfsum
⊢
φ
→
∑
ℂ
fld
k
∈
A
log
F
k
=
∑
k
∈
A
log
F
k
30
28
negnegd
⊢
φ
∧
k
∈
A
→
−
−
log
F
k
=
log
F
k
31
30
sumeq2dv
⊢
φ
→
∑
k
∈
A
−
−
log
F
k
=
∑
k
∈
A
log
F
k
32
15
recnd
⊢
φ
∧
k
∈
A
→
−
log
F
k
∈
ℂ
33
2
32
fsumneg
⊢
φ
→
∑
k
∈
A
−
−
log
F
k
=
−
∑
k
∈
A
−
log
F
k
34
29
31
33
3eqtr2rd
⊢
φ
→
−
∑
k
∈
A
−
log
F
k
=
∑
ℂ
fld
k
∈
A
log
F
k
35
2
32
gsumfsum
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
=
∑
k
∈
A
−
log
F
k
36
35
negeqd
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
=
−
∑
k
∈
A
−
log
F
k
37
4
feqmptd
⊢
φ
→
F
=
k
∈
A
⟼
F
k
38
relogf1o
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
1-1 onto
ℝ
39
f1of
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
1-1 onto
ℝ
→
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
40
38
39
mp1i
⊢
φ
→
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
41
40
feqmptd
⊢
φ
→
log
↾
ℝ
+
=
x
∈
ℝ
+
⟼
log
↾
ℝ
+
x
42
fvres
⊢
x
∈
ℝ
+
→
log
↾
ℝ
+
x
=
log
x
43
42
mpteq2ia
⊢
x
∈
ℝ
+
⟼
log
↾
ℝ
+
x
=
x
∈
ℝ
+
⟼
log
x
44
41
43
eqtrdi
⊢
φ
→
log
↾
ℝ
+
=
x
∈
ℝ
+
⟼
log
x
45
fveq2
⊢
x
=
F
k
→
log
x
=
log
F
k
46
13
37
44
45
fmptco
⊢
φ
→
log
↾
ℝ
+
∘
F
=
k
∈
A
⟼
log
F
k
47
46
oveq2d
⊢
φ
→
∑
ℂ
fld
log
↾
ℝ
+
∘
F
=
∑
ℂ
fld
k
∈
A
log
F
k
48
34
36
47
3eqtr4d
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
=
∑
ℂ
fld
log
↾
ℝ
+
∘
F
49
1
oveq1i
⊢
M
↾
𝑠
ℂ
∖
0
=
mulGrp
ℂ
fld
↾
𝑠
ℂ
∖
0
50
49
rpmsubg
⊢
ℝ
+
∈
SubGrp
M
↾
𝑠
ℂ
∖
0
51
subgsubm
⊢
ℝ
+
∈
SubGrp
M
↾
𝑠
ℂ
∖
0
→
ℝ
+
∈
SubMnd
M
↾
𝑠
ℂ
∖
0
52
50
51
ax-mp
⊢
ℝ
+
∈
SubMnd
M
↾
𝑠
ℂ
∖
0
53
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
54
cndrng
⊢
ℂ
fld
∈
DivRing
55
53
5
54
drngui
⊢
ℂ
∖
0
=
Unit
ℂ
fld
56
55
1
unitsubm
⊢
ℂ
fld
∈
Ring
→
ℂ
∖
0
∈
SubMnd
M
57
eqid
⊢
M
↾
𝑠
ℂ
∖
0
=
M
↾
𝑠
ℂ
∖
0
58
57
subsubm
⊢
ℂ
∖
0
∈
SubMnd
M
→
ℝ
+
∈
SubMnd
M
↾
𝑠
ℂ
∖
0
↔
ℝ
+
∈
SubMnd
M
∧
ℝ
+
⊆
ℂ
∖
0
59
6
56
58
mp2b
⊢
ℝ
+
∈
SubMnd
M
↾
𝑠
ℂ
∖
0
↔
ℝ
+
∈
SubMnd
M
∧
ℝ
+
⊆
ℂ
∖
0
60
52
59
mpbi
⊢
ℝ
+
∈
SubMnd
M
∧
ℝ
+
⊆
ℂ
∖
0
61
60
simpli
⊢
ℝ
+
∈
SubMnd
M
62
eqid
⊢
M
↾
𝑠
ℝ
+
=
M
↾
𝑠
ℝ
+
63
62
submbas
⊢
ℝ
+
∈
SubMnd
M
→
ℝ
+
=
Base
M
↾
𝑠
ℝ
+
64
61
63
ax-mp
⊢
ℝ
+
=
Base
M
↾
𝑠
ℝ
+
65
cnfld1
⊢
1
=
1
ℂ
fld
66
1
65
ringidval
⊢
1
=
0
M
67
62
66
subm0
⊢
ℝ
+
∈
SubMnd
M
→
1
=
0
M
↾
𝑠
ℝ
+
68
61
67
ax-mp
⊢
1
=
0
M
↾
𝑠
ℝ
+
69
cncrng
⊢
ℂ
fld
∈
CRing
70
1
crngmgp
⊢
ℂ
fld
∈
CRing
→
M
∈
CMnd
71
69
70
mp1i
⊢
φ
→
M
∈
CMnd
72
62
submmnd
⊢
ℝ
+
∈
SubMnd
M
→
M
↾
𝑠
ℝ
+
∈
Mnd
73
61
72
mp1i
⊢
φ
→
M
↾
𝑠
ℝ
+
∈
Mnd
74
62
subcmn
⊢
M
∈
CMnd
∧
M
↾
𝑠
ℝ
+
∈
Mnd
→
M
↾
𝑠
ℝ
+
∈
CMnd
75
71
73
74
syl2anc
⊢
φ
→
M
↾
𝑠
ℝ
+
∈
CMnd
76
df-refld
⊢
ℝ
fld
=
ℂ
fld
↾
𝑠
ℝ
77
76
subrgring
⊢
ℝ
∈
SubRing
ℂ
fld
→
ℝ
fld
∈
Ring
78
10
77
ax-mp
⊢
ℝ
fld
∈
Ring
79
ringmnd
⊢
ℝ
fld
∈
Ring
→
ℝ
fld
∈
Mnd
80
78
79
mp1i
⊢
φ
→
ℝ
fld
∈
Mnd
81
1
oveq1i
⊢
M
↾
𝑠
ℝ
+
=
mulGrp
ℂ
fld
↾
𝑠
ℝ
+
82
81
reloggim
⊢
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
GrpIso
ℝ
fld
83
gimghm
⊢
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
GrpIso
ℝ
fld
→
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
GrpHom
ℝ
fld
84
82
83
ax-mp
⊢
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
GrpHom
ℝ
fld
85
ghmmhm
⊢
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
GrpHom
ℝ
fld
→
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
MndHom
ℝ
fld
86
84
85
mp1i
⊢
φ
→
log
↾
ℝ
+
∈
M
↾
𝑠
ℝ
+
MndHom
ℝ
fld
87
1ex
⊢
1
∈
V
88
87
a1i
⊢
φ
→
1
∈
V
89
4
2
88
fdmfifsupp
⊢
φ
→
finSupp
1
F
90
64
68
75
80
2
86
4
89
gsummhm
⊢
φ
→
∑
ℝ
fld
log
↾
ℝ
+
∘
F
=
log
↾
ℝ
+
∑
M
↾
𝑠
ℝ
+
F
91
subgsubm
⊢
ℝ
∈
SubGrp
ℂ
fld
→
ℝ
∈
SubMnd
ℂ
fld
92
12
91
syl
⊢
φ
→
ℝ
∈
SubMnd
ℂ
fld
93
fco
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
∧
F
:
A
⟶
ℝ
+
→
log
↾
ℝ
+
∘
F
:
A
⟶
ℝ
94
40
4
93
syl2anc
⊢
φ
→
log
↾
ℝ
+
∘
F
:
A
⟶
ℝ
95
2
92
94
76
gsumsubm
⊢
φ
→
∑
ℂ
fld
log
↾
ℝ
+
∘
F
=
∑
ℝ
fld
log
↾
ℝ
+
∘
F
96
61
a1i
⊢
φ
→
ℝ
+
∈
SubMnd
M
97
2
96
4
62
gsumsubm
⊢
φ
→
∑
M
F
=
∑
M
↾
𝑠
ℝ
+
F
98
97
fveq2d
⊢
φ
→
log
↾
ℝ
+
∑
M
F
=
log
↾
ℝ
+
∑
M
↾
𝑠
ℝ
+
F
99
90
95
98
3eqtr4d
⊢
φ
→
∑
ℂ
fld
log
↾
ℝ
+
∘
F
=
log
↾
ℝ
+
∑
M
F
100
66
71
2
96
4
89
gsumsubmcl
⊢
φ
→
∑
M
F
∈
ℝ
+
101
100
fvresd
⊢
φ
→
log
↾
ℝ
+
∑
M
F
=
log
∑
M
F
102
48
99
101
3eqtrd
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
=
log
∑
M
F
103
102
oveq1d
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
A
=
log
∑
M
F
A
104
100
relogcld
⊢
φ
→
log
∑
M
F
∈
ℝ
105
104
recnd
⊢
φ
→
log
∑
M
F
∈
ℂ
106
105
25
26
divrec2d
⊢
φ
→
log
∑
M
F
A
=
1
A
log
∑
M
F
107
27
103
106
3eqtrd
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
A
=
1
A
log
∑
M
F
108
37
oveq2d
⊢
φ
→
∑
ℂ
fld
F
=
∑
ℂ
fld
k
∈
A
F
k
109
13
rpcnd
⊢
φ
∧
k
∈
A
→
F
k
∈
ℂ
110
2
109
gsumfsum
⊢
φ
→
∑
ℂ
fld
k
∈
A
F
k
=
∑
k
∈
A
F
k
111
108
110
eqtrd
⊢
φ
→
∑
ℂ
fld
F
=
∑
k
∈
A
F
k
112
2
3
13
fsumrpcl
⊢
φ
→
∑
k
∈
A
F
k
∈
ℝ
+
113
111
112
eqeltrd
⊢
φ
→
∑
ℂ
fld
F
∈
ℝ
+
114
24
nnrpd
⊢
φ
→
A
∈
ℝ
+
115
113
114
rpdivcld
⊢
φ
→
∑
ℂ
fld
F
A
∈
ℝ
+
116
115
relogcld
⊢
φ
→
log
∑
ℂ
fld
F
A
∈
ℝ
117
20
24
nndivred
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
A
∈
ℝ
118
rpssre
⊢
ℝ
+
⊆
ℝ
119
118
a1i
⊢
φ
→
ℝ
+
⊆
ℝ
120
relogcl
⊢
w
∈
ℝ
+
→
log
w
∈
ℝ
121
120
adantl
⊢
φ
∧
w
∈
ℝ
+
→
log
w
∈
ℝ
122
121
renegcld
⊢
φ
∧
w
∈
ℝ
+
→
−
log
w
∈
ℝ
123
122
fmpttd
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
:
ℝ
+
⟶
ℝ
124
ioorp
⊢
0
+∞
=
ℝ
+
125
124
eleq2i
⊢
a
∈
0
+∞
↔
a
∈
ℝ
+
126
124
eleq2i
⊢
b
∈
0
+∞
↔
b
∈
ℝ
+
127
iccssioo2
⊢
a
∈
0
+∞
∧
b
∈
0
+∞
→
a
b
⊆
0
+∞
128
125
126
127
syl2anbr
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
a
b
⊆
0
+∞
129
128
124
sseqtrdi
⊢
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
a
b
⊆
ℝ
+
130
129
adantl
⊢
φ
∧
a
∈
ℝ
+
∧
b
∈
ℝ
+
→
a
b
⊆
ℝ
+
131
24
nnrecred
⊢
φ
→
1
A
∈
ℝ
132
114
rpreccld
⊢
φ
→
1
A
∈
ℝ
+
133
132
rpge0d
⊢
φ
→
0
≤
1
A
134
elrege0
⊢
1
A
∈
0
+∞
↔
1
A
∈
ℝ
∧
0
≤
1
A
135
131
133
134
sylanbrc
⊢
φ
→
1
A
∈
0
+∞
136
fconst6g
⊢
1
A
∈
0
+∞
→
A
×
1
A
:
A
⟶
0
+∞
137
135
136
syl
⊢
φ
→
A
×
1
A
:
A
⟶
0
+∞
138
0lt1
⊢
0
<
1
139
fconstmpt
⊢
A
×
1
A
=
k
∈
A
⟼
1
A
140
139
oveq2i
⊢
∑
ℂ
fld
A
×
1
A
=
∑
ℂ
fld
k
∈
A
1
A
141
ringmnd
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
Mnd
142
6
141
mp1i
⊢
φ
→
ℂ
fld
∈
Mnd
143
131
recnd
⊢
φ
→
1
A
∈
ℂ
144
eqid
⊢
⋅
ℂ
fld
=
⋅
ℂ
fld
145
53
144
gsumconst
⊢
ℂ
fld
∈
Mnd
∧
A
∈
Fin
∧
1
A
∈
ℂ
→
∑
ℂ
fld
k
∈
A
1
A
=
A
⋅
ℂ
fld
1
A
146
142
2
143
145
syl3anc
⊢
φ
→
∑
ℂ
fld
k
∈
A
1
A
=
A
⋅
ℂ
fld
1
A
147
24
nnzd
⊢
φ
→
A
∈
ℤ
148
cnfldmulg
⊢
A
∈
ℤ
∧
1
A
∈
ℂ
→
A
⋅
ℂ
fld
1
A
=
A
1
A
149
147
143
148
syl2anc
⊢
φ
→
A
⋅
ℂ
fld
1
A
=
A
1
A
150
25
26
recidd
⊢
φ
→
A
1
A
=
1
151
146
149
150
3eqtrd
⊢
φ
→
∑
ℂ
fld
k
∈
A
1
A
=
1
152
140
151
eqtrid
⊢
φ
→
∑
ℂ
fld
A
×
1
A
=
1
153
138
152
breqtrrid
⊢
φ
→
0
<
∑
ℂ
fld
A
×
1
A
154
logccv
⊢
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
+
1
−
t
log
y
<
log
t
x
+
1
−
t
y
155
154
3adant1
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
+
1
−
t
log
y
<
log
t
x
+
1
−
t
y
156
ioossre
⊢
0
1
⊆
ℝ
157
simp3
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
∈
0
1
158
156
157
sselid
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
∈
ℝ
159
simp21
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
x
∈
ℝ
+
160
159
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
log
x
∈
ℝ
161
158
160
remulcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
∈
ℝ
162
1re
⊢
1
∈
ℝ
163
resubcl
⊢
1
∈
ℝ
∧
t
∈
ℝ
→
1
−
t
∈
ℝ
164
162
158
163
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
∈
ℝ
165
simp22
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
y
∈
ℝ
+
166
165
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
log
y
∈
ℝ
167
164
166
remulcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
log
y
∈
ℝ
168
161
167
readdcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
+
1
−
t
log
y
∈
ℝ
169
simp1
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
φ
170
ioossicc
⊢
0
1
⊆
0
1
171
170
157
sselid
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
∈
0
1
172
119
130
cvxcl
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
t
∈
0
1
→
t
x
+
1
−
t
y
∈
ℝ
+
173
169
159
165
171
172
syl13anc
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
x
+
1
−
t
y
∈
ℝ
+
174
173
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
log
t
x
+
1
−
t
y
∈
ℝ
175
168
174
ltnegd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
+
1
−
t
log
y
<
log
t
x
+
1
−
t
y
↔
−
log
t
x
+
1
−
t
y
<
−
t
log
x
+
1
−
t
log
y
176
155
175
mpbid
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
−
log
t
x
+
1
−
t
y
<
−
t
log
x
+
1
−
t
log
y
177
fveq2
⊢
w
=
t
x
+
1
−
t
y
→
log
w
=
log
t
x
+
1
−
t
y
178
177
negeqd
⊢
w
=
t
x
+
1
−
t
y
→
−
log
w
=
−
log
t
x
+
1
−
t
y
179
eqid
⊢
w
∈
ℝ
+
⟼
−
log
w
=
w
∈
ℝ
+
⟼
−
log
w
180
negex
⊢
−
log
t
x
+
1
−
t
y
∈
V
181
178
179
180
fvmpt
⊢
t
x
+
1
−
t
y
∈
ℝ
+
→
w
∈
ℝ
+
⟼
−
log
w
t
x
+
1
−
t
y
=
−
log
t
x
+
1
−
t
y
182
173
181
syl
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
w
∈
ℝ
+
⟼
−
log
w
t
x
+
1
−
t
y
=
−
log
t
x
+
1
−
t
y
183
fveq2
⊢
w
=
x
→
log
w
=
log
x
184
183
negeqd
⊢
w
=
x
→
−
log
w
=
−
log
x
185
negex
⊢
−
log
x
∈
V
186
184
179
185
fvmpt
⊢
x
∈
ℝ
+
→
w
∈
ℝ
+
⟼
−
log
w
x
=
−
log
x
187
159
186
syl
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
w
∈
ℝ
+
⟼
−
log
w
x
=
−
log
x
188
187
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
w
∈
ℝ
+
⟼
−
log
w
x
=
t
−
log
x
189
158
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
∈
ℂ
190
160
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
log
x
∈
ℂ
191
189
190
mulneg2d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
−
log
x
=
−
t
log
x
192
188
191
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
w
∈
ℝ
+
⟼
−
log
w
x
=
−
t
log
x
193
fveq2
⊢
w
=
y
→
log
w
=
log
y
194
193
negeqd
⊢
w
=
y
→
−
log
w
=
−
log
y
195
negex
⊢
−
log
y
∈
V
196
194
179
195
fvmpt
⊢
y
∈
ℝ
+
→
w
∈
ℝ
+
⟼
−
log
w
y
=
−
log
y
197
165
196
syl
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
w
∈
ℝ
+
⟼
−
log
w
y
=
−
log
y
198
197
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
w
∈
ℝ
+
⟼
−
log
w
y
=
1
−
t
−
log
y
199
164
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
∈
ℂ
200
166
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
log
y
∈
ℂ
201
199
200
mulneg2d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
−
log
y
=
−
1
−
t
log
y
202
198
201
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
w
∈
ℝ
+
⟼
−
log
w
y
=
−
1
−
t
log
y
203
192
202
oveq12d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
w
∈
ℝ
+
⟼
−
log
w
x
+
1
−
t
w
∈
ℝ
+
⟼
−
log
w
y
=
-
t
log
x
+
−
1
−
t
log
y
204
161
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
log
x
∈
ℂ
205
167
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
1
−
t
log
y
∈
ℂ
206
204
205
negdid
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
−
t
log
x
+
1
−
t
log
y
=
-
t
log
x
+
−
1
−
t
log
y
207
203
206
eqtr4d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
t
w
∈
ℝ
+
⟼
−
log
w
x
+
1
−
t
w
∈
ℝ
+
⟼
−
log
w
y
=
−
t
log
x
+
1
−
t
log
y
208
176
182
207
3brtr4d
⊢
φ
∧
x
∈
ℝ
+
∧
y
∈
ℝ
+
∧
x
<
y
∧
t
∈
0
1
→
w
∈
ℝ
+
⟼
−
log
w
t
x
+
1
−
t
y
<
t
w
∈
ℝ
+
⟼
−
log
w
x
+
1
−
t
w
∈
ℝ
+
⟼
−
log
w
y
209
119
123
130
208
scvxcvx
⊢
φ
∧
u
∈
ℝ
+
∧
v
∈
ℝ
+
∧
s
∈
0
1
→
w
∈
ℝ
+
⟼
−
log
w
s
u
+
1
−
s
v
≤
s
w
∈
ℝ
+
⟼
−
log
w
u
+
1
−
s
w
∈
ℝ
+
⟼
−
log
w
v
210
119
123
130
2
137
4
153
209
jensen
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
∈
ℝ
+
∧
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
≤
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
∑
ℂ
fld
A
×
1
A
211
210
simprd
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
≤
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
∑
ℂ
fld
A
×
1
A
212
131
adantr
⊢
φ
∧
k
∈
A
→
1
A
∈
ℝ
213
139
a1i
⊢
φ
→
A
×
1
A
=
k
∈
A
⟼
1
A
214
2
212
13
213
37
offval2
⊢
φ
→
A
×
1
A
×
f
F
=
k
∈
A
⟼
1
A
F
k
215
214
oveq2d
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
F
=
∑
ℂ
fld
k
∈
A
1
A
F
k
216
cnfldmul
⊢
×
=
⋅
ℂ
fld
217
6
a1i
⊢
φ
→
ℂ
fld
∈
Ring
218
109
fmpttd
⊢
φ
→
k
∈
A
⟼
F
k
:
A
⟶
ℂ
219
218
2
18
fdmfifsupp
⊢
φ
→
finSupp
0
k
∈
A
⟼
F
k
220
53
5
216
217
2
143
109
219
gsummulc2
⊢
φ
→
∑
ℂ
fld
k
∈
A
1
A
F
k
=
1
A
∑
ℂ
fld
k
∈
A
F
k
221
fss
⊢
F
:
A
⟶
ℝ
+
∧
ℝ
+
⊆
ℝ
→
F
:
A
⟶
ℝ
222
4
118
221
sylancl
⊢
φ
→
F
:
A
⟶
ℝ
223
4
2
18
fdmfifsupp
⊢
φ
→
finSupp
0
F
224
5
8
2
12
222
223
gsumsubgcl
⊢
φ
→
∑
ℂ
fld
F
∈
ℝ
225
224
recnd
⊢
φ
→
∑
ℂ
fld
F
∈
ℂ
226
225
25
26
divrec2d
⊢
φ
→
∑
ℂ
fld
F
A
=
1
A
∑
ℂ
fld
F
227
108
oveq2d
⊢
φ
→
1
A
∑
ℂ
fld
F
=
1
A
∑
ℂ
fld
k
∈
A
F
k
228
226
227
eqtr2d
⊢
φ
→
1
A
∑
ℂ
fld
k
∈
A
F
k
=
∑
ℂ
fld
F
A
229
215
220
228
3eqtrd
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
F
=
∑
ℂ
fld
F
A
230
229
152
oveq12d
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
=
∑
ℂ
fld
F
A
1
231
224
24
nndivred
⊢
φ
→
∑
ℂ
fld
F
A
∈
ℝ
232
231
recnd
⊢
φ
→
∑
ℂ
fld
F
A
∈
ℂ
233
232
div1d
⊢
φ
→
∑
ℂ
fld
F
A
1
=
∑
ℂ
fld
F
A
234
230
233
eqtrd
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
=
∑
ℂ
fld
F
A
235
234
fveq2d
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
=
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
F
A
236
fveq2
⊢
w
=
∑
ℂ
fld
F
A
→
log
w
=
log
∑
ℂ
fld
F
A
237
236
negeqd
⊢
w
=
∑
ℂ
fld
F
A
→
−
log
w
=
−
log
∑
ℂ
fld
F
A
238
negex
⊢
−
log
∑
ℂ
fld
F
A
∈
V
239
237
179
238
fvmpt
⊢
∑
ℂ
fld
F
A
∈
ℝ
+
→
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
F
A
=
−
log
∑
ℂ
fld
F
A
240
115
239
syl
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
F
A
=
−
log
∑
ℂ
fld
F
A
241
235
240
eqtrd
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
∑
ℂ
fld
A
×
1
A
×
f
F
∑
ℂ
fld
A
×
1
A
=
−
log
∑
ℂ
fld
F
A
242
53
5
216
217
2
143
32
19
gsummulc2
⊢
φ
→
∑
ℂ
fld
k
∈
A
1
A
−
log
F
k
=
1
A
∑
ℂ
fld
k
∈
A
−
log
F
k
243
negex
⊢
−
log
F
k
∈
V
244
243
a1i
⊢
φ
∧
k
∈
A
→
−
log
F
k
∈
V
245
eqidd
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
=
w
∈
ℝ
+
⟼
−
log
w
246
fveq2
⊢
w
=
F
k
→
log
w
=
log
F
k
247
246
negeqd
⊢
w
=
F
k
→
−
log
w
=
−
log
F
k
248
13
37
245
247
fmptco
⊢
φ
→
w
∈
ℝ
+
⟼
−
log
w
∘
F
=
k
∈
A
⟼
−
log
F
k
249
2
212
244
213
248
offval2
⊢
φ
→
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
=
k
∈
A
⟼
1
A
−
log
F
k
250
249
oveq2d
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
=
∑
ℂ
fld
k
∈
A
1
A
−
log
F
k
251
21
25
26
divrec2d
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
A
=
1
A
∑
ℂ
fld
k
∈
A
−
log
F
k
252
242
250
251
3eqtr4d
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
=
∑
ℂ
fld
k
∈
A
−
log
F
k
A
253
252
152
oveq12d
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
∑
ℂ
fld
A
×
1
A
=
∑
ℂ
fld
k
∈
A
−
log
F
k
A
1
254
117
recnd
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
A
∈
ℂ
255
254
div1d
⊢
φ
→
∑
ℂ
fld
k
∈
A
−
log
F
k
A
1
=
∑
ℂ
fld
k
∈
A
−
log
F
k
A
256
253
255
eqtrd
⊢
φ
→
∑
ℂ
fld
A
×
1
A
×
f
w
∈
ℝ
+
⟼
−
log
w
∘
F
∑
ℂ
fld
A
×
1
A
=
∑
ℂ
fld
k
∈
A
−
log
F
k
A
257
211
241
256
3brtr3d
⊢
φ
→
−
log
∑
ℂ
fld
F
A
≤
∑
ℂ
fld
k
∈
A
−
log
F
k
A
258
116
117
257
lenegcon1d
⊢
φ
→
−
∑
ℂ
fld
k
∈
A
−
log
F
k
A
≤
log
∑
ℂ
fld
F
A
259
107
258
eqbrtrrd
⊢
φ
→
1
A
log
∑
M
F
≤
log
∑
ℂ
fld
F
A
260
131
104
remulcld
⊢
φ
→
1
A
log
∑
M
F
∈
ℝ
261
efle
⊢
1
A
log
∑
M
F
∈
ℝ
∧
log
∑
ℂ
fld
F
A
∈
ℝ
→
1
A
log
∑
M
F
≤
log
∑
ℂ
fld
F
A
↔
e
1
A
log
∑
M
F
≤
e
log
∑
ℂ
fld
F
A
262
260
116
261
syl2anc
⊢
φ
→
1
A
log
∑
M
F
≤
log
∑
ℂ
fld
F
A
↔
e
1
A
log
∑
M
F
≤
e
log
∑
ℂ
fld
F
A
263
259
262
mpbid
⊢
φ
→
e
1
A
log
∑
M
F
≤
e
log
∑
ℂ
fld
F
A
264
100
rpcnd
⊢
φ
→
∑
M
F
∈
ℂ
265
100
rpne0d
⊢
φ
→
∑
M
F
≠
0
266
264
265
143
cxpefd
⊢
φ
→
∑
M
F
1
A
=
e
1
A
log
∑
M
F
267
115
reeflogd
⊢
φ
→
e
log
∑
ℂ
fld
F
A
=
∑
ℂ
fld
F
A
268
267
eqcomd
⊢
φ
→
∑
ℂ
fld
F
A
=
e
log
∑
ℂ
fld
F
A
269
263
266
268
3brtr4d
⊢
φ
→
∑
M
F
1
A
≤
∑
ℂ
fld
F
A