Metamath Proof Explorer


Theorem amgmlem

Description: Lemma for amgm . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses amgm.1 M=mulGrpfld
amgm.2 φAFin
amgm.3 φA
amgm.4 φF:A+
Assertion amgmlem φMF1AfldFA

Proof

Step Hyp Ref Expression
1 amgm.1 M=mulGrpfld
2 amgm.2 φAFin
3 amgm.3 φA
4 amgm.4 φF:A+
5 cnfld0 0=0fld
6 cnring fldRing
7 ringabl fldRingfldAbel
8 6 7 mp1i φfldAbel
9 resubdrg SubRingfldfldDivRing
10 9 simpli SubRingfld
11 subrgsubg SubRingfldSubGrpfld
12 10 11 mp1i φSubGrpfld
13 4 ffvelcdmda φkAFk+
14 13 relogcld φkAlogFk
15 14 renegcld φkAlogFk
16 15 fmpttd φkAlogFk:A
17 c0ex 0V
18 17 a1i φ0V
19 16 2 18 fdmfifsupp φfinSupp0kAlogFk
20 5 8 2 12 16 19 gsumsubgcl φfldkAlogFk
21 20 recnd φfldkAlogFk
22 hashnncl AFinAA
23 2 22 syl φAA
24 3 23 mpbird φA
25 24 nncnd φA
26 24 nnne0d φA0
27 21 25 26 divnegd φfldkAlogFkA=fldkAlogFkA
28 14 recnd φkAlogFk
29 2 28 gsumfsum φfldkAlogFk=kAlogFk
30 28 negnegd φkAlogFk=logFk
31 30 sumeq2dv φkAlogFk=kAlogFk
32 15 recnd φkAlogFk
33 2 32 fsumneg φkAlogFk=kAlogFk
34 29 31 33 3eqtr2rd φkAlogFk=fldkAlogFk
35 2 32 gsumfsum φfldkAlogFk=kAlogFk
36 35 negeqd φfldkAlogFk=kAlogFk
37 4 feqmptd φF=kAFk
38 relogf1o log+:+1-1 onto
39 f1of log+:+1-1 ontolog+:+
40 38 39 mp1i φlog+:+
41 40 feqmptd φlog+=x+log+x
42 fvres x+log+x=logx
43 42 mpteq2ia x+log+x=x+logx
44 41 43 eqtrdi φlog+=x+logx
45 fveq2 x=Fklogx=logFk
46 13 37 44 45 fmptco φlog+F=kAlogFk
47 46 oveq2d φfldlog+F=fldkAlogFk
48 34 36 47 3eqtr4d φfldkAlogFk=fldlog+F
49 1 oveq1i M𝑠0=mulGrpfld𝑠0
50 49 rpmsubg +SubGrpM𝑠0
51 subgsubm +SubGrpM𝑠0+SubMndM𝑠0
52 50 51 ax-mp +SubMndM𝑠0
53 cnfldbas =Basefld
54 cndrng fldDivRing
55 53 5 54 drngui 0=Unitfld
56 55 1 unitsubm fldRing0SubMndM
57 eqid M𝑠0=M𝑠0
58 57 subsubm 0SubMndM+SubMndM𝑠0+SubMndM+0
59 6 56 58 mp2b +SubMndM𝑠0+SubMndM+0
60 52 59 mpbi +SubMndM+0
61 60 simpli +SubMndM
62 eqid M𝑠+=M𝑠+
63 62 submbas +SubMndM+=BaseM𝑠+
64 61 63 ax-mp +=BaseM𝑠+
65 cnfld1 1=1fld
66 1 65 ringidval 1=0M
67 62 66 subm0 +SubMndM1=0M𝑠+
68 61 67 ax-mp 1=0M𝑠+
69 cncrng fldCRing
70 1 crngmgp fldCRingMCMnd
71 69 70 mp1i φMCMnd
72 62 submmnd +SubMndMM𝑠+Mnd
73 61 72 mp1i φM𝑠+Mnd
74 62 subcmn MCMndM𝑠+MndM𝑠+CMnd
75 71 73 74 syl2anc φM𝑠+CMnd
76 df-refld fld=fld𝑠
77 76 subrgring SubRingfldfldRing
78 10 77 ax-mp fldRing
79 ringmnd fldRingfldMnd
80 78 79 mp1i φfldMnd
81 1 oveq1i M𝑠+=mulGrpfld𝑠+
82 81 reloggim log+M𝑠+GrpIsofld
83 gimghm log+M𝑠+GrpIsofldlog+M𝑠+GrpHomfld
84 82 83 ax-mp log+M𝑠+GrpHomfld
85 ghmmhm log+M𝑠+GrpHomfldlog+M𝑠+MndHomfld
86 84 85 mp1i φlog+M𝑠+MndHomfld
87 1ex 1V
88 87 a1i φ1V
89 4 2 88 fdmfifsupp φfinSupp1F
90 64 68 75 80 2 86 4 89 gsummhm φfldlog+F=log+M𝑠+F
91 subgsubm SubGrpfldSubMndfld
92 12 91 syl φSubMndfld
93 fco log+:+F:A+log+F:A
94 40 4 93 syl2anc φlog+F:A
95 2 92 94 76 gsumsubm φfldlog+F=fldlog+F
96 61 a1i φ+SubMndM
97 2 96 4 62 gsumsubm φMF=M𝑠+F
98 97 fveq2d φlog+MF=log+M𝑠+F
99 90 95 98 3eqtr4d φfldlog+F=log+MF
100 66 71 2 96 4 89 gsumsubmcl φMF+
101 100 fvresd φlog+MF=logMF
102 48 99 101 3eqtrd φfldkAlogFk=logMF
103 102 oveq1d φfldkAlogFkA=logMFA
104 100 relogcld φlogMF
105 104 recnd φlogMF
106 105 25 26 divrec2d φlogMFA=1AlogMF
107 27 103 106 3eqtrd φfldkAlogFkA=1AlogMF
108 37 oveq2d φfldF=fldkAFk
109 13 rpcnd φkAFk
110 2 109 gsumfsum φfldkAFk=kAFk
111 108 110 eqtrd φfldF=kAFk
112 2 3 13 fsumrpcl φkAFk+
113 111 112 eqeltrd φfldF+
114 24 nnrpd φA+
115 113 114 rpdivcld φfldFA+
116 115 relogcld φlogfldFA
117 20 24 nndivred φfldkAlogFkA
118 rpssre +
119 118 a1i φ+
120 relogcl w+logw
121 120 adantl φw+logw
122 121 renegcld φw+logw
123 122 fmpttd φw+logw:+
124 ioorp 0+∞=+
125 124 eleq2i a0+∞a+
126 124 eleq2i b0+∞b+
127 iccssioo2 a0+∞b0+∞ab0+∞
128 125 126 127 syl2anbr a+b+ab0+∞
129 128 124 sseqtrdi a+b+ab+
130 129 adantl φa+b+ab+
131 24 nnrecred φ1A
132 114 rpreccld φ1A+
133 132 rpge0d φ01A
134 elrege0 1A0+∞1A01A
135 131 133 134 sylanbrc φ1A0+∞
136 fconst6g 1A0+∞A×1A:A0+∞
137 135 136 syl φA×1A:A0+∞
138 0lt1 0<1
139 fconstmpt A×1A=kA1A
140 139 oveq2i fldA×1A=fldkA1A
141 ringmnd fldRingfldMnd
142 6 141 mp1i φfldMnd
143 131 recnd φ1A
144 eqid fld=fld
145 53 144 gsumconst fldMndAFin1AfldkA1A=Afld1A
146 142 2 143 145 syl3anc φfldkA1A=Afld1A
147 24 nnzd φA
148 cnfldmulg A1AAfld1A=A1A
149 147 143 148 syl2anc φAfld1A=A1A
150 25 26 recidd φA1A=1
151 146 149 150 3eqtrd φfldkA1A=1
152 140 151 eqtrid φfldA×1A=1
153 138 152 breqtrrid φ0<fldA×1A
154 logccv x+y+x<yt01tlogx+1tlogy<logtx+1ty
155 154 3adant1 φx+y+x<yt01tlogx+1tlogy<logtx+1ty
156 ioossre 01
157 simp3 φx+y+x<yt01t01
158 156 157 sselid φx+y+x<yt01t
159 simp21 φx+y+x<yt01x+
160 159 relogcld φx+y+x<yt01logx
161 158 160 remulcld φx+y+x<yt01tlogx
162 1re 1
163 resubcl 1t1t
164 162 158 163 sylancr φx+y+x<yt011t
165 simp22 φx+y+x<yt01y+
166 165 relogcld φx+y+x<yt01logy
167 164 166 remulcld φx+y+x<yt011tlogy
168 161 167 readdcld φx+y+x<yt01tlogx+1tlogy
169 simp1 φx+y+x<yt01φ
170 ioossicc 0101
171 170 157 sselid φx+y+x<yt01t01
172 119 130 cvxcl φx+y+t01tx+1ty+
173 169 159 165 171 172 syl13anc φx+y+x<yt01tx+1ty+
174 173 relogcld φx+y+x<yt01logtx+1ty
175 168 174 ltnegd φx+y+x<yt01tlogx+1tlogy<logtx+1tylogtx+1ty<tlogx+1tlogy
176 155 175 mpbid φx+y+x<yt01logtx+1ty<tlogx+1tlogy
177 fveq2 w=tx+1tylogw=logtx+1ty
178 177 negeqd w=tx+1tylogw=logtx+1ty
179 eqid w+logw=w+logw
180 negex logtx+1tyV
181 178 179 180 fvmpt tx+1ty+w+logwtx+1ty=logtx+1ty
182 173 181 syl φx+y+x<yt01w+logwtx+1ty=logtx+1ty
183 fveq2 w=xlogw=logx
184 183 negeqd w=xlogw=logx
185 negex logxV
186 184 179 185 fvmpt x+w+logwx=logx
187 159 186 syl φx+y+x<yt01w+logwx=logx
188 187 oveq2d φx+y+x<yt01tw+logwx=tlogx
189 158 recnd φx+y+x<yt01t
190 160 recnd φx+y+x<yt01logx
191 189 190 mulneg2d φx+y+x<yt01tlogx=tlogx
192 188 191 eqtrd φx+y+x<yt01tw+logwx=tlogx
193 fveq2 w=ylogw=logy
194 193 negeqd w=ylogw=logy
195 negex logyV
196 194 179 195 fvmpt y+w+logwy=logy
197 165 196 syl φx+y+x<yt01w+logwy=logy
198 197 oveq2d φx+y+x<yt011tw+logwy=1tlogy
199 164 recnd φx+y+x<yt011t
200 166 recnd φx+y+x<yt01logy
201 199 200 mulneg2d φx+y+x<yt011tlogy=1tlogy
202 198 201 eqtrd φx+y+x<yt011tw+logwy=1tlogy
203 192 202 oveq12d φx+y+x<yt01tw+logwx+1tw+logwy=-tlogx+1tlogy
204 161 recnd φx+y+x<yt01tlogx
205 167 recnd φx+y+x<yt011tlogy
206 204 205 negdid φx+y+x<yt01tlogx+1tlogy=-tlogx+1tlogy
207 203 206 eqtr4d φx+y+x<yt01tw+logwx+1tw+logwy=tlogx+1tlogy
208 176 182 207 3brtr4d φx+y+x<yt01w+logwtx+1ty<tw+logwx+1tw+logwy
209 119 123 130 208 scvxcvx φu+v+s01w+logwsu+1svsw+logwu+1sw+logwv
210 119 123 130 2 137 4 153 209 jensen φfldA×1A×fFfldA×1A+w+logwfldA×1A×fFfldA×1AfldA×1A×fw+logwFfldA×1A
211 210 simprd φw+logwfldA×1A×fFfldA×1AfldA×1A×fw+logwFfldA×1A
212 131 adantr φkA1A
213 139 a1i φA×1A=kA1A
214 2 212 13 213 37 offval2 φA×1A×fF=kA1AFk
215 214 oveq2d φfldA×1A×fF=fldkA1AFk
216 cnfldmul ×=fld
217 6 a1i φfldRing
218 109 fmpttd φkAFk:A
219 218 2 18 fdmfifsupp φfinSupp0kAFk
220 53 5 216 217 2 143 109 219 gsummulc2 φfldkA1AFk=1AfldkAFk
221 fss F:A++F:A
222 4 118 221 sylancl φF:A
223 4 2 18 fdmfifsupp φfinSupp0F
224 5 8 2 12 222 223 gsumsubgcl φfldF
225 224 recnd φfldF
226 225 25 26 divrec2d φfldFA=1AfldF
227 108 oveq2d φ1AfldF=1AfldkAFk
228 226 227 eqtr2d φ1AfldkAFk=fldFA
229 215 220 228 3eqtrd φfldA×1A×fF=fldFA
230 229 152 oveq12d φfldA×1A×fFfldA×1A=fldFA1
231 224 24 nndivred φfldFA
232 231 recnd φfldFA
233 232 div1d φfldFA1=fldFA
234 230 233 eqtrd φfldA×1A×fFfldA×1A=fldFA
235 234 fveq2d φw+logwfldA×1A×fFfldA×1A=w+logwfldFA
236 fveq2 w=fldFAlogw=logfldFA
237 236 negeqd w=fldFAlogw=logfldFA
238 negex logfldFAV
239 237 179 238 fvmpt fldFA+w+logwfldFA=logfldFA
240 115 239 syl φw+logwfldFA=logfldFA
241 235 240 eqtrd φw+logwfldA×1A×fFfldA×1A=logfldFA
242 53 5 216 217 2 143 32 19 gsummulc2 φfldkA1AlogFk=1AfldkAlogFk
243 negex logFkV
244 243 a1i φkAlogFkV
245 eqidd φw+logw=w+logw
246 fveq2 w=Fklogw=logFk
247 246 negeqd w=Fklogw=logFk
248 13 37 245 247 fmptco φw+logwF=kAlogFk
249 2 212 244 213 248 offval2 φA×1A×fw+logwF=kA1AlogFk
250 249 oveq2d φfldA×1A×fw+logwF=fldkA1AlogFk
251 21 25 26 divrec2d φfldkAlogFkA=1AfldkAlogFk
252 242 250 251 3eqtr4d φfldA×1A×fw+logwF=fldkAlogFkA
253 252 152 oveq12d φfldA×1A×fw+logwFfldA×1A=fldkAlogFkA1
254 117 recnd φfldkAlogFkA
255 254 div1d φfldkAlogFkA1=fldkAlogFkA
256 253 255 eqtrd φfldA×1A×fw+logwFfldA×1A=fldkAlogFkA
257 211 241 256 3brtr3d φlogfldFAfldkAlogFkA
258 116 117 257 lenegcon1d φfldkAlogFkAlogfldFA
259 107 258 eqbrtrrd φ1AlogMFlogfldFA
260 131 104 remulcld φ1AlogMF
261 efle 1AlogMFlogfldFA1AlogMFlogfldFAe1AlogMFelogfldFA
262 260 116 261 syl2anc φ1AlogMFlogfldFAe1AlogMFelogfldFA
263 259 262 mpbid φe1AlogMFelogfldFA
264 100 rpcnd φMF
265 100 rpne0d φMF0
266 264 265 143 cxpefd φMF1A=e1AlogMF
267 115 reeflogd φelogfldFA=fldFA
268 267 eqcomd φfldFA=elogfldFA
269 263 266 268 3brtr4d φMF1AfldFA