Metamath Proof Explorer


Theorem efrlim

Description: The limit of the sequence ( 1 + A / k ) ^ k is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 ). (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis efrlim.1 S=0ballabs1A+1
Assertion efrlim Ak+1+AkkeA

Proof

Step Hyp Ref Expression
1 efrlim.1 S=0ballabs1A+1
2 rge0ssre 0+∞
3 ax-resscn
4 2 3 sstri 0+∞
5 4 sseli x0+∞x
6 simpll Ax¬x=0A
7 1cnd Ax¬x=01
8 simplr Ax¬x=0x
9 ax-1ne0 10
10 9 a1i Ax¬x=010
11 simpr Ax¬x=0¬x=0
12 11 neqned Ax¬x=0x0
13 6 7 8 10 12 divdiv2d Ax¬x=0A1x=Ax1
14 mulcl AxAx
15 14 adantr Ax¬x=0Ax
16 15 div1d Ax¬x=0Ax1=Ax
17 13 16 eqtrd Ax¬x=0A1x=Ax
18 17 oveq2d Ax¬x=01+A1x=1+Ax
19 18 oveq1d Ax¬x=01+A1x1x=1+Ax1x
20 19 ifeq2da Axifx=0eA1+A1x1x=ifx=0eA1+Ax1x
21 5 20 sylan2 Ax0+∞ifx=0eA1+A1x1x=ifx=0eA1+Ax1x
22 21 mpteq2dva Ax0+∞ifx=0eA1+A1x1x=x0+∞ifx=0eA1+Ax1x
23 resmpt 0+∞xifx=0eA1+Ax1x0+∞=x0+∞ifx=0eA1+Ax1x
24 4 23 ax-mp xifx=0eA1+Ax1x0+∞=x0+∞ifx=0eA1+Ax1x
25 22 24 eqtr4di Ax0+∞ifx=0eA1+A1x1x=xifx=0eA1+Ax1x0+∞
26 0e0icopnf 00+∞
27 26 a1i A00+∞
28 eqeq2 eA1=ifAx=0eA1eAlog1+AxAxifx=0eA1+Ax1x=eA1ifx=0eA1+Ax1x=ifAx=0eA1eAlog1+AxAx
29 eqeq2 eAlog1+AxAx=ifAx=0eA1eAlog1+AxAxifx=0eA1+Ax1x=eAlog1+AxAxifx=0eA1+Ax1x=ifAx=0eA1eAlog1+AxAx
30 cnxmet abs∞Met
31 0cnd A0
32 abscl AA
33 peano2re AA+1
34 32 33 syl AA+1
35 0red A0
36 absge0 A0A
37 32 ltp1d AA<A+1
38 35 32 34 36 37 lelttrd A0<A+1
39 34 38 elrpd AA+1+
40 39 rpreccld A1A+1+
41 40 rpxrd A1A+1*
42 blssm abs∞Met01A+1*0ballabs1A+1
43 30 31 41 42 mp3an2i A0ballabs1A+1
44 1 43 eqsstrid AS
45 44 sselda AxSx
46 mul0or AxAx=0A=0x=0
47 45 46 syldan AxSAx=0A=0x=0
48 47 biimpa AxSAx=0A=0x=0
49 8 12 reccld Ax¬x=01x
50 45 49 syldanl AxS¬x=01x
51 50 adantlr AxSA=0¬x=01x
52 51 1cxpd AxSA=0¬x=011x=1
53 simplr AxSA=0¬x=0A=0
54 53 oveq1d AxSA=0¬x=0Ax=0x
55 45 ad2antrr AxSA=0¬x=0x
56 55 mul02d AxSA=0¬x=00x=0
57 54 56 eqtrd AxSA=0¬x=0Ax=0
58 57 oveq2d AxSA=0¬x=01+Ax=1+0
59 1p0e1 1+0=1
60 58 59 eqtrdi AxSA=0¬x=01+Ax=1
61 60 oveq1d AxSA=0¬x=01+Ax1x=11x
62 53 fveq2d AxSA=0¬x=0eA=e0
63 ef0 e0=1
64 62 63 eqtrdi AxSA=0¬x=0eA=1
65 52 61 64 3eqtr4d AxSA=0¬x=01+Ax1x=eA
66 65 ifeq2da AxSA=0ifx=0eA1+Ax1x=ifx=0eAeA
67 ifid ifx=0eAeA=eA
68 66 67 eqtrdi AxSA=0ifx=0eA1+Ax1x=eA
69 iftrue x=0ifx=0eA1+Ax1x=eA
70 69 adantl AxSx=0ifx=0eA1+Ax1x=eA
71 68 70 jaodan AxSA=0x=0ifx=0eA1+Ax1x=eA
72 mulrid AA1=A
73 72 ad2antrr AxSA=0x=0A1=A
74 73 fveq2d AxSA=0x=0eA1=eA
75 71 74 eqtr4d AxSA=0x=0ifx=0eA1+Ax1x=eA1
76 48 75 syldan AxSAx=0ifx=0eA1+Ax1x=eA1
77 mulne0b AxA0x0Ax0
78 45 77 syldan AxSA0x0Ax0
79 df-ne Ax0¬Ax=0
80 78 79 bitrdi AxSA0x0¬Ax=0
81 simprr AxSA0x0x0
82 81 neneqd AxSA0x0¬x=0
83 82 iffalsed AxSA0x0ifx=0eA1+Ax1x=1+Ax1x
84 ax-1cn 1
85 45 14 syldan AxSAx
86 addcl 1Ax1+Ax
87 84 85 86 sylancr AxS1+Ax
88 87 adantr AxSA0x01+Ax
89 eqid 1ballabs1=1ballabs1
90 89 dvlog2lem 1ballabs1−∞0
91 eqid −∞0=−∞0
92 91 logdmss −∞00
93 90 92 sstri 1ballabs10
94 eqid abs=abs
95 94 cnmetdval 1+Ax11+Axabs1=1+Ax-1
96 87 84 95 sylancl AxS1+Axabs1=1+Ax-1
97 pncan2 1Ax1+Ax-1=Ax
98 84 85 97 sylancr AxS1+Ax-1=Ax
99 98 fveq2d AxS1+Ax-1=Ax
100 96 99 eqtrd AxS1+Axabs1=Ax
101 85 abscld AxSAx
102 34 adantr AxSA+1
103 45 abscld AxSx
104 102 103 remulcld AxSA+1x
105 1red AxS1
106 absmul AxAx=Ax
107 45 106 syldan AxSAx=Ax
108 32 adantr AxSA
109 108 33 syl AxSA+1
110 45 absge0d AxS0x
111 108 lep1d AxSAA+1
112 108 109 103 110 111 lemul1ad AxSAxA+1x
113 107 112 eqbrtrd AxSAxA+1x
114 0cn 0
115 94 cnmetdval x0xabs0=x0
116 45 114 115 sylancl AxSxabs0=x0
117 45 subid1d AxSx0=x
118 117 fveq2d AxSx0=x
119 116 118 eqtrd AxSxabs0=x
120 simpr AxSxS
121 120 1 eleqtrdi AxSx0ballabs1A+1
122 30 a1i AxSabs∞Met
123 41 adantr AxS1A+1*
124 0cnd AxS0
125 elbl3 abs∞Met1A+1*0xx0ballabs1A+1xabs0<1A+1
126 122 123 124 45 125 syl22anc AxSx0ballabs1A+1xabs0<1A+1
127 121 126 mpbid AxSxabs0<1A+1
128 119 127 eqbrtrrd AxSx<1A+1
129 38 adantr AxS0<A+1
130 ltmuldiv2 x1A+10<A+1A+1x<1x<1A+1
131 103 105 109 129 130 syl112anc AxSA+1x<1x<1A+1
132 128 131 mpbird AxSA+1x<1
133 101 104 105 113 132 lelttrd AxSAx<1
134 100 133 eqbrtrd AxS1+Axabs1<1
135 1rp 1+
136 rpxr 1+1*
137 135 136 mp1i AxS1*
138 1cnd AxS1
139 elbl3 abs∞Met1*11+Ax1+Ax1ballabs11+Axabs1<1
140 122 137 138 87 139 syl22anc AxS1+Ax1ballabs11+Axabs1<1
141 134 140 mpbird AxS1+Ax1ballabs1
142 93 141 sselid AxS1+Ax0
143 eldifsni 1+Ax01+Ax0
144 142 143 syl AxS1+Ax0
145 144 adantr AxSA0x01+Ax0
146 45 adantr AxSA0x0x
147 146 81 reccld AxSA0x01x
148 88 145 147 cxpefd AxSA0x01+Ax1x=e1xlog1+Ax
149 87 144 logcld AxSlog1+Ax
150 149 adantr AxSA0x0log1+Ax
151 147 150 mulcomd AxSA0x01xlog1+Ax=log1+Ax1x
152 simpll AxSA0x0A
153 simprl AxSA0x0A0
154 152 153 dividd AxSA0x0AA=1
155 154 oveq1d AxSA0x0AAx=1x
156 152 152 146 153 81 divdiv1d AxSA0x0AAx=AAx
157 155 156 eqtr3d AxSA0x01x=AAx
158 157 oveq2d AxSA0x0log1+Ax1x=log1+AxAAx
159 85 adantr AxSA0x0Ax
160 78 biimpa AxSA0x0Ax0
161 150 152 159 160 div12d AxSA0x0log1+AxAAx=Alog1+AxAx
162 151 158 161 3eqtrd AxSA0x01xlog1+Ax=Alog1+AxAx
163 162 fveq2d AxSA0x0e1xlog1+Ax=eAlog1+AxAx
164 83 148 163 3eqtrd AxSA0x0ifx=0eA1+Ax1x=eAlog1+AxAx
165 164 ex AxSA0x0ifx=0eA1+Ax1x=eAlog1+AxAx
166 80 165 sylbird AxS¬Ax=0ifx=0eA1+Ax1x=eAlog1+AxAx
167 166 imp AxS¬Ax=0ifx=0eA1+Ax1x=eAlog1+AxAx
168 28 29 76 167 ifbothda AxSifx=0eA1+Ax1x=ifAx=0eA1eAlog1+AxAx
169 168 mpteq2dva AxSifx=0eA1+Ax1x=xSifAx=0eA1eAlog1+AxAx
170 44 resmptd Axifx=0eA1+Ax1xS=xSifx=0eA1+Ax1x
171 1cnd AxSAx=01
172 149 adantr AxS¬Ax=0log1+Ax
173 85 adantr AxS¬Ax=0Ax
174 simpr AxS¬Ax=0¬Ax=0
175 174 neqned AxS¬Ax=0Ax0
176 172 173 175 divcld AxS¬Ax=0log1+AxAx
177 171 176 ifclda AxSifAx=01log1+AxAx
178 eqidd AxSifAx=01log1+AxAx=xSifAx=01log1+AxAx
179 eqidd AyeAy=yeAy
180 oveq2 y=ifAx=01log1+AxAxAy=AifAx=01log1+AxAx
181 180 fveq2d y=ifAx=01log1+AxAxeAy=eAifAx=01log1+AxAx
182 oveq2 ifAx=01log1+AxAx=1AifAx=01log1+AxAx=A1
183 182 fveq2d ifAx=01log1+AxAx=1eAifAx=01log1+AxAx=eA1
184 oveq2 ifAx=01log1+AxAx=log1+AxAxAifAx=01log1+AxAx=Alog1+AxAx
185 184 fveq2d ifAx=01log1+AxAx=log1+AxAxeAifAx=01log1+AxAx=eAlog1+AxAx
186 183 185 ifsb eAifAx=01log1+AxAx=ifAx=0eA1eAlog1+AxAx
187 181 186 eqtrdi y=ifAx=01log1+AxAxeAy=ifAx=0eA1eAlog1+AxAx
188 177 178 179 187 fmptco AyeAyxSifAx=01log1+AxAx=xSifAx=0eA1eAlog1+AxAx
189 169 170 188 3eqtr4d Axifx=0eA1+Ax1xS=yeAyxSifAx=01log1+AxAx
190 eqidd AxS1+Ax=xS1+Ax
191 eqidd Ay1ballabs1ify=11logyy1=y1ballabs1ify=11logyy1
192 eqeq1 y=1+Axy=11+Ax=1
193 fveq2 y=1+Axlogy=log1+Ax
194 oveq1 y=1+Axy1=1+Ax-1
195 193 194 oveq12d y=1+Axlogyy1=log1+Ax1+Ax-1
196 192 195 ifbieq2d y=1+Axify=11logyy1=if1+Ax=11log1+Ax1+Ax-1
197 141 190 191 196 fmptco Ay1ballabs1ify=11logyy1xS1+Ax=xSif1+Ax=11log1+Ax1+Ax-1
198 59 eqeq2i 1+Ax=1+01+Ax=1
199 138 85 124 addcand AxS1+Ax=1+0Ax=0
200 198 199 bitr3id AxS1+Ax=1Ax=0
201 98 oveq2d AxSlog1+Ax1+Ax-1=log1+AxAx
202 200 201 ifbieq2d AxSif1+Ax=11log1+Ax1+Ax-1=ifAx=01log1+AxAx
203 202 mpteq2dva AxSif1+Ax=11log1+Ax1+Ax-1=xSifAx=01log1+AxAx
204 197 203 eqtrd Ay1ballabs1ify=11logyy1xS1+Ax=xSifAx=01log1+AxAx
205 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
206 eqid TopOpenfld=TopOpenfld
207 206 cnfldtopon TopOpenfldTopOn
208 207 a1i ATopOpenfldTopOn
209 1cnd A1
210 208 208 209 cnmptc Ax1TopOpenfldCnTopOpenfld
211 id AA
212 208 208 211 cnmptc AxATopOpenfldCnTopOpenfld
213 208 cnmptid AxxTopOpenfldCnTopOpenfld
214 206 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
215 214 a1i A×TopOpenfld×tTopOpenfldCnTopOpenfld
216 208 212 213 215 cnmpt12f AxAxTopOpenfldCnTopOpenfld
217 206 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
218 217 a1i A+TopOpenfld×tTopOpenfldCnTopOpenfld
219 208 210 216 218 cnmpt12f Ax1+AxTopOpenfldCnTopOpenfld
220 205 208 44 219 cnmpt1res AxS1+AxTopOpenfld𝑡SCnTopOpenfld
221 141 fmpttd AxS1+Ax:S1ballabs1
222 221 frnd AranxS1+Ax1ballabs1
223 difss 0
224 93 223 sstri 1ballabs1
225 224 a1i A1ballabs1
226 cnrest2 TopOpenfldTopOnranxS1+Ax1ballabs11ballabs1xS1+AxTopOpenfld𝑡SCnTopOpenfldxS1+AxTopOpenfld𝑡SCnTopOpenfld𝑡1ballabs1
227 207 222 225 226 mp3an2i AxS1+AxTopOpenfld𝑡SCnTopOpenfldxS1+AxTopOpenfld𝑡SCnTopOpenfld𝑡1ballabs1
228 220 227 mpbid AxS1+AxTopOpenfld𝑡SCnTopOpenfld𝑡1ballabs1
229 blcntr abs∞Met01A+1+00ballabs1A+1
230 30 31 40 229 mp3an2i A00ballabs1A+1
231 230 1 eleqtrrdi A0S
232 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
233 207 44 232 sylancr ATopOpenfld𝑡STopOnS
234 toponuni TopOpenfld𝑡STopOnSS=TopOpenfld𝑡S
235 233 234 syl AS=TopOpenfld𝑡S
236 231 235 eleqtrd A0TopOpenfld𝑡S
237 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
238 237 cncnpi xS1+AxTopOpenfld𝑡SCnTopOpenfld𝑡1ballabs10TopOpenfld𝑡SxS1+AxTopOpenfld𝑡SCnPTopOpenfld𝑡1ballabs10
239 228 236 238 syl2anc AxS1+AxTopOpenfld𝑡SCnPTopOpenfld𝑡1ballabs10
240 cnelprrecn
241 logf1o log:01-1 ontoranlog
242 f1of log:01-1 ontoranloglog:0ranlog
243 241 242 ax-mp log:0ranlog
244 logrncn xranlogx
245 244 ssriv ranlog
246 fss log:0ranlogranloglog:0
247 243 245 246 mp2an log:0
248 fssres log:01ballabs10log1ballabs1:1ballabs1
249 247 93 248 mp2an log1ballabs1:1ballabs1
250 blcntr abs∞Met11+11ballabs1
251 30 84 135 250 mp3an 11ballabs1
252 ovex 1yV
253 89 dvlog2 Dlog1ballabs1=y1ballabs11y
254 252 253 dmmpti domlog1ballabs1=1ballabs1
255 251 254 eleqtrri 1domlog1ballabs1
256 eqid TopOpenfld𝑡1ballabs1=TopOpenfld𝑡1ballabs1
257 253 fveq1i log1ballabs11=y1ballabs11y1
258 oveq2 y=11y=11
259 1div1e1 11=1
260 258 259 eqtrdi y=11y=1
261 eqid y1ballabs11y=y1ballabs11y
262 1ex 1V
263 260 261 262 fvmpt 11ballabs1y1ballabs11y1=1
264 251 263 ax-mp y1ballabs11y1=1
265 257 264 eqtr2i 1=log1ballabs11
266 265 a1i y1ballabs11=log1ballabs11
267 fvres y1ballabs1log1ballabs1y=logy
268 fvres 11ballabs1log1ballabs11=log1
269 251 268 mp1i y1ballabs1log1ballabs11=log1
270 log1 log1=0
271 269 270 eqtrdi y1ballabs1log1ballabs11=0
272 267 271 oveq12d y1ballabs1log1ballabs1ylog1ballabs11=logy0
273 93 sseli y1ballabs1y0
274 eldifsn y0yy0
275 273 274 sylib y1ballabs1yy0
276 logcl yy0logy
277 275 276 syl y1ballabs1logy
278 277 subid1d y1ballabs1logy0=logy
279 272 278 eqtr2d y1ballabs1logy=log1ballabs1ylog1ballabs11
280 279 oveq1d y1ballabs1logyy1=log1ballabs1ylog1ballabs11y1
281 266 280 ifeq12d y1ballabs1ify=11logyy1=ify=1log1ballabs11log1ballabs1ylog1ballabs11y1
282 281 mpteq2ia y1ballabs1ify=11logyy1=y1ballabs1ify=1log1ballabs11log1ballabs1ylog1ballabs11y1
283 256 206 282 dvcnp log1ballabs1:1ballabs11ballabs11domlog1ballabs1y1ballabs1ify=11logyy1TopOpenfld𝑡1ballabs1CnPTopOpenfld1
284 255 283 mpan2 log1ballabs1:1ballabs11ballabs1y1ballabs1ify=11logyy1TopOpenfld𝑡1ballabs1CnPTopOpenfld1
285 240 249 224 284 mp3an y1ballabs1ify=11logyy1TopOpenfld𝑡1ballabs1CnPTopOpenfld1
286 oveq2 x=0Ax=A0
287 286 oveq2d x=01+Ax=1+A0
288 eqid xS1+Ax=xS1+Ax
289 ovex 1+A0V
290 287 288 289 fvmpt 0SxS1+Ax0=1+A0
291 231 290 syl AxS1+Ax0=1+A0
292 mul01 AA0=0
293 292 oveq2d A1+A0=1+0
294 293 59 eqtrdi A1+A0=1
295 291 294 eqtrd AxS1+Ax0=1
296 295 fveq2d ATopOpenfld𝑡1ballabs1CnPTopOpenfldxS1+Ax0=TopOpenfld𝑡1ballabs1CnPTopOpenfld1
297 285 296 eleqtrrid Ay1ballabs1ify=11logyy1TopOpenfld𝑡1ballabs1CnPTopOpenfldxS1+Ax0
298 cnpco xS1+AxTopOpenfld𝑡SCnPTopOpenfld𝑡1ballabs10y1ballabs1ify=11logyy1TopOpenfld𝑡1ballabs1CnPTopOpenfldxS1+Ax0y1ballabs1ify=11logyy1xS1+AxTopOpenfld𝑡SCnPTopOpenfld0
299 239 297 298 syl2anc Ay1ballabs1ify=11logyy1xS1+AxTopOpenfld𝑡SCnPTopOpenfld0
300 204 299 eqeltrrd AxSifAx=01log1+AxAxTopOpenfld𝑡SCnPTopOpenfld0
301 208 208 211 cnmptc AyATopOpenfldCnTopOpenfld
302 208 cnmptid AyyTopOpenfldCnTopOpenfld
303 208 301 302 215 cnmpt12f AyAyTopOpenfldCnTopOpenfld
304 efcn exp:cn
305 206 cncfcn1 cn=TopOpenfldCnTopOpenfld
306 304 305 eleqtri expTopOpenfldCnTopOpenfld
307 306 a1i AexpTopOpenfldCnTopOpenfld
308 208 303 307 cnmpt11f AyeAyTopOpenfldCnTopOpenfld
309 177 fmpttd AxSifAx=01log1+AxAx:S
310 309 231 ffvelcdmd AxSifAx=01log1+AxAx0
311 unicntop =TopOpenfld
312 311 cncnpi yeAyTopOpenfldCnTopOpenfldxSifAx=01log1+AxAx0yeAyTopOpenfldCnPTopOpenfldxSifAx=01log1+AxAx0
313 308 310 312 syl2anc AyeAyTopOpenfldCnPTopOpenfldxSifAx=01log1+AxAx0
314 cnpco xSifAx=01log1+AxAxTopOpenfld𝑡SCnPTopOpenfld0yeAyTopOpenfldCnPTopOpenfldxSifAx=01log1+AxAx0yeAyxSifAx=01log1+AxAxTopOpenfld𝑡SCnPTopOpenfld0
315 300 313 314 syl2anc AyeAyxSifAx=01log1+AxAxTopOpenfld𝑡SCnPTopOpenfld0
316 189 315 eqeltrd Axifx=0eA1+Ax1xSTopOpenfld𝑡SCnPTopOpenfld0
317 206 cnfldtop TopOpenfldTop
318 317 a1i ATopOpenfldTop
319 206 cnfldtopn TopOpenfld=MetOpenabs
320 319 blopn abs∞Met01A+1*0ballabs1A+1TopOpenfld
321 30 31 41 320 mp3an2i A0ballabs1A+1TopOpenfld
322 1 321 eqeltrid ASTopOpenfld
323 isopn3i TopOpenfldTopSTopOpenfldintTopOpenfldS=S
324 317 322 323 sylancr AintTopOpenfldS=S
325 231 324 eleqtrrd A0intTopOpenfldS
326 efcl AeA
327 326 ad2antrr Axx=0eA
328 84 15 86 sylancr Ax¬x=01+Ax
329 328 49 cxpcld Ax¬x=01+Ax1x
330 327 329 ifclda Axifx=0eA1+Ax1x
331 330 fmpttd Axifx=0eA1+Ax1x:
332 311 311 cnprest TopOpenfldTopS0intTopOpenfldSxifx=0eA1+Ax1x:xifx=0eA1+Ax1xTopOpenfldCnPTopOpenfld0xifx=0eA1+Ax1xSTopOpenfld𝑡SCnPTopOpenfld0
333 318 44 325 331 332 syl22anc Axifx=0eA1+Ax1xTopOpenfldCnPTopOpenfld0xifx=0eA1+Ax1xSTopOpenfld𝑡SCnPTopOpenfld0
334 316 333 mpbird Axifx=0eA1+Ax1xTopOpenfldCnPTopOpenfld0
335 311 cnpresti 0+∞00+∞xifx=0eA1+Ax1xTopOpenfldCnPTopOpenfld0xifx=0eA1+Ax1x0+∞TopOpenfld𝑡0+∞CnPTopOpenfld0
336 4 27 334 335 mp3an2i Axifx=0eA1+Ax1x0+∞TopOpenfld𝑡0+∞CnPTopOpenfld0
337 25 336 eqeltrd Ax0+∞ifx=0eA1+A1x1xTopOpenfld𝑡0+∞CnPTopOpenfld0
338 simpl Ak+A
339 rpcn k+k
340 339 adantl Ak+k
341 rpne0 k+k0
342 341 adantl Ak+k0
343 338 340 342 divcld Ak+Ak
344 addcl 1Ak1+Ak
345 84 343 344 sylancr Ak+1+Ak
346 345 340 cxpcld Ak+1+Akk
347 oveq2 k=1xAk=A1x
348 347 oveq2d k=1x1+Ak=1+A1x
349 id k=1xk=1x
350 348 349 oveq12d k=1x1+Akk=1+A1x1x
351 eqid TopOpenfld𝑡0+∞=TopOpenfld𝑡0+∞
352 326 346 350 206 351 rlimcnp3 Ak+1+AkkeAx0+∞ifx=0eA1+A1x1xTopOpenfld𝑡0+∞CnPTopOpenfld0
353 337 352 mpbird Ak+1+AkkeA