Metamath Proof Explorer


Theorem mdetunilem9

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A = N Mat R
mdetuni.b B = Base A
mdetuni.k K = Base R
mdetuni.0g 0 ˙ = 0 R
mdetuni.1r 1 ˙ = 1 R
mdetuni.pg + ˙ = + R
mdetuni.tg · ˙ = R
mdetuni.n φ N Fin
mdetuni.r φ R Ring
mdetuni.ff φ D : B K
mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
mdetunilem9.id φ D 1 A = 0 ˙
mdetunilem9.y Y = x | y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
Assertion mdetunilem9 φ D = B × 0 ˙

Proof

Step Hyp Ref Expression
1 mdetuni.a A = N Mat R
2 mdetuni.b B = Base A
3 mdetuni.k K = Base R
4 mdetuni.0g 0 ˙ = 0 R
5 mdetuni.1r 1 ˙ = 1 R
6 mdetuni.pg + ˙ = + R
7 mdetuni.tg · ˙ = R
8 mdetuni.n φ N Fin
9 mdetuni.r φ R Ring
10 mdetuni.ff φ D : B K
11 mdetuni.al φ x B y N z N y z w N y x w = z x w D x = 0 ˙
12 mdetuni.li φ x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
13 mdetuni.sc φ x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
14 mdetunilem9.id φ D 1 A = 0 ˙
15 mdetunilem9.y Y = x | y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
16 ral0 w a w = if w I N 1 ˙ 0 ˙
17 simpr φ a B a B
18 f1oi I N : N 1-1 onto N
19 f1of I N : N 1-1 onto N I N : N N
20 18 19 mp1i φ I N : N N
21 8 8 elmapd φ I N N N I N : N N
22 20 21 mpbird φ I N N N
23 22 adantr φ a B I N N N
24 simplrl φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ y B
25 1 3 2 matbas2i y B y K N × N
26 elmapi y K N × N y : N × N K
27 25 26 syl y B y : N × N K
28 27 feqmptd y B y = w N × N y w
29 28 fveq2d y B D y = D w N × N y w
30 24 29 syl φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = D w N × N y w
31 eqid N × N = N × N
32 mpteq12 N × N = N × N w N × N y w = if w z 1 ˙ 0 ˙ w N × N y w = w N × N if w z 1 ˙ 0 ˙
33 32 fveq2d N × N = N × N w N × N y w = if w z 1 ˙ 0 ˙ D w N × N y w = D w N × N if w z 1 ˙ 0 ˙
34 31 33 mpan w N × N y w = if w z 1 ˙ 0 ˙ D w N × N y w = D w N × N if w z 1 ˙ 0 ˙
35 34 adantl φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D w N × N y w = D w N × N if w z 1 ˙ 0 ˙
36 eleq1 a = z a N N z N N
37 36 anbi2d a = z φ a N N φ z N N
38 elequ2 a = z w a w z
39 38 ifbid a = z if w a 1 ˙ 0 ˙ = if w z 1 ˙ 0 ˙
40 39 mpteq2dv a = z w N × N if w a 1 ˙ 0 ˙ = w N × N if w z 1 ˙ 0 ˙
41 40 fveq2d a = z D w N × N if w a 1 ˙ 0 ˙ = D w N × N if w z 1 ˙ 0 ˙
42 41 eqeq1d a = z D w N × N if w a 1 ˙ 0 ˙ = 0 ˙ D w N × N if w z 1 ˙ 0 ˙ = 0 ˙
43 37 42 imbi12d a = z φ a N N D w N × N if w a 1 ˙ 0 ˙ = 0 ˙ φ z N N D w N × N if w z 1 ˙ 0 ˙ = 0 ˙
44 eleq1 w = b c w a b c a
45 44 ifbid w = b c if w a 1 ˙ 0 ˙ = if b c a 1 ˙ 0 ˙
46 45 mpompt w N × N if w a 1 ˙ 0 ˙ = b N , c N if b c a 1 ˙ 0 ˙
47 elmapi a N N a : N N
48 47 adantl φ a N N a : N N
49 48 ffnd φ a N N a Fn N
50 49 3ad2ant1 φ a N N b N c N a Fn N
51 simp2 φ a N N b N c N b N
52 fnopfvb a Fn N b N a b = c b c a
53 50 51 52 syl2anc φ a N N b N c N a b = c b c a
54 53 bicomd φ a N N b N c N b c a a b = c
55 54 ifbid φ a N N b N c N if b c a 1 ˙ 0 ˙ = if a b = c 1 ˙ 0 ˙
56 55 mpoeq3dva φ a N N b N , c N if b c a 1 ˙ 0 ˙ = b N , c N if a b = c 1 ˙ 0 ˙
57 46 56 eqtrid φ a N N w N × N if w a 1 ˙ 0 ˙ = b N , c N if a b = c 1 ˙ 0 ˙
58 57 fveq2d φ a N N D w N × N if w a 1 ˙ 0 ˙ = D b N , c N if a b = c 1 ˙ 0 ˙
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mdetunilem8 φ a : N N D b N , c N if a b = c 1 ˙ 0 ˙ = 0 ˙
60 47 59 sylan2 φ a N N D b N , c N if a b = c 1 ˙ 0 ˙ = 0 ˙
61 58 60 eqtrd φ a N N D w N × N if w a 1 ˙ 0 ˙ = 0 ˙
62 43 61 chvarvv φ z N N D w N × N if w z 1 ˙ 0 ˙ = 0 ˙
63 62 adantrl φ y B z N N D w N × N if w z 1 ˙ 0 ˙ = 0 ˙
64 63 adantr φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D w N × N if w z 1 ˙ 0 ˙ = 0 ˙
65 30 35 64 3eqtrd φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
66 65 ex φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
67 66 ralrimivva φ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
68 xpfi N Fin N Fin N × N Fin
69 8 8 68 syl2anc φ N × N Fin
70 raleq x = N × N w x y w = if w z 1 ˙ 0 ˙ w N × N y w = if w z 1 ˙ 0 ˙
71 70 imbi1d x = N × N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
72 71 2ralbidv x = N × N y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
73 72 15 elab2g N × N Fin N × N Y y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
74 69 73 syl φ N × N Y y B z N N w N × N y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
75 67 74 mpbird φ N × N Y
76 ssid N × N N × N
77 69 3ad2ant1 φ N × N N × N ¬ Y N × N Fin
78 sseq1 a = a N × N N × N
79 78 3anbi2d a = φ a N × N ¬ Y φ N × N ¬ Y
80 eleq1 a = a Y Y
81 80 notbid a = ¬ a Y ¬ Y
82 79 81 imbi12d a = φ a N × N ¬ Y ¬ a Y φ N × N ¬ Y ¬ Y
83 sseq1 a = b a N × N b N × N
84 83 3anbi2d a = b φ a N × N ¬ Y φ b N × N ¬ Y
85 eleq1 a = b a Y b Y
86 85 notbid a = b ¬ a Y ¬ b Y
87 84 86 imbi12d a = b φ a N × N ¬ Y ¬ a Y φ b N × N ¬ Y ¬ b Y
88 sseq1 a = b c a N × N b c N × N
89 88 3anbi2d a = b c φ a N × N ¬ Y φ b c N × N ¬ Y
90 eleq1 a = b c a Y b c Y
91 90 notbid a = b c ¬ a Y ¬ b c Y
92 89 91 imbi12d a = b c φ a N × N ¬ Y ¬ a Y φ b c N × N ¬ Y ¬ b c Y
93 sseq1 a = N × N a N × N N × N N × N
94 93 3anbi2d a = N × N φ a N × N ¬ Y φ N × N N × N ¬ Y
95 eleq1 a = N × N a Y N × N Y
96 95 notbid a = N × N ¬ a Y ¬ N × N Y
97 94 96 imbi12d a = N × N φ a N × N ¬ Y ¬ a Y φ N × N N × N ¬ Y ¬ N × N Y
98 simp3 φ N × N ¬ Y ¬ Y
99 ssun1 b b c
100 sstr2 b b c b c N × N b N × N
101 99 100 ax-mp b c N × N b N × N
102 101 3anim2i φ b c N × N ¬ Y φ b N × N ¬ Y
103 102 imim1i φ b N × N ¬ Y ¬ b Y φ b c N × N ¬ Y ¬ b Y
104 simpl1 φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ φ
105 simpl2 φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ b c N × N
106 simprll φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ a B
107 1 3 2 matbas2i a B a K N × N
108 elmapi a K N × N a : N × N K
109 107 108 syl a B a : N × N K
110 109 3ad2ant3 φ b c N × N a B a : N × N K
111 110 feqmptd φ b c N × N a B a = e N × N a e
112 111 reseq1d φ b c N × N a B a 1 st c × N = e N × N a e 1 st c × N
113 9 3ad2ant1 φ b c N × N a B R Ring
114 ringgrp R Ring R Grp
115 113 114 syl φ b c N × N a B R Grp
116 115 adantr φ b c N × N a B e 1 st c × N R Grp
117 110 adantr φ b c N × N a B e 1 st c × N a : N × N K
118 simp2 φ b c N × N a B b c N × N
119 118 unssbd φ b c N × N a B c N × N
120 vex c V
121 120 snss c N × N c N × N
122 119 121 sylibr φ b c N × N a B c N × N
123 xp1st c N × N 1 st c N
124 122 123 syl φ b c N × N a B 1 st c N
125 124 snssd φ b c N × N a B 1 st c N
126 xpss1 1 st c N 1 st c × N N × N
127 125 126 syl φ b c N × N a B 1 st c × N N × N
128 127 sselda φ b c N × N a B e 1 st c × N e N × N
129 117 128 ffvelrnd φ b c N × N a B e 1 st c × N a e K
130 3 5 ringidcl R Ring 1 ˙ K
131 113 130 syl φ b c N × N a B 1 ˙ K
132 3 4 ring0cl R Ring 0 ˙ K
133 113 132 syl φ b c N × N a B 0 ˙ K
134 131 133 ifcld φ b c N × N a B if e d 1 ˙ 0 ˙ K
135 134 adantr φ b c N × N a B e 1 st c × N if e d 1 ˙ 0 ˙ K
136 eqid - R = - R
137 3 6 136 grpnpcan R Grp a e K if e d 1 ˙ 0 ˙ K a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙ = a e
138 116 129 135 137 syl3anc φ b c N × N a B e 1 st c × N a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙ = a e
139 138 eqcomd φ b c N × N a B e 1 st c × N a e = a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙
140 139 adantr φ b c N × N a B e 1 st c × N e = c a e = a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙
141 iftrue e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = a e - R if e d 1 ˙ 0 ˙
142 iftrue e = c if e = c if e d 1 ˙ 0 ˙ a e = if e d 1 ˙ 0 ˙
143 141 142 oveq12d e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e = a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙
144 143 adantl φ b c N × N a B e 1 st c × N e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e = a e - R if e d 1 ˙ 0 ˙ + ˙ if e d 1 ˙ 0 ˙
145 140 144 eqtr4d φ b c N × N a B e 1 st c × N e = c a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e
146 3 6 4 grplid R Grp a e K 0 ˙ + ˙ a e = a e
147 116 129 146 syl2anc φ b c N × N a B e 1 st c × N 0 ˙ + ˙ a e = a e
148 147 eqcomd φ b c N × N a B e 1 st c × N a e = 0 ˙ + ˙ a e
149 148 adantr φ b c N × N a B e 1 st c × N ¬ e = c a e = 0 ˙ + ˙ a e
150 iffalse ¬ e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = 0 ˙
151 iffalse ¬ e = c if e = c if e d 1 ˙ 0 ˙ a e = a e
152 150 151 oveq12d ¬ e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙ + ˙ a e
153 152 adantl φ b c N × N a B e 1 st c × N ¬ e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙ + ˙ a e
154 149 153 eqtr4d φ b c N × N a B e 1 st c × N ¬ e = c a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e
155 145 154 pm2.61dan φ b c N × N a B e 1 st c × N a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e
156 155 mpteq2dva φ b c N × N a B e 1 st c × N a e = e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e
157 snfi 1 st c Fin
158 8 3ad2ant1 φ b c N × N a B N Fin
159 xpfi 1 st c Fin N Fin 1 st c × N Fin
160 157 158 159 sylancr φ b c N × N a B 1 st c × N Fin
161 ovex a e - R if e d 1 ˙ 0 ˙ V
162 4 fvexi 0 ˙ V
163 161 162 ifex if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ V
164 163 a1i φ b c N × N a B e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ V
165 5 fvexi 1 ˙ V
166 165 162 ifex if e d 1 ˙ 0 ˙ V
167 fvex a e V
168 166 167 ifex if e = c if e d 1 ˙ 0 ˙ a e V
169 168 a1i φ b c N × N a B e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e V
170 xp1st e 1 st c × N 1 st e 1 st c
171 elsni 1 st e 1 st c 1 st e = 1 st c
172 iftrue 1 st e = 1 st c if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙
173 170 171 172 3syl e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙
174 173 mpteq2ia e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙
175 174 a1i φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙
176 eqidd φ b c N × N a B e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e = e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
177 160 164 169 175 176 offval2 φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ f e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e = e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ + ˙ if e = c if e d 1 ˙ 0 ˙ a e
178 156 177 eqtr4d φ b c N × N a B e 1 st c × N a e = e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ f e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
179 127 resmptd φ b c N × N a B e N × N a e 1 st c × N = e 1 st c × N a e
180 127 resmptd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e
181 127 resmptd φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N = e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
182 180 181 oveq12d φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N = e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ f e 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
183 178 179 182 3eqtr4d φ b c N × N a B e N × N a e 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N
184 112 183 eqtrd φ b c N × N a B a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N
185 111 reseq1d φ b c N × N a B a N 1 st c × N = e N × N a e N 1 st c × N
186 xp1st e N 1 st c × N 1 st e N 1 st c
187 eldifsni 1 st e N 1 st c 1 st e 1 st c
188 186 187 syl e N 1 st c × N 1 st e 1 st c
189 188 neneqd e N 1 st c × N ¬ 1 st e = 1 st c
190 189 adantl φ b c N × N a B e N 1 st c × N ¬ 1 st e = 1 st c
191 190 iffalsed φ b c N × N a B e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a e
192 191 mpteq2dva φ b c N × N a B e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = e N 1 st c × N a e
193 difss N 1 st c N
194 xpss1 N 1 st c N N 1 st c × N N × N
195 193 194 ax-mp N 1 st c × N N × N
196 resmpt N 1 st c × N N × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e
197 195 196 mp1i φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e
198 resmpt N 1 st c × N N × N e N × N a e N 1 st c × N = e N 1 st c × N a e
199 195 198 mp1i φ b c N × N a B e N × N a e N 1 st c × N = e N 1 st c × N a e
200 192 197 199 3eqtr4rd φ b c N × N a B e N × N a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N
201 185 200 eqtrd φ b c N × N a B a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N
202 fveq2 e = c 1 st e = 1 st c
203 190 202 nsyl φ b c N × N a B e N 1 st c × N ¬ e = c
204 203 iffalsed φ b c N × N a B e N 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e = a e
205 204 mpteq2dva φ b c N × N a B e N 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e = e N 1 st c × N a e
206 resmpt N 1 st c × N N × N e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
207 195 206 mp1i φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if e = c if e d 1 ˙ 0 ˙ a e
208 205 207 199 3eqtr4rd φ b c N × N a B e N × N a e N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N
209 185 208 eqtrd φ b c N × N a B a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N
210 134 adantr φ b c N × N a B e N × N if e d 1 ˙ 0 ˙ K
211 110 ffvelrnda φ b c N × N a B e N × N a e K
212 210 211 ifcld φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e K
213 212 fmpttd φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e : N × N K
214 3 fvexi K V
215 68 anidms N Fin N × N Fin
216 158 215 syl φ b c N × N a B N × N Fin
217 elmapg K V N × N Fin e N × N if e = c if e d 1 ˙ 0 ˙ a e K N × N e N × N if e = c if e d 1 ˙ 0 ˙ a e : N × N K
218 214 216 217 sylancr φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e K N × N e N × N if e = c if e d 1 ˙ 0 ˙ a e : N × N K
219 213 218 mpbird φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e K N × N
220 1 3 matbas2 N Fin R Ring K N × N = Base A
221 158 113 220 syl2anc φ b c N × N a B K N × N = Base A
222 221 2 eqtr4di φ b c N × N a B K N × N = B
223 219 222 eleqtrd φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e B
224 simp3 φ b c N × N a B a B
225 115 adantr φ b c N × N a B e N × N R Grp
226 3 136 grpsubcl R Grp a e K if e d 1 ˙ 0 ˙ K a e - R if e d 1 ˙ 0 ˙ K
227 225 211 210 226 syl3anc φ b c N × N a B e N × N a e - R if e d 1 ˙ 0 ˙ K
228 133 adantr φ b c N × N a B e N × N 0 ˙ K
229 227 228 ifcld φ b c N × N a B e N × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ K
230 229 211 ifcld φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e K
231 230 fmpttd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e : N × N K
232 elmapg K V N × N Fin e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e K N × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e : N × N K
233 214 216 232 sylancr φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e K N × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e : N × N K
234 231 233 mpbird φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e K N × N
235 234 222 eleqtrd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e B
236 12 3ad2ant1 φ b c N × N a B x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z
237 reseq1 x = a x w × N = a w × N
238 237 eqeq1d x = a x w × N = y w × N + ˙ f z w × N a w × N = y w × N + ˙ f z w × N
239 reseq1 x = a x N w × N = a N w × N
240 239 eqeq1d x = a x N w × N = y N w × N a N w × N = y N w × N
241 239 eqeq1d x = a x N w × N = z N w × N a N w × N = z N w × N
242 238 240 241 3anbi123d x = a x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N
243 fveqeq2 x = a D x = D y + ˙ D z D a = D y + ˙ D z
244 242 243 imbi12d x = a x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N D a = D y + ˙ D z
245 244 2ralbidv x = a z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z z B w N a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N D a = D y + ˙ D z
246 reseq1 y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e y w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N
247 246 oveq1d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e y w × N + ˙ f z w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N
248 247 eqeq2d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e a w × N = y w × N + ˙ f z w × N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N
249 reseq1 y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e y N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N
250 249 eqeq2d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e a N w × N = y N w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N
251 248 250 3anbi12d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N
252 fveq2 y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e D y = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e
253 252 oveq1d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e D y + ˙ D z = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
254 253 eqeq2d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e D a = D y + ˙ D z D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
255 251 254 imbi12d y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N D a = D y + ˙ D z a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
256 255 2ralbidv y = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e z B w N a w × N = y w × N + ˙ f z w × N a N w × N = y N w × N a N w × N = z N w × N D a = D y + ˙ D z z B w N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
257 245 256 rspc2va a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e B x B y B z B w N x w × N = y w × N + ˙ f z w × N x N w × N = y N w × N x N w × N = z N w × N D x = D y + ˙ D z z B w N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
258 224 235 236 257 syl21anc φ b c N × N a B z B w N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z
259 reseq1 z = e N × N if e = c if e d 1 ˙ 0 ˙ a e z w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N
260 259 oveq2d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N
261 260 eqeq2d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N
262 reseq1 z = e N × N if e = c if e d 1 ˙ 0 ˙ a e z N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N
263 262 eqeq2d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e a N w × N = z N w × N a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N
264 261 263 3anbi13d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N
265 fveq2 z = e N × N if e = c if e d 1 ˙ 0 ˙ a e D z = D e N × N if e = c if e d 1 ˙ 0 ˙ a e
266 265 oveq2d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
267 266 eqeq2d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
268 264 267 imbi12d z = e N × N if e = c if e d 1 ˙ 0 ˙ a e a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
269 sneq w = 1 st c w = 1 st c
270 269 xpeq1d w = 1 st c w × N = 1 st c × N
271 270 reseq2d w = 1 st c a w × N = a 1 st c × N
272 270 reseq2d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N
273 270 reseq2d w = 1 st c e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N
274 272 273 oveq12d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N
275 271 274 eqeq12d w = 1 st c a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N
276 269 difeq2d w = 1 st c N w = N 1 st c
277 276 xpeq1d w = 1 st c N w × N = N 1 st c × N
278 277 reseq2d w = 1 st c a N w × N = a N 1 st c × N
279 277 reseq2d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N
280 278 279 eqeq12d w = 1 st c a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N
281 277 reseq2d w = 1 st c e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N
282 278 281 eqeq12d w = 1 st c a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N
283 275 280 282 3anbi123d w = 1 st c a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N
284 283 imbi1d w = 1 st c a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
285 268 284 rspc2va e N × N if e = c if e d 1 ˙ 0 ˙ a e B 1 st c N z B w N a w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N + ˙ f z w × N a N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N a N w × N = z N w × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D z a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
286 223 124 258 285 syl21anc φ b c N × N a B a 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N + ˙ f e N × N if e = c if e d 1 ˙ 0 ˙ a e 1 st c × N a N 1 st c × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N a N 1 st c × N = e N × N if e = c if e d 1 ˙ 0 ˙ a e N 1 st c × N D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
287 184 201 209 286 mp3and φ b c N × N a B D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
288 104 105 106 287 syl3anc φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ D a = D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
289 fveq2 e = c a e = a c
290 elequ1 e = c e d c d
291 290 ifbid e = c if e d 1 ˙ 0 ˙ = if c d 1 ˙ 0 ˙
292 289 291 oveq12d e = c a e - R if e d 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙
293 292 adantl φ b c N × N a B e 1 st c × N e = c a e - R if e d 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙
294 110 122 ffvelrnd φ b c N × N a B a c K
295 131 133 ifcld φ b c N × N a B if c d 1 ˙ 0 ˙ K
296 3 136 grpsubcl R Grp a c K if c d 1 ˙ 0 ˙ K a c - R if c d 1 ˙ 0 ˙ K
297 115 294 295 296 syl3anc φ b c N × N a B a c - R if c d 1 ˙ 0 ˙ K
298 3 7 5 ringridm R Ring a c - R if c d 1 ˙ 0 ˙ K a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙ = a c - R if c d 1 ˙ 0 ˙
299 113 297 298 syl2anc φ b c N × N a B a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙ = a c - R if c d 1 ˙ 0 ˙
300 299 ad2antrr φ b c N × N a B e 1 st c × N e = c a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙ = a c - R if c d 1 ˙ 0 ˙
301 293 300 eqtr4d φ b c N × N a B e 1 st c × N e = c a e - R if e d 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙
302 141 adantl φ b c N × N a B e 1 st c × N e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = a e - R if e d 1 ˙ 0 ˙
303 iftrue e = c if e = c 1 ˙ 0 ˙ = 1 ˙
304 303 oveq2d e = c a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙
305 304 adantl φ b c N × N a B e 1 st c × N e = c a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 1 ˙
306 301 302 305 3eqtr4d φ b c N × N a B e 1 st c × N e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙
307 3 7 4 ringrz R Ring a c - R if c d 1 ˙ 0 ˙ K a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ = 0 ˙
308 113 297 307 syl2anc φ b c N × N a B a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ = 0 ˙
309 308 eqcomd φ b c N × N a B 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙
310 309 ad2antrr φ b c N × N a B e 1 st c × N ¬ e = c 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙
311 150 adantl φ b c N × N a B e 1 st c × N ¬ e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = 0 ˙
312 iffalse ¬ e = c if e = c 1 ˙ 0 ˙ = 0 ˙
313 312 oveq2d ¬ e = c a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙
314 313 adantl φ b c N × N a B e 1 st c × N ¬ e = c a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙
315 310 311 314 3eqtr4d φ b c N × N a B e 1 st c × N ¬ e = c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙
316 306 315 pm2.61dan φ b c N × N a B e 1 st c × N if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ = a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙
317 170 adantl φ b c N × N a B e 1 st c × N 1 st e 1 st c
318 317 171 syl φ b c N × N a B e 1 st c × N 1 st e = 1 st c
319 318 iftrued φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙
320 318 iftrued φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = if e = c 1 ˙ 0 ˙
321 320 oveq2d φ b c N × N a B e 1 st c × N a c - R if c d 1 ˙ 0 ˙ · ˙ if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ if e = c 1 ˙ 0 ˙
322 316 319 321 3eqtr4d φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
323 322 mpteq2dva φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = e 1 st c × N a c - R if c d 1 ˙ 0 ˙ · ˙ if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
324 ovexd φ b c N × N a B e 1 st c × N a c - R if c d 1 ˙ 0 ˙ V
325 165 162 ifex if e = c 1 ˙ 0 ˙ V
326 325 167 ifex if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e V
327 326 a1i φ b c N × N a B e 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e V
328 fconstmpt 1 st c × N × a c - R if c d 1 ˙ 0 ˙ = e 1 st c × N a c - R if c d 1 ˙ 0 ˙
329 328 a1i φ b c N × N a B 1 st c × N × a c - R if c d 1 ˙ 0 ˙ = e 1 st c × N a c - R if c d 1 ˙ 0 ˙
330 127 resmptd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N = e 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
331 160 324 327 329 330 offval2 φ b c N × N a B 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N = e 1 st c × N a c - R if c d 1 ˙ 0 ˙ · ˙ if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
332 323 180 331 3eqtr4d φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N
333 iffalse ¬ 1 st e = 1 st c if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a e
334 iffalse ¬ 1 st e = 1 st c if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = a e
335 333 334 eqtr4d ¬ 1 st e = 1 st c if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
336 190 335 syl φ b c N × N a B e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
337 336 mpteq2dva φ b c N × N a B e N 1 st c × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = e N 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
338 resmpt N 1 st c × N N × N e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
339 195 338 mp1i φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N = e N 1 st c × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
340 337 197 339 3eqtr4d φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N
341 131 133 ifcld φ b c N × N a B if e = c 1 ˙ 0 ˙ K
342 341 adantr φ b c N × N a B e N × N if e = c 1 ˙ 0 ˙ K
343 342 211 ifcld φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e K
344 343 fmpttd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e : N × N K
345 elmapg K V N × N Fin e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e K N × N e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e : N × N K
346 214 216 345 sylancr φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e K N × N e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e : N × N K
347 344 346 mpbird φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e K N × N
348 347 222 eleqtrd φ b c N × N a B e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e B
349 13 3ad2ant1 φ b c N × N a B x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z
350 reseq1 x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N
351 350 eqeq1d x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N
352 reseq1 x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x N w × N = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N
353 352 eqeq1d x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x N w × N = z N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N
354 351 353 anbi12d x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N
355 fveqeq2 x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e D x = y · ˙ D z D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z
356 354 355 imbi12d x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z
357 356 2ralbidv x = e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z
358 sneq y = a c - R if c d 1 ˙ 0 ˙ y = a c - R if c d 1 ˙ 0 ˙
359 358 xpeq2d y = a c - R if c d 1 ˙ 0 ˙ w × N × y = w × N × a c - R if c d 1 ˙ 0 ˙
360 359 oveq1d y = a c - R if c d 1 ˙ 0 ˙ w × N × y · ˙ f z w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N
361 360 eqeq2d y = a c - R if c d 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N
362 361 anbi1d y = a c - R if c d 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N
363 oveq1 y = a c - R if c d 1 ˙ 0 ˙ y · ˙ D z = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
364 363 eqeq2d y = a c - R if c d 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
365 362 364 imbi12d y = a c - R if c d 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
366 365 2ralbidv y = a c - R if c d 1 ˙ 0 ˙ z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × y · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = y · ˙ D z z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
367 357 366 rspc2va e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e B a c - R if c d 1 ˙ 0 ˙ K x B y K z B w N x w × N = w × N × y · ˙ f z w × N x N w × N = z N w × N D x = y · ˙ D z z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
368 235 297 349 367 syl21anc φ b c N × N a B z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z
369 reseq1 z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e z w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N
370 369 oveq2d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N
371 370 eqeq2d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N
372 reseq1 z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e z N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N
373 372 eqeq2d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N
374 371 373 anbi12d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N
375 fveq2 z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e D z = D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
376 375 oveq2d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e a c - R if c d 1 ˙ 0 ˙ · ˙ D z = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
377 376 eqeq2d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
378 374 377 imbi12d z = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
379 270 xpeq1d w = 1 st c w × N × a c - R if c d 1 ˙ 0 ˙ = 1 st c × N × a c - R if c d 1 ˙ 0 ˙
380 270 reseq2d w = 1 st c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N
381 379 380 oveq12d w = 1 st c w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N
382 272 381 eqeq12d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N
383 277 reseq2d w = 1 st c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N
384 279 383 eqeq12d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N
385 382 384 anbi12d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N
386 385 imbi1d w = 1 st c e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
387 378 386 rspc2va e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e B 1 st c N z B w N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e w × N = w × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f z w × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N w × N = z N w × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D z e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
388 348 124 368 387 syl21anc φ b c N × N a B e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e 1 st c × N = 1 st c × N × a c - R if c d 1 ˙ 0 ˙ · ˙ f e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e 1 st c × N e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e N 1 st c × N = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e N 1 st c × N D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
389 332 340 388 mp2and φ b c N × N a B D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
390 389 oveq1d φ b c N × N a B D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
391 104 105 106 390 syl3anc φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c a e - R if e d 1 ˙ 0 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e
392 simpl3 φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ b c Y
393 simprlr φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ d N N
394 simprr φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ w b a w = if w d 1 ˙ 0 ˙
395 ralss b b c w b a w = if w d 1 ˙ 0 ˙ w b c w b a w = if w d 1 ˙ 0 ˙
396 99 395 ax-mp w b a w = if w d 1 ˙ 0 ˙ w b c w b a w = if w d 1 ˙ 0 ˙
397 iftrue 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w = c 1 ˙ 0 ˙
398 397 adantl φ b c N × N a B d N N w b c 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w = c 1 ˙ 0 ˙
399 ibar 1 st w = 1 st c 2 nd w = 2 nd c 1 st w = 1 st c 2 nd w = 2 nd c
400 399 adantl φ b c N × N a B d N N w b c 1 st w = 1 st c 2 nd w = 2 nd c 1 st w = 1 st c 2 nd w = 2 nd c
401 relxp Rel N × N
402 simpl2 φ b c N × N a B d N N b c N × N
403 402 sselda φ b c N × N a B d N N w b c w N × N
404 403 adantr φ b c N × N a B d N N w b c 1 st w = 1 st c w N × N
405 1st2nd Rel N × N w N × N w = 1 st w 2 nd w
406 401 404 405 sylancr φ b c N × N a B d N N w b c 1 st w = 1 st c w = 1 st w 2 nd w
407 406 eleq1d φ b c N × N a B d N N w b c 1 st w = 1 st c w d sSet 1 st c 2 nd c 1 st w 2 nd w d sSet 1 st c 2 nd c
408 simpr φ b c N × N a B d N N d N N
409 elmapi d N N d : N N
410 409 adantl φ b c N × N a B d N N d : N N
411 124 adantr φ b c N × N a B d N N 1 st c N
412 xp2nd c N × N 2 nd c N
413 122 412 syl φ b c N × N a B 2 nd c N
414 413 adantr φ b c N × N a B d N N 2 nd c N
415 fsets d N N d : N N 1 st c N 2 nd c N d sSet 1 st c 2 nd c : N N
416 408 410 411 414 415 syl211anc φ b c N × N a B d N N d sSet 1 st c 2 nd c : N N
417 416 ffnd φ b c N × N a B d N N d sSet 1 st c 2 nd c Fn N
418 417 ad2antrr φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c Fn N
419 xp1st w N × N 1 st w N
420 403 419 syl φ b c N × N a B d N N w b c 1 st w N
421 420 adantr φ b c N × N a B d N N w b c 1 st w = 1 st c 1 st w N
422 fnopfvb d sSet 1 st c 2 nd c Fn N 1 st w N d sSet 1 st c 2 nd c 1 st w = 2 nd w 1 st w 2 nd w d sSet 1 st c 2 nd c
423 418 421 422 syl2anc φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = 2 nd w 1 st w 2 nd w d sSet 1 st c 2 nd c
424 fveq2 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = d sSet 1 st c 2 nd c 1 st c
425 424 adantl φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = d sSet 1 st c 2 nd c 1 st c
426 vex d V
427 fvex 1 st c V
428 fvex 2 nd c V
429 fvsetsid d V 1 st c V 2 nd c V d sSet 1 st c 2 nd c 1 st c = 2 nd c
430 426 427 428 429 mp3an d sSet 1 st c 2 nd c 1 st c = 2 nd c
431 425 430 eqtrdi φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = 2 nd c
432 431 eqeq1d φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = 2 nd w 2 nd c = 2 nd w
433 eqcom 2 nd c = 2 nd w 2 nd w = 2 nd c
434 432 433 bitrdi φ b c N × N a B d N N w b c 1 st w = 1 st c d sSet 1 st c 2 nd c 1 st w = 2 nd w 2 nd w = 2 nd c
435 407 423 434 3bitr2rd φ b c N × N a B d N N w b c 1 st w = 1 st c 2 nd w = 2 nd c w d sSet 1 st c 2 nd c
436 122 ad3antrrr φ b c N × N a B d N N w b c 1 st w = 1 st c c N × N
437 xpopth w N × N c N × N 1 st w = 1 st c 2 nd w = 2 nd c w = c
438 404 436 437 syl2anc φ b c N × N a B d N N w b c 1 st w = 1 st c 1 st w = 1 st c 2 nd w = 2 nd c w = c
439 400 435 438 3bitr3rd φ b c N × N a B d N N w b c 1 st w = 1 st c w = c w d sSet 1 st c 2 nd c
440 439 ifbid φ b c N × N a B d N N w b c 1 st w = 1 st c if w = c 1 ˙ 0 ˙ = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
441 398 440 eqtrd φ b c N × N a B d N N w b c 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
442 441 a1d φ b c N × N a B d N N w b c 1 st w = 1 st c w b a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
443 elsni w c w = c
444 443 fveq2d w c 1 st w = 1 st c
445 444 con3i ¬ 1 st w = 1 st c ¬ w c
446 445 adantl w b c ¬ 1 st w = 1 st c ¬ w c
447 elun w b c w b w c
448 447 biimpi w b c w b w c
449 448 adantr w b c ¬ 1 st w = 1 st c w b w c
450 orel2 ¬ w c w b w c w b
451 446 449 450 sylc w b c ¬ 1 st w = 1 st c w b
452 451 adantll φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c w b
453 iffalse ¬ 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙ = if w d 1 ˙ 0 ˙
454 453 adantl φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙ = if w d 1 ˙ 0 ˙
455 setsres d V d sSet 1 st c 2 nd c V 1 st c = d V 1 st c
456 455 eleq2d d V 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c 1 st w 2 nd w d V 1 st c
457 426 456 mp1i φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c 1 st w 2 nd w d V 1 st c
458 fvex 1 st w V
459 458 a1i ¬ 1 st w = 1 st c 1 st w V
460 neqne ¬ 1 st w = 1 st c 1 st w 1 st c
461 eldifsn 1 st w V 1 st c 1 st w V 1 st w 1 st c
462 459 460 461 sylanbrc ¬ 1 st w = 1 st c 1 st w V 1 st c
463 fvex 2 nd w V
464 463 opres 1 st w V 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c
465 464 adantl w N × N 1 st w V 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c
466 1st2nd2 w N × N w = 1 st w 2 nd w
467 466 eleq1d w N × N w d sSet 1 st c 2 nd c 1 st w 2 nd w d sSet 1 st c 2 nd c
468 467 adantr w N × N 1 st w V 1 st c w d sSet 1 st c 2 nd c 1 st w 2 nd w d sSet 1 st c 2 nd c
469 465 468 bitr4d w N × N 1 st w V 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c w d sSet 1 st c 2 nd c
470 403 462 469 syl2an φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c 1 st w 2 nd w d sSet 1 st c 2 nd c V 1 st c w d sSet 1 st c 2 nd c
471 463 opres 1 st w V 1 st c 1 st w 2 nd w d V 1 st c 1 st w 2 nd w d
472 471 adantl w N × N 1 st w V 1 st c 1 st w 2 nd w d V 1 st c 1 st w 2 nd w d
473 466 eleq1d w N × N w d 1 st w 2 nd w d
474 473 adantr w N × N 1 st w V 1 st c w d 1 st w 2 nd w d
475 472 474 bitr4d w N × N 1 st w V 1 st c 1 st w 2 nd w d V 1 st c w d
476 403 462 475 syl2an φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c 1 st w 2 nd w d V 1 st c w d
477 457 470 476 3bitr3rd φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c w d w d sSet 1 st c 2 nd c
478 477 ifbid φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c if w d 1 ˙ 0 ˙ = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
479 454 478 eqtrd φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙ = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
480 ifeq2 a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙
481 480 eqeq1d a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙ = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
482 479 481 syl5ibrcom φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
483 452 482 embantd φ b c N × N a B d N N w b c ¬ 1 st w = 1 st c w b a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
484 442 483 pm2.61dan φ b c N × N a B d N N w b c w b a w = if w d 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
485 fveqeq2 e = w 1 st e = 1 st c 1 st w = 1 st c
486 equequ1 e = w e = c w = c
487 486 ifbid e = w if e = c 1 ˙ 0 ˙ = if w = c 1 ˙ 0 ˙
488 fveq2 e = w a e = a w
489 485 487 488 ifbieq12d e = w if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w
490 eqid e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e
491 165 162 ifex if w = c 1 ˙ 0 ˙ V
492 fvex a w V
493 491 492 ifex if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w V
494 489 490 493 fvmpt w N × N e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w
495 494 eqeq1d w N × N e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
496 403 495 syl φ b c N × N a B d N N w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ if 1 st w = 1 st c if w = c 1 ˙ 0 ˙ a w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
497 484 496 sylibrd φ b c N × N a B d N N w b c w b a w = if w d 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
498 497 ralimdva φ b c N × N a B d N N w b c w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
499 396 498 syl5bi φ b c N × N a B d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
500 499 impr φ b c N × N a B d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
501 500 3adantr1 φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
502 348 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e B
503 simpr2 φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ d N N
504 503 409 syl φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ d : N N
505 124 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ 1 st c N
506 413 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ 2 nd c N
507 503 504 505 506 415 syl211anc φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ d sSet 1 st c 2 nd c : N N
508 158 158 elmapd φ b c N × N a B d sSet 1 st c 2 nd c N N d sSet 1 st c 2 nd c : N N
509 508 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ d sSet 1 st c 2 nd c N N d sSet 1 st c 2 nd c : N N
510 507 509 mpbird φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ d sSet 1 st c 2 nd c N N
511 simpr1 φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ b c Y
512 raleq x = b c w x y w = if w z 1 ˙ 0 ˙ w b c y w = if w z 1 ˙ 0 ˙
513 512 imbi1d x = b c w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
514 513 2ralbidv x = b c y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
515 514 15 elab2g b c Y b c Y y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
516 515 ibi b c Y y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
517 511 516 syl φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
518 fveq1 y = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e y w = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w
519 518 eqeq1d y = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e y w = if w z 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙
520 519 ralbidv y = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w b c y w = if w z 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙
521 fveqeq2 y = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e D y = 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
522 520 521 imbi12d y = e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
523 eleq2 z = d sSet 1 st c 2 nd c w z w d sSet 1 st c 2 nd c
524 523 ifbid z = d sSet 1 st c 2 nd c if w z 1 ˙ 0 ˙ = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
525 524 eqeq2d z = d sSet 1 st c 2 nd c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
526 525 ralbidv z = d sSet 1 st c 2 nd c w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙
527 526 imbi1d z = d sSet 1 st c 2 nd c w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
528 522 527 rspc2va e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e B d sSet 1 st c 2 nd c N N y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
529 502 510 517 528 syl21anc φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e w = if w d sSet 1 st c 2 nd c 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
530 501 529 mpd φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = 0 ˙
531 530 oveq2d φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙
532 118 unssad φ b c N × N a B b N × N
533 532 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ b N × N
534 simpr3 φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b a w = if w d 1 ˙ 0 ˙
535 ssel2 b N × N w b w N × N
536 535 adantr b N × N w b a w = if w d 1 ˙ 0 ˙ w N × N
537 elequ1 e = w e d w d
538 537 ifbid e = w if e d 1 ˙ 0 ˙ = if w d 1 ˙ 0 ˙
539 486 538 488 ifbieq12d e = w if e = c if e d 1 ˙ 0 ˙ a e = if w = c if w d 1 ˙ 0 ˙ a w
540 eqid e N × N if e = c if e d 1 ˙ 0 ˙ a e = e N × N if e = c if e d 1 ˙ 0 ˙ a e
541 165 162 ifex if w d 1 ˙ 0 ˙ V
542 541 492 ifex if w = c if w d 1 ˙ 0 ˙ a w V
543 539 540 542 fvmpt w N × N e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w = c if w d 1 ˙ 0 ˙ a w
544 536 543 syl b N × N w b a w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w = c if w d 1 ˙ 0 ˙ a w
545 ifeq2 a w = if w d 1 ˙ 0 ˙ if w = c if w d 1 ˙ 0 ˙ a w = if w = c if w d 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙
546 545 adantl b N × N w b a w = if w d 1 ˙ 0 ˙ if w = c if w d 1 ˙ 0 ˙ a w = if w = c if w d 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙
547 ifid if w = c if w d 1 ˙ 0 ˙ if w d 1 ˙ 0 ˙ = if w d 1 ˙ 0 ˙
548 546 547 eqtrdi b N × N w b a w = if w d 1 ˙ 0 ˙ if w = c if w d 1 ˙ 0 ˙ a w = if w d 1 ˙ 0 ˙
549 544 548 eqtrd b N × N w b a w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
550 549 ex b N × N w b a w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
551 550 ralimdva b N × N w b a w = if w d 1 ˙ 0 ˙ w b e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
552 533 534 551 sylc φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
553 142 291 eqtrd e = c if e = c if e d 1 ˙ 0 ˙ a e = if c d 1 ˙ 0 ˙
554 165 162 ifex if c d 1 ˙ 0 ˙ V
555 553 540 554 fvmpt c N × N e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
556 122 555 syl φ b c N × N a B e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
557 556 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
558 fveq2 w = c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = e N × N if e = c if e d 1 ˙ 0 ˙ a e c
559 elequ1 w = c w d c d
560 559 ifbid w = c if w d 1 ˙ 0 ˙ = if c d 1 ˙ 0 ˙
561 558 560 eqeq12d w = c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
562 561 ralunsn c V w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ w b e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
563 562 elv w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ w b e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e c = if c d 1 ˙ 0 ˙
564 552 557 563 sylanbrc φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
565 223 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e B
566 fveq1 y = e N × N if e = c if e d 1 ˙ 0 ˙ a e y w = e N × N if e = c if e d 1 ˙ 0 ˙ a e w
567 566 eqeq1d y = e N × N if e = c if e d 1 ˙ 0 ˙ a e y w = if w z 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙
568 567 ralbidv y = e N × N if e = c if e d 1 ˙ 0 ˙ a e w b c y w = if w z 1 ˙ 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙
569 fveqeq2 y = e N × N if e = c if e d 1 ˙ 0 ˙ a e D y = 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
570 568 569 imbi12d y = e N × N if e = c if e d 1 ˙ 0 ˙ a e w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
571 elequ2 z = d w z w d
572 571 ifbid z = d if w z 1 ˙ 0 ˙ = if w d 1 ˙ 0 ˙
573 572 eqeq2d z = d e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
574 573 ralbidv z = d w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙
575 574 imbi1d z = d w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w z 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
576 570 575 rspc2va e N × N if e = c if e d 1 ˙ 0 ˙ a e B d N N y B z N N w b c y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
577 565 503 517 576 syl21anc φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ w b c e N × N if e = c if e d 1 ˙ 0 ˙ a e w = if w d 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
578 564 577 mpd φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
579 531 578 oveq12d φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ + ˙ 0 ˙
580 308 oveq1d φ b c N × N a B a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ + ˙ 0 ˙ = 0 ˙ + ˙ 0 ˙
581 3 6 4 grplid R Grp 0 ˙ K 0 ˙ + ˙ 0 ˙ = 0 ˙
582 115 133 581 syl2anc φ b c N × N a B 0 ˙ + ˙ 0 ˙ = 0 ˙
583 580 582 eqtrd φ b c N × N a B a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ + ˙ 0 ˙ = 0 ˙
584 583 adantr φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ a c - R if c d 1 ˙ 0 ˙ · ˙ 0 ˙ + ˙ 0 ˙ = 0 ˙
585 579 584 eqtrd φ b c N × N a B b c Y d N N w b a w = if w d 1 ˙ 0 ˙ a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
586 104 105 106 392 393 394 585 syl33anc φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ a c - R if c d 1 ˙ 0 ˙ · ˙ D e N × N if 1 st e = 1 st c if e = c 1 ˙ 0 ˙ a e + ˙ D e N × N if e = c if e d 1 ˙ 0 ˙ a e = 0 ˙
587 288 391 586 3eqtrd φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ D a = 0 ˙
588 587 expr φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ D a = 0 ˙
589 588 ralrimivva φ b c N × N b c Y a B d N N w b a w = if w d 1 ˙ 0 ˙ D a = 0 ˙
590 fveq1 a = y a w = y w
591 590 eqeq1d a = y a w = if w d 1 ˙ 0 ˙ y w = if w d 1 ˙ 0 ˙
592 591 ralbidv a = y w b a w = if w d 1 ˙ 0 ˙ w b y w = if w d 1 ˙ 0 ˙
593 fveqeq2 a = y D a = 0 ˙ D y = 0 ˙
594 592 593 imbi12d a = y w b a w = if w d 1 ˙ 0 ˙ D a = 0 ˙ w b y w = if w d 1 ˙ 0 ˙ D y = 0 ˙
595 elequ2 d = z w d w z
596 595 ifbid d = z if w d 1 ˙ 0 ˙ = if w z 1 ˙ 0 ˙
597 596 eqeq2d d = z y w = if w d 1 ˙ 0 ˙ y w = if w z 1 ˙ 0 ˙
598 597 ralbidv d = z w b y w = if w d 1 ˙ 0 ˙ w b y w = if w z 1 ˙ 0 ˙
599 598 imbi1d d = z w b y w = if w d 1 ˙ 0 ˙ D y = 0 ˙ w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
600 594 599 cbvral2vw a B d N N w b a w = if w d 1 ˙ 0 ˙ D a = 0 ˙ y B z N N w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
601 589 600 sylib φ b c N × N b c Y y B z N N w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
602 vex b V
603 raleq x = b w x y w = if w z 1 ˙ 0 ˙ w b y w = if w z 1 ˙ 0 ˙
604 603 imbi1d x = b w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
605 604 2ralbidv x = b y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ y B z N N w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
606 602 605 15 elab2 b Y y B z N N w b y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
607 601 606 sylibr φ b c N × N b c Y b Y
608 607 3expia φ b c N × N b c Y b Y
609 608 con3d φ b c N × N ¬ b Y ¬ b c Y
610 609 3adant3 φ b c N × N ¬ Y ¬ b Y ¬ b c Y
611 610 a1i b Fin ¬ c b φ b c N × N ¬ Y ¬ b Y ¬ b c Y
612 611 a2d b Fin ¬ c b φ b c N × N ¬ Y ¬ b Y φ b c N × N ¬ Y ¬ b c Y
613 103 612 syl5 b Fin ¬ c b φ b N × N ¬ Y ¬ b Y φ b c N × N ¬ Y ¬ b c Y
614 82 87 92 97 98 613 findcard2s N × N Fin φ N × N N × N ¬ Y ¬ N × N Y
615 77 614 mpcom φ N × N N × N ¬ Y ¬ N × N Y
616 615 3exp φ N × N N × N ¬ Y ¬ N × N Y
617 76 616 mpi φ ¬ Y ¬ N × N Y
618 75 617 mt4d φ Y
619 618 adantr φ a B Y
620 0ex V
621 raleq x = w x y w = if w z 1 ˙ 0 ˙ w y w = if w z 1 ˙ 0 ˙
622 621 imbi1d x = w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
623 622 2ralbidv x = y B z N N w x y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ y B z N N w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
624 620 623 15 elab2 Y y B z N N w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
625 619 624 sylib φ a B y B z N N w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙
626 fveq1 y = a y w = a w
627 626 eqeq1d y = a y w = if w z 1 ˙ 0 ˙ a w = if w z 1 ˙ 0 ˙
628 627 ralbidv y = a w y w = if w z 1 ˙ 0 ˙ w a w = if w z 1 ˙ 0 ˙
629 fveqeq2 y = a D y = 0 ˙ D a = 0 ˙
630 628 629 imbi12d y = a w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w a w = if w z 1 ˙ 0 ˙ D a = 0 ˙
631 eleq2 z = I N w z w I N
632 631 ifbid z = I N if w z 1 ˙ 0 ˙ = if w I N 1 ˙ 0 ˙
633 632 eqeq2d z = I N a w = if w z 1 ˙ 0 ˙ a w = if w I N 1 ˙ 0 ˙
634 633 ralbidv z = I N w a w = if w z 1 ˙ 0 ˙ w a w = if w I N 1 ˙ 0 ˙
635 634 imbi1d z = I N w a w = if w z 1 ˙ 0 ˙ D a = 0 ˙ w a w = if w I N 1 ˙ 0 ˙ D a = 0 ˙
636 630 635 rspc2va a B I N N N y B z N N w y w = if w z 1 ˙ 0 ˙ D y = 0 ˙ w a w = if w I N 1 ˙ 0 ˙ D a = 0 ˙
637 17 23 625 636 syl21anc φ a B w a w = if w I N 1 ˙ 0 ˙ D a = 0 ˙
638 16 637 mpi φ a B D a = 0 ˙
639 638 mpteq2dva φ a B D a = a B 0 ˙
640 10 feqmptd φ D = a B D a
641 fconstmpt B × 0 ˙ = a B 0 ˙
642 641 a1i φ B × 0 ˙ = a B 0 ˙
643 639 640 642 3eqtr4d φ D = B × 0 ˙