Metamath Proof Explorer


Theorem ovoliunlem1

Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses ovoliun.t T=seq1+G
ovoliun.g G=nvol*A
ovoliun.a φnA
ovoliun.v φnvol*A
ovoliun.r φsupranT*<
ovoliun.b φB+
ovoliun.s S=seq1+absFn
ovoliun.u U=seq1+absH
ovoliun.h H=kF1stJk2ndJk
ovoliun.j φJ:1-1 onto×
ovoliun.f φF:2
ovoliun.x1 φnAran.Fn
ovoliun.x2 φnsupranS*<vol*A+B2n
ovoliun.k φK
ovoliun.l1 φL
ovoliun.l2 φw1K1stJwL
Assertion ovoliunlem1 φUKsupranT*<+B

Proof

Step Hyp Ref Expression
1 ovoliun.t T=seq1+G
2 ovoliun.g G=nvol*A
3 ovoliun.a φnA
4 ovoliun.v φnvol*A
5 ovoliun.r φsupranT*<
6 ovoliun.b φB+
7 ovoliun.s S=seq1+absFn
8 ovoliun.u U=seq1+absH
9 ovoliun.h H=kF1stJk2ndJk
10 ovoliun.j φJ:1-1 onto×
11 ovoliun.f φF:2
12 ovoliun.x1 φnAran.Fn
13 ovoliun.x2 φnsupranS*<vol*A+B2n
14 ovoliun.k φK
15 ovoliun.l1 φL
16 ovoliun.l2 φw1K1stJwL
17 2fveq3 j=JmF1stj=F1stJm
18 fveq2 j=Jm2ndj=2ndJm
19 17 18 fveq12d j=JmF1stj2ndj=F1stJm2ndJm
20 19 fveq2d j=Jm2ndF1stj2ndj=2ndF1stJm2ndJm
21 19 fveq2d j=Jm1stF1stj2ndj=1stF1stJm2ndJm
22 20 21 oveq12d j=Jm2ndF1stj2ndj1stF1stj2ndj=2ndF1stJm2ndJm1stF1stJm2ndJm
23 fzfid φ1KFin
24 f1of1 J:1-1 onto×J:1-1×
25 10 24 syl φJ:1-1×
26 fz1ssnn 1K
27 f1ores J:1-1×1KJ1K:1K1-1 ontoJ1K
28 25 26 27 sylancl φJ1K:1K1-1 ontoJ1K
29 fvres m1KJ1Km=Jm
30 29 adantl φm1KJ1Km=Jm
31 11 adantr φjJ1KF:2
32 imassrn J1KranJ
33 f1of J:1-1 onto×J:×
34 10 33 syl φJ:×
35 34 frnd φranJ×
36 32 35 sstrid φJ1K×
37 36 sselda φjJ1Kj×
38 xp1st j×1stj
39 37 38 syl φjJ1K1stj
40 31 39 ffvelcdmd φjJ1KF1stj2
41 elovolmlem F1stj2F1stj:2
42 40 41 sylib φjJ1KF1stj:2
43 xp2nd j×2ndj
44 37 43 syl φjJ1K2ndj
45 42 44 ffvelcdmd φjJ1KF1stj2ndj2
46 45 elin2d φjJ1KF1stj2ndj2
47 xp2nd F1stj2ndj22ndF1stj2ndj
48 46 47 syl φjJ1K2ndF1stj2ndj
49 xp1st F1stj2ndj21stF1stj2ndj
50 46 49 syl φjJ1K1stF1stj2ndj
51 48 50 resubcld φjJ1K2ndF1stj2ndj1stF1stj2ndj
52 51 recnd φjJ1K2ndF1stj2ndj1stF1stj2ndj
53 22 23 28 30 52 fsumf1o φjJ1K2ndF1stj2ndj1stF1stj2ndj=m=1K2ndF1stJm2ndJm1stF1stJm2ndJm
54 11 adantr φkF:2
55 34 ffvelcdmda φkJk×
56 xp1st Jk×1stJk
57 55 56 syl φk1stJk
58 54 57 ffvelcdmd φkF1stJk2
59 elovolmlem F1stJk2F1stJk:2
60 58 59 sylib φkF1stJk:2
61 xp2nd Jk×2ndJk
62 55 61 syl φk2ndJk
63 60 62 ffvelcdmd φkF1stJk2ndJk2
64 63 9 fmptd φH:2
65 elfznn m1Km
66 eqid absH=absH
67 66 ovolfsval H:2mabsHm=2ndHm1stHm
68 64 65 67 syl2an φm1KabsHm=2ndHm1stHm
69 65 adantl φm1Km
70 2fveq3 k=m1stJk=1stJm
71 70 fveq2d k=mF1stJk=F1stJm
72 2fveq3 k=m2ndJk=2ndJm
73 71 72 fveq12d k=mF1stJk2ndJk=F1stJm2ndJm
74 fvex F1stJm2ndJmV
75 73 9 74 fvmpt mHm=F1stJm2ndJm
76 69 75 syl φm1KHm=F1stJm2ndJm
77 76 fveq2d φm1K2ndHm=2ndF1stJm2ndJm
78 76 fveq2d φm1K1stHm=1stF1stJm2ndJm
79 77 78 oveq12d φm1K2ndHm1stHm=2ndF1stJm2ndJm1stF1stJm2ndJm
80 68 79 eqtrd φm1KabsHm=2ndF1stJm2ndJm1stF1stJm2ndJm
81 nnuz =1
82 14 81 eleqtrdi φK1
83 ffvelcdm H:2mHm2
84 64 65 83 syl2an φm1KHm2
85 84 elin2d φm1KHm2
86 xp2nd Hm22ndHm
87 85 86 syl φm1K2ndHm
88 xp1st Hm21stHm
89 85 88 syl φm1K1stHm
90 87 89 resubcld φm1K2ndHm1stHm
91 90 recnd φm1K2ndHm1stHm
92 79 91 eqeltrrd φm1K2ndF1stJm2ndJm1stF1stJm2ndJm
93 80 82 92 fsumser φm=1K2ndF1stJm2ndJm1stF1stJm2ndJm=seq1+absHK
94 53 93 eqtrd φjJ1K2ndF1stj2ndj1stF1stj2ndj=seq1+absHK
95 8 fveq1i UK=seq1+absHK
96 94 95 eqtr4di φjJ1K2ndF1stj2ndj1stF1stj2ndj=UK
97 f1oeng 1KFinJ1K:1K1-1 ontoJ1K1KJ1K
98 23 28 97 syl2anc φ1KJ1K
99 98 ensymd φJ1K1K
100 enfii 1KFinJ1K1KJ1KFin
101 23 99 100 syl2anc φJ1KFin
102 101 51 fsumrecl φjJ1K2ndF1stj2ndj1stF1stj2ndj
103 fzfid φ1LFin
104 elfznn n1Ln
105 104 4 sylan2 φn1Lvol*A
106 103 105 fsumrecl φn=1Lvol*A
107 6 rpred φB
108 2nn 2
109 nnnn0 nn0
110 nnexpcl 2n02n
111 108 109 110 sylancr n2n
112 104 111 syl n1L2n
113 nndivre B2nB2n
114 107 112 113 syl2an φn1LB2n
115 103 114 fsumrecl φn=1LB2n
116 106 115 readdcld φn=1Lvol*A+n=1LB2n
117 5 107 readdcld φsupranT*<+B
118 relxp Reln×J1Kn
119 relres RelJ1Kn
120 elsni xnx=n
121 120 opeq1d xnxy=ny
122 121 eleq1d xnxyJ1KnyJ1K
123 vex nV
124 vex yV
125 123 124 elimasn yJ1KnnyJ1K
126 122 125 bitr4di xnxyJ1KyJ1Kn
127 126 pm5.32i xnxyJ1KxnyJ1Kn
128 124 opelresi xyJ1KnxnxyJ1K
129 opelxp xyn×J1KnxnyJ1Kn
130 127 128 129 3bitr4ri xyn×J1KnxyJ1Kn
131 118 119 130 eqrelriiv n×J1Kn=J1Kn
132 df-res J1Kn=J1Kn×V
133 131 132 eqtri n×J1Kn=J1Kn×V
134 133 a1i φn1Ln×J1Kn=J1Kn×V
135 134 iuneq2dv φn=1Ln×J1Kn=n=1LJ1Kn×V
136 iunin2 n=1LJ1Kn×V=J1Kn=1Ln×V
137 135 136 eqtrdi φn=1Ln×J1Kn=J1Kn=1Ln×V
138 relxp Rel×
139 relss J1K×Rel×RelJ1K
140 36 138 139 mpisyl φRelJ1K
141 34 ffnd φJFn
142 fveq2 j=Jw1stj=1stJw
143 142 breq1d j=Jw1stjL1stJwL
144 143 ralima JFn1KjJ1K1stjLw1K1stJwL
145 141 26 144 sylancl φjJ1K1stjLw1K1stJwL
146 16 145 mpbird φjJ1K1stjL
147 146 r19.21bi φjJ1K1stjL
148 39 81 eleqtrdi φjJ1K1stj1
149 15 adantr φjJ1KL
150 elfz5 1stj1L1stj1L1stjL
151 148 149 150 syl2anc φjJ1K1stj1L1stjL
152 147 151 mpbird φjJ1K1stj1L
153 152 ralrimiva φjJ1K1stj1L
154 vex xV
155 154 124 op1std j=xy1stj=x
156 155 eleq1d j=xy1stj1Lx1L
157 156 rspccv jJ1K1stj1LxyJ1Kx1L
158 153 157 syl φxyJ1Kx1L
159 opelxp xyn=1Ln×Vxn=1LnyV
160 124 biantru xn=1Lnxn=1LnyV
161 iunid n=1Ln=1L
162 161 eleq2i xn=1Lnx1L
163 159 160 162 3bitr2i xyn=1Ln×Vx1L
164 158 163 syl6ibr φxyJ1Kxyn=1Ln×V
165 140 164 relssdv φJ1Kn=1Ln×V
166 xpiundir n=1Ln×V=n=1Ln×V
167 165 166 sseqtrdi φJ1Kn=1Ln×V
168 df-ss J1Kn=1Ln×VJ1Kn=1Ln×V=J1K
169 167 168 sylib φJ1Kn=1Ln×V=J1K
170 137 169 eqtrd φn=1Ln×J1Kn=J1K
171 170 101 eqeltrd φn=1Ln×J1KnFin
172 ssiun2 n1Ln×J1Knn=1Ln×J1Kn
173 ssfi n=1Ln×J1KnFinn×J1Knn=1Ln×J1Knn×J1KnFin
174 171 172 173 syl2an φn1Ln×J1KnFin
175 2ndconst nV2ndn×J1Kn:n×J1Kn1-1 ontoJ1Kn
176 175 elv 2ndn×J1Kn:n×J1Kn1-1 ontoJ1Kn
177 f1oeng n×J1KnFin2ndn×J1Kn:n×J1Kn1-1 ontoJ1Knn×J1KnJ1Kn
178 174 176 177 sylancl φn1Ln×J1KnJ1Kn
179 178 ensymd φn1LJ1Knn×J1Kn
180 enfii n×J1KnFinJ1Knn×J1KnJ1KnFin
181 174 179 180 syl2anc φn1LJ1KnFin
182 ffvelcdm F:2nFn2
183 11 104 182 syl2an φn1LFn2
184 elovolmlem Fn2Fn:2
185 183 184 sylib φn1LFn:2
186 185 adantrr φn1LiJ1KnFn:2
187 imassrn J1KnranJ1K
188 36 adantr φn1LJ1K×
189 rnss J1K×ranJ1Kran×
190 188 189 syl φn1LranJ1Kran×
191 rnxpid ran×=
192 190 191 sseqtrdi φn1LranJ1K
193 187 192 sstrid φn1LJ1Kn
194 193 sseld φn1LiJ1Kni
195 194 impr φn1LiJ1Kni
196 186 195 ffvelcdmd φn1LiJ1KnFni2
197 196 elin2d φn1LiJ1KnFni2
198 xp2nd Fni22ndFni
199 197 198 syl φn1LiJ1Kn2ndFni
200 xp1st Fni21stFni
201 197 200 syl φn1LiJ1Kn1stFni
202 199 201 resubcld φn1LiJ1Kn2ndFni1stFni
203 202 anassrs φn1LiJ1Kn2ndFni1stFni
204 181 203 fsumrecl φn1LiJ1Kn2ndFni1stFni
205 107 111 113 syl2an φnB2n
206 4 205 readdcld φnvol*A+B2n
207 104 206 sylan2 φn1Lvol*A+B2n
208 eqid absFn=absFn
209 208 7 ovolsf Fn:2S:0+∞
210 185 209 syl φn1LS:0+∞
211 210 frnd φn1LranS0+∞
212 icossxr 0+∞*
213 211 212 sstrdi φn1LranS*
214 supxrcl ranS*supranS*<*
215 213 214 syl φn1LsupranS*<*
216 mnfxr −∞*
217 216 a1i φn1L−∞*
218 105 rexrd φn1Lvol*A*
219 105 mnfltd φn1L−∞<vol*A
220 104 12 sylan2 φn1LAran.Fn
221 7 ovollb Fn:2Aran.Fnvol*AsupranS*<
222 185 220 221 syl2anc φn1Lvol*AsupranS*<
223 217 218 215 219 222 xrltletrd φn1L−∞<supranS*<
224 104 13 sylan2 φn1LsupranS*<vol*A+B2n
225 xrre supranS*<*vol*A+B2n−∞<supranS*<supranS*<vol*A+B2nsupranS*<
226 215 207 223 224 225 syl22anc φn1LsupranS*<
227 1zzd φn1L1
228 208 ovolfsval Fn:2iabsFni=2ndFni1stFni
229 185 228 sylan φn1LiabsFni=2ndFni1stFni
230 208 ovolfsf Fn:2absFn:0+∞
231 185 230 syl φn1LabsFn:0+∞
232 231 ffvelcdmda φn1LiabsFni0+∞
233 229 232 eqeltrrd φn1Li2ndFni1stFni0+∞
234 elrege0 2ndFni1stFni0+∞2ndFni1stFni02ndFni1stFni
235 233 234 sylib φn1Li2ndFni1stFni02ndFni1stFni
236 235 simpld φn1Li2ndFni1stFni
237 235 simprd φn1Li02ndFni1stFni
238 supxrub ranS*zranSzsupranS*<
239 213 238 sylan φn1LzranSzsupranS*<
240 239 ralrimiva φn1LzranSzsupranS*<
241 brralrspcev supranS*<zranSzsupranS*<xzranSzx
242 226 240 241 syl2anc φn1LxzranSzx
243 210 ffnd φn1LSFn
244 breq1 z=SkzxSkx
245 244 ralrn SFnzranSzxkSkx
246 243 245 syl φn1LzranSzxkSkx
247 246 rexbidv φn1LxzranSzxxkSkx
248 242 247 mpbid φn1LxkSkx
249 81 7 227 229 236 237 248 isumsup2 φn1LSsupranS<
250 7 249 eqbrtrrid φn1Lseq1+absFnsupranS<
251 climrel Rel
252 251 releldmi seq1+absFnsupranS<seq1+absFndom
253 250 252 syl φn1Lseq1+absFndom
254 81 227 181 193 229 236 237 253 isumless φn1LiJ1Kn2ndFni1stFnii2ndFni1stFni
255 81 7 227 229 236 237 248 isumsup φn1Li2ndFni1stFni=supranS<
256 rge0ssre 0+∞
257 211 256 sstrdi φn1LranS
258 1nn 1
259 210 fdmd φn1LdomS=
260 258 259 eleqtrrid φn1L1domS
261 260 ne0d φn1LdomS
262 dm0rn0 domS=ranS=
263 262 necon3bii domSranS
264 261 263 sylib φn1LranS
265 supxrre ranSranSxzranSzxsupranS*<=supranS<
266 257 264 242 265 syl3anc φn1LsupranS*<=supranS<
267 255 266 eqtr4d φn1Li2ndFni1stFni=supranS*<
268 254 267 breqtrd φn1LiJ1Kn2ndFni1stFnisupranS*<
269 204 226 207 268 224 letrd φn1LiJ1Kn2ndFni1stFnivol*A+B2n
270 103 204 207 269 fsumle φn=1LiJ1Kn2ndFni1stFnin=1Lvol*A+B2n
271 vex iV
272 123 271 op1std j=ni1stj=n
273 272 fveq2d j=niF1stj=Fn
274 123 271 op2ndd j=ni2ndj=i
275 273 274 fveq12d j=niF1stj2ndj=Fni
276 275 fveq2d j=ni2ndF1stj2ndj=2ndFni
277 275 fveq2d j=ni1stF1stj2ndj=1stFni
278 276 277 oveq12d j=ni2ndF1stj2ndj1stF1stj2ndj=2ndFni1stFni
279 202 recnd φn1LiJ1Kn2ndFni1stFni
280 278 103 181 279 fsum2d φn=1LiJ1Kn2ndFni1stFni=jn=1Ln×J1Kn2ndF1stj2ndj1stF1stj2ndj
281 170 sumeq1d φjn=1Ln×J1Kn2ndF1stj2ndj1stF1stj2ndj=jJ1K2ndF1stj2ndj1stF1stj2ndj
282 280 281 eqtrd φn=1LiJ1Kn2ndFni1stFni=jJ1K2ndF1stj2ndj1stF1stj2ndj
283 105 recnd φn1Lvol*A
284 114 recnd φn1LB2n
285 103 283 284 fsumadd φn=1Lvol*A+B2n=n=1Lvol*A+n=1LB2n
286 270 282 285 3brtr3d φjJ1K2ndF1stj2ndj1stF1stj2ndjn=1Lvol*A+n=1LB2n
287 1zzd φ1
288 simpr φnn
289 2 fvmpt2 nvol*AGn=vol*A
290 288 4 289 syl2anc φnGn=vol*A
291 290 4 eqeltrd φnGn
292 81 287 291 serfre φseq1+G:
293 1 feq1i T:seq1+G:
294 292 293 sylibr φT:
295 294 frnd φranT
296 ressxr *
297 295 296 sstrdi φranT*
298 104 290 sylan2 φn1LGn=vol*A
299 1red φ1
300 ffvelcdm J:×1J1×
301 34 258 300 sylancl φJ1×
302 xp1st J1×1stJ1
303 301 302 syl φ1stJ1
304 303 nnred φ1stJ1
305 15 zred φL
306 303 nnge1d φ11stJ1
307 2fveq3 w=11stJw=1stJ1
308 307 breq1d w=11stJwL1stJ1L
309 eluzfz1 K111K
310 82 309 syl φ11K
311 308 16 310 rspcdva φ1stJ1L
312 299 304 305 306 311 letrd φ1L
313 elnnz1 LL1L
314 15 312 313 sylanbrc φL
315 314 81 eleqtrdi φL1
316 298 315 283 fsumser φn=1Lvol*A=seq1+GL
317 seqfn 1seq1+GFn1
318 287 317 syl φseq1+GFn1
319 fnfvelrn seq1+GFn1L1seq1+GLranseq1+G
320 318 315 319 syl2anc φseq1+GLranseq1+G
321 1 rneqi ranT=ranseq1+G
322 320 321 eleqtrrdi φseq1+GLranT
323 316 322 eqeltrd φn=1Lvol*AranT
324 supxrub ranT*n=1Lvol*AranTn=1Lvol*AsupranT*<
325 297 323 324 syl2anc φn=1Lvol*AsupranT*<
326 107 recnd φB
327 geo2sum LBn=1LB2n=BB2L
328 314 326 327 syl2anc φn=1LB2n=BB2L
329 314 nnnn0d φL0
330 nnexpcl 2L02L
331 108 329 330 sylancr φ2L
332 331 nnrpd φ2L+
333 6 332 rpdivcld φB2L+
334 333 rpge0d φ0B2L
335 107 331 nndivred φB2L
336 107 335 subge02d φ0B2LBB2LB
337 334 336 mpbid φBB2LB
338 328 337 eqbrtrd φn=1LB2nB
339 106 115 5 107 325 338 le2addd φn=1Lvol*A+n=1LB2nsupranT*<+B
340 102 116 117 286 339 letrd φjJ1K2ndF1stj2ndj1stF1stj2ndjsupranT*<+B
341 96 340 eqbrtrrd φUKsupranT*<+B