Metamath Proof Explorer


Theorem plyeq0lem

Description: Lemma for plyeq0 . If A is the coefficient function for a nonzero polynomial such that P ( z ) = sum_ k e. NN0 A ( k ) x. z ^ k = 0 for every z e. CC and A ( M ) is the nonzero leading coefficient, then the function F ( z ) = P ( z ) / z ^ M is a sum of powers of 1 / z , and so the limit of this function as z ~> +oo is the constant term, A ( M ) . But F ( z ) = 0 everywhere, so this limit is also equal to zero so that A ( M ) = 0 , a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses plyeq0.1 φS
plyeq0.2 φN0
plyeq0.3 φAS00
plyeq0.4 φAN+1=0
plyeq0.5 φ0𝑝=zk=0NAkzk
plyeq0.6 M=supA-1S0<
plyeq0.7 φA-1S0
Assertion plyeq0lem ¬φ

Proof

Step Hyp Ref Expression
1 plyeq0.1 φS
2 plyeq0.2 φN0
3 plyeq0.3 φAS00
4 plyeq0.4 φAN+1=0
5 plyeq0.5 φ0𝑝=zk=0NAkzk
6 plyeq0.6 M=supA-1S0<
7 plyeq0.7 φA-1S0
8 nnuz =1
9 1zzd φ1
10 fzfid φ0NFin
11 1zzd φk0Nk<M1
12 0cn 0
13 12 a1i φ0
14 13 snssd φ0
15 1 14 unssd φS0
16 cnex V
17 ssexg S0VS0V
18 15 16 17 sylancl φS0V
19 nn0ex 0V
20 elmapg S0V0VAS00A:0S0
21 18 19 20 sylancl φAS00A:0S0
22 3 21 mpbid φA:0S0
23 22 15 fssd φA:0
24 elfznn0 k0Nk0
25 ffvelcdm A:0k0Ak
26 23 24 25 syl2an φk0NAk
27 26 adantr φk0Nk<MAk
28 27 abscld φk0Nk<MAk
29 28 recnd φk0Nk<MAk
30 divcnv AknAkn0
31 29 30 syl φk0Nk<MnAkn0
32 nnex V
33 32 mptex nAknkMV
34 33 a1i φk0Nk<MnAknkMV
35 oveq2 n=mAkn=Akm
36 eqid nAkn=nAkn
37 ovex AkmV
38 35 36 37 fvmpt mnAknm=Akm
39 38 adantl φk0Nk<MmnAknm=Akm
40 nndivre AkmAkm
41 28 40 sylan φk0Nk<MmAkm
42 39 41 eqeltrd φk0Nk<MmnAknm
43 oveq1 n=mnkM=mkM
44 43 oveq2d n=mAknkM=AkmkM
45 eqid nAknkM=nAknkM
46 ovex AkmkMV
47 44 45 46 fvmpt mnAknkMm=AkmkM
48 47 adantl φk0Nk<MmnAknkMm=AkmkM
49 26 ad2antrr φk0Nk<MmAk
50 49 abscld φk0Nk<MmAk
51 nnrp mm+
52 51 adantl φk0Nk<Mmm+
53 elfzelz k0Nk
54 cnvimass A-1S0domA
55 54 22 fssdm φA-1S00
56 nn0ssz 0
57 55 56 sstrdi φA-1S0
58 2 nn0red φN
59 22 ffnd φAFn0
60 elpreima AFn0zA-1S0z0AzS0
61 59 60 syl φzA-1S0z0AzS0
62 61 simplbda φzA-1S0AzS0
63 eldifsni AzS0Az0
64 62 63 syl φzA-1S0Az0
65 fveq2 k=zAk=Az
66 65 neeq1d k=zAk0Az0
67 breq1 k=zkNzN
68 66 67 imbi12d k=zAk0kNAz0zN
69 plyco0 N0A:0AN+1=0k0Ak0kN
70 2 23 69 syl2anc φAN+1=0k0Ak0kN
71 4 70 mpbid φk0Ak0kN
72 71 adantr φzA-1S0k0Ak0kN
73 55 sselda φzA-1S0z0
74 68 72 73 rspcdva φzA-1S0Az0zN
75 64 74 mpd φzA-1S0zN
76 75 ralrimiva φzA-1S0zN
77 brralrspcev NzA-1S0zNxzA-1S0zx
78 58 76 77 syl2anc φxzA-1S0zx
79 suprzcl A-1S0A-1S0xzA-1S0zxsupA-1S0<A-1S0
80 57 7 78 79 syl3anc φsupA-1S0<A-1S0
81 6 80 eqeltrid φMA-1S0
82 55 81 sseldd φM0
83 82 nn0zd φM
84 zsubcl kMkM
85 53 83 84 syl2anr φk0NkM
86 85 ad2antrr φk0Nk<MmkM
87 52 86 rpexpcld φk0Nk<MmmkM+
88 87 rpred φk0Nk<MmmkM
89 50 88 remulcld φk0Nk<MmAkmkM
90 48 89 eqeltrd φk0Nk<MmnAknkMm
91 nnrecre m1m
92 91 adantl φk0Nk<Mm1m
93 27 absge0d φk0Nk<M0Ak
94 93 adantr φk0Nk<Mm0Ak
95 nnre mm
96 95 adantl φk0Nk<Mmm
97 nnge1 m1m
98 97 adantl φk0Nk<Mm1m
99 1red φk0Nk<Mm1
100 86 zred φk0Nk<MmkM
101 simplr φk0Nk<Mmk<M
102 53 adantl φk0Nk
103 102 ad2antrr φk0Nk<Mmk
104 83 ad3antrrr φk0Nk<MmM
105 zltp1le kMk<Mk+1M
106 103 104 105 syl2anc φk0Nk<Mmk<Mk+1M
107 101 106 mpbid φk0Nk<Mmk+1M
108 24 adantl φk0Nk0
109 108 nn0red φk0Nk
110 109 ad2antrr φk0Nk<Mmk
111 82 adantr φk0NM0
112 111 nn0red φk0NM
113 112 ad2antrr φk0Nk<MmM
114 110 99 113 leaddsub2d φk0Nk<Mmk+1M1Mk
115 107 114 mpbid φk0Nk<Mm1Mk
116 109 recnd φk0Nk
117 116 ad2antrr φk0Nk<Mmk
118 112 recnd φk0NM
119 118 ad2antrr φk0Nk<MmM
120 117 119 negsubdi2d φk0Nk<MmkM=Mk
121 115 120 breqtrrd φk0Nk<Mm1kM
122 99 100 121 lenegcon2d φk0Nk<MmkM1
123 neg1z 1
124 eluz kM11kMkM1
125 86 123 124 sylancl φk0Nk<Mm1kMkM1
126 122 125 mpbird φk0Nk<Mm1kM
127 96 98 126 leexp2ad φk0Nk<MmmkMm1
128 nncn mm
129 128 adantl φk0Nk<Mmm
130 expn1 mm1=1m
131 129 130 syl φk0Nk<Mmm1=1m
132 127 131 breqtrd φk0Nk<MmmkM1m
133 88 92 50 94 132 lemul2ad φk0Nk<MmAkmkMAk1m
134 29 adantr φk0Nk<MmAk
135 nnne0 mm0
136 135 adantl φk0Nk<Mmm0
137 134 129 136 divrecd φk0Nk<MmAkm=Ak1m
138 39 137 eqtrd φk0Nk<MmnAknm=Ak1m
139 133 48 138 3brtr4d φk0Nk<MmnAknkMmnAknm
140 87 rpge0d φk0Nk<Mm0mkM
141 50 88 94 140 mulge0d φk0Nk<Mm0AkmkM
142 141 48 breqtrrd φk0Nk<Mm0nAknkMm
143 8 11 31 34 42 90 139 142 climsqz2 φk0Nk<MnAknkM0
144 32 mptex nAknkMV
145 144 a1i φk0Nk<MnAknkMV
146 43 oveq2d n=mAknkM=AkmkM
147 eqid nAknkM=nAknkM
148 ovex AkmkMV
149 146 147 148 fvmpt mnAknkMm=AkmkM
150 149 ad2antlr φmk0NnAknkMm=AkmkM
151 23 adantr φmA:0
152 151 24 25 syl2an φmk0NAk
153 128 ad2antlr φmk0Nm
154 135 ad2antlr φmk0Nm0
155 83 adantr φmM
156 53 155 84 syl2anr φmk0NkM
157 153 154 156 expclzd φmk0NmkM
158 152 157 mulcld φmk0NAkmkM
159 150 158 eqeltrd φmk0NnAknkMm
160 159 an32s φk0NmnAknkMm
161 160 adantlr φk0Nk<MmnAknkMm
162 88 recnd φk0Nk<MmmkM
163 49 162 absmuld φk0Nk<MmAkmkM=AkmkM
164 88 140 absidd φk0Nk<MmmkM=mkM
165 164 oveq2d φk0Nk<MmAkmkM=AkmkM
166 163 165 eqtrd φk0Nk<MmAkmkM=AkmkM
167 149 adantl φk0Nk<MmnAknkMm=AkmkM
168 167 fveq2d φk0Nk<MmnAknkMm=AkmkM
169 166 168 48 3eqtr4rd φk0Nk<MmnAknkMm=nAknkMm
170 8 11 145 34 161 169 climabs0 φk0Nk<MnAknkM0nAknkM0
171 143 170 mpbird φk0Nk<MnAknkM0
172 109 adantr φk0Nk<Mk
173 simpr φk0Nk<Mk<M
174 172 173 ltned φk0Nk<MkM
175 velsn kMk=M
176 175 necon3bbii ¬kMkM
177 174 176 sylibr φk0Nk<M¬kM
178 177 iffalsed φk0Nk<MifkMAk0=0
179 171 178 breqtrrd φk0Nk<MnAknkMifkMAk0
180 nncn nn
181 180 ad2antlr φk0NMknAk=0n
182 nnne0 nn0
183 182 ad2antlr φk0NMknAk=0n0
184 85 ad3antrrr φk0NMknAk=0kM
185 181 183 184 expclzd φk0NMknAk=0nkM
186 185 mul02d φk0NMknAk=00nkM=0
187 simpr φk0NMknAk=0Ak=0
188 187 oveq1d φk0NMknAk=0AknkM=0nkM
189 187 ifeq1d φk0NMknAk=0ifkMAk0=ifkM00
190 ifid ifkM00=0
191 189 190 eqtrdi φk0NMknAk=0ifkMAk0=0
192 186 188 191 3eqtr4d φk0NMknAk=0AknkM=ifkMAk0
193 26 adantr φk0NMkAk
194 193 ad2antrr φk0NMknAk0Ak
195 194 mulridd φk0NMknAk0Ak1=Ak
196 nn0ssre 0
197 55 196 sstrdi φA-1S0
198 197 ad2antrr φk0NAk0A-1S0
199 7 ad2antrr φk0NAk0A-1S0
200 78 ad2antrr φk0NAk0xzA-1S0zx
201 24 ad2antlr φk0NAk0k0
202 ffvelcdm A:0S0k0AkS0
203 22 24 202 syl2an φk0NAkS0
204 203 anim1i φk0NAk0AkS0Ak0
205 eldifsn AkS00AkS0Ak0
206 204 205 sylibr φk0NAk0AkS00
207 difun2 S00=S0
208 206 207 eleqtrdi φk0NAk0AkS0
209 elpreima AFn0kA-1S0k0AkS0
210 59 209 syl φkA-1S0k0AkS0
211 210 ad2antrr φk0NAk0kA-1S0k0AkS0
212 201 208 211 mpbir2and φk0NAk0kA-1S0
213 198 199 200 212 suprubd φk0NAk0ksupA-1S0<
214 213 6 breqtrrdi φk0NAk0kM
215 214 ad4ant14 φk0NMknAk0kM
216 simpllr φk0NMknAk0Mk
217 109 ad3antrrr φk0NMknAk0k
218 112 ad3antrrr φk0NMknAk0M
219 217 218 letri3d φk0NMknAk0k=MkMMk
220 215 216 219 mpbir2and φk0NMknAk0k=M
221 220 oveq1d φk0NMknAk0kM=MM
222 118 ad3antrrr φk0NMknAk0M
223 222 subidd φk0NMknAk0MM=0
224 221 223 eqtrd φk0NMknAk0kM=0
225 224 oveq2d φk0NMknAk0nkM=n0
226 180 ad2antlr φk0NMknAk0n
227 226 exp0d φk0NMknAk0n0=1
228 225 227 eqtrd φk0NMknAk0nkM=1
229 228 oveq2d φk0NMknAk0AknkM=Ak1
230 220 175 sylibr φk0NMknAk0kM
231 230 iftrued φk0NMknAk0ifkMAk0=Ak
232 195 229 231 3eqtr4d φk0NMknAk0AknkM=ifkMAk0
233 192 232 pm2.61dane φk0NMknAknkM=ifkMAk0
234 233 mpteq2dva φk0NMknAknkM=nifkMAk0
235 fconstmpt ×ifkMAk0=nifkMAk0
236 234 235 eqtr4di φk0NMknAknkM=×ifkMAk0
237 ifcl Ak0ifkMAk0
238 193 12 237 sylancl φk0NMkifkMAk0
239 1z 1
240 8 eqimss2i 1
241 240 32 climconst2 ifkMAk01×ifkMAk0ifkMAk0
242 238 239 241 sylancl φk0NMk×ifkMAk0ifkMAk0
243 236 242 eqbrtrd φk0NMknAknkMifkMAk0
244 179 243 109 112 ltlecasei φk0NnAknkMifkMAk0
245 snex 0V
246 32 245 xpex ×0V
247 246 a1i φ×0V
248 160 anasss φk0NmnAknkMm
249 5 fveq1d φ0𝑝m=zk=0NAkzkm
250 249 adantr φm0𝑝m=zk=0NAkzkm
251 128 adantl φmm
252 0pval m0𝑝m=0
253 251 252 syl φm0𝑝m=0
254 oveq1 z=mzk=mk
255 254 oveq2d z=mAkzk=Akmk
256 255 sumeq2sdv z=mk=0NAkzk=k=0NAkmk
257 eqid zk=0NAkzk=zk=0NAkzk
258 sumex k=0NAkmkV
259 256 257 258 fvmpt mzk=0NAkzkm=k=0NAkmk
260 251 259 syl φmzk=0NAkzkm=k=0NAkmk
261 250 253 260 3eqtr3d φm0=k=0NAkmk
262 261 oveq1d φm0mM=k=0NAkmkmM
263 expcl mM0mM
264 128 82 263 syl2anr φmmM
265 135 adantl φmm0
266 251 265 155 expne0d φmmM0
267 264 266 div0d φm0mM=0
268 fzfid φm0NFin
269 expcl mk0mk
270 251 24 269 syl2an φmk0Nmk
271 152 270 mulcld φmk0NAkmk
272 268 264 271 266 fsumdivc φmk=0NAkmkmM=k=0NAkmkmM
273 262 267 272 3eqtr3d φm0=k=0NAkmkmM
274 fvconst2g 0m×0m=0
275 13 274 sylan φm×0m=0
276 155 adantr φmk0NM
277 53 adantl φmk0Nk
278 153 154 276 277 expsubd φmk0NmkM=mkmM
279 278 oveq2d φmk0NAkmkM=AkmkmM
280 264 adantr φmk0NmM
281 266 adantr φmk0NmM0
282 152 270 280 281 divassd φmk0NAkmkmM=AkmkmM
283 279 150 282 3eqtr4d φmk0NnAknkMm=AkmkmM
284 283 sumeq2dv φmk=0NnAknkMm=k=0NAkmkmM
285 273 275 284 3eqtr4d φm×0m=k=0NnAknkMm
286 8 9 10 244 247 248 285 climfsum φ×0k=0NifkMAk0
287 suprleub A-1S0A-1S0xzA-1S0zxNsupA-1S0<NzA-1S0zN
288 197 7 78 58 287 syl31anc φsupA-1S0<NzA-1S0zN
289 76 288 mpbird φsupA-1S0<N
290 6 289 eqbrtrid φMN
291 nn0uz 0=0
292 82 291 eleqtrdi φM0
293 2 nn0zd φN
294 elfz5 M0NM0NMN
295 292 293 294 syl2anc φM0NMN
296 290 295 mpbird φM0N
297 296 snssd φM0N
298 23 82 ffvelcdmd φAM
299 elsni kMk=M
300 299 fveq2d kMAk=AM
301 300 eleq1d kMAkAM
302 298 301 syl5ibrcom φkMAk
303 302 ralrimiv φkMAk
304 10 olcd φ0N00NFin
305 sumss2 M0NkMAk0N00NFinkMAk=k=0NifkMAk0
306 297 303 304 305 syl21anc φkMAk=k=0NifkMAk0
307 ltso <Or
308 307 supex supA-1S0<V
309 6 308 eqeltri MV
310 fveq2 k=MAk=AM
311 310 sumsn MVAMkMAk=AM
312 309 298 311 sylancr φkMAk=AM
313 306 312 eqtr3d φk=0NifkMAk0=AM
314 286 313 breqtrd φ×0AM
315 240 32 climconst2 01×00
316 12 239 315 mp2an ×00
317 climuni ×0AM×00AM=0
318 314 316 317 sylancl φAM=0
319 fvex AMV
320 319 elsn AM0AM=0
321 318 320 sylibr φAM0
322 elpreima AFn0MA-1S0M0AMS0
323 59 322 syl φMA-1S0M0AMS0
324 81 323 mpbid φM0AMS0
325 324 simprd φAMS0
326 325 eldifbd φ¬AM0
327 321 326 pm2.65i ¬φ