Step |
Hyp |
Ref |
Expression |
1 |
|
plypf1.r |
|
2 |
|
plypf1.p |
|
3 |
|
plypf1.a |
|
4 |
|
plypf1.e |
|
5 |
|
elply |
|
6 |
5
|
simprbi |
|
7 |
|
eqid |
|
8 |
|
cnfldbas |
|
9 |
|
eqid |
|
10 |
|
cnex |
|
11 |
10
|
a1i |
|
12 |
|
fzfid |
|
13 |
|
cnring |
|
14 |
|
ringcmn |
|
15 |
13 14
|
mp1i |
|
16 |
8
|
subrgss |
|
17 |
16
|
ad2antrr |
|
18 |
|
elmapi |
|
19 |
18
|
ad2antll |
|
20 |
|
subrgsubg |
|
21 |
|
cnfld0 |
|
22 |
21
|
subg0cl |
|
23 |
20 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
24
|
snssd |
|
26 |
|
ssequn2 |
|
27 |
25 26
|
sylib |
|
28 |
27
|
feq3d |
|
29 |
19 28
|
mpbid |
|
30 |
|
elfznn0 |
|
31 |
|
ffvelcdm |
|
32 |
29 30 31
|
syl2an |
|
33 |
17 32
|
sseldd |
|
34 |
33
|
adantrl |
|
35 |
|
simprl |
|
36 |
30
|
ad2antll |
|
37 |
|
expcl |
|
38 |
35 36 37
|
syl2anc |
|
39 |
34 38
|
mulcld |
|
40 |
|
eqid |
|
41 |
10
|
mptex |
|
42 |
41
|
a1i |
|
43 |
|
fvex |
|
44 |
43
|
a1i |
|
45 |
40 12 42 44
|
fsuppmptdm |
|
46 |
7 8 9 11 12 15 39 45
|
pwsgsum |
|
47 |
|
fzfid |
|
48 |
39
|
anassrs |
|
49 |
47 48
|
gsumfsum |
|
50 |
49
|
mpteq2dva |
|
51 |
46 50
|
eqtrd |
|
52 |
7
|
pwsring |
|
53 |
13 10 52
|
mp2an |
|
54 |
|
ringcmn |
|
55 |
53 54
|
mp1i |
|
56 |
|
cncrng |
|
57 |
|
eqid |
|
58 |
4 57 7 8
|
evl1rhm |
|
59 |
56 58
|
ax-mp |
|
60 |
57 1 2 3
|
subrgply1 |
|
61 |
60
|
adantr |
|
62 |
|
rhmima |
|
63 |
59 61 62
|
sylancr |
|
64 |
|
subrgsubg |
|
65 |
|
subgsubm |
|
66 |
63 64 65
|
3syl |
|
67 |
|
eqid |
|
68 |
13
|
a1i |
|
69 |
10
|
a1i |
|
70 |
|
fconst6g |
|
71 |
33 70
|
syl |
|
72 |
7 8 67
|
pwselbasb |
|
73 |
13 10 72
|
mp2an |
|
74 |
71 73
|
sylibr |
|
75 |
38
|
anass1rs |
|
76 |
75
|
fmpttd |
|
77 |
7 8 67
|
pwselbasb |
|
78 |
13 10 77
|
mp2an |
|
79 |
76 78
|
sylibr |
|
80 |
|
cnfldmul |
|
81 |
|
eqid |
|
82 |
7 67 68 69 74 79 80 81
|
pwsmulrval |
|
83 |
33
|
adantr |
|
84 |
|
fconstmpt |
|
85 |
84
|
a1i |
|
86 |
|
eqidd |
|
87 |
69 83 75 85 86
|
offval2 |
|
88 |
82 87
|
eqtrd |
|
89 |
63
|
adantr |
|
90 |
|
eqid |
|
91 |
4 57 8 90
|
evl1sca |
|
92 |
56 33 91
|
sylancr |
|
93 |
|
eqid |
|
94 |
93 67
|
rhmf |
|
95 |
59 94
|
ax-mp |
|
96 |
|
ffn |
|
97 |
95 96
|
mp1i |
|
98 |
93
|
subrgss |
|
99 |
60 98
|
syl |
|
100 |
99
|
ad2antrr |
|
101 |
|
simpll |
|
102 |
57 90 1 2 101 3 8 33
|
subrg1asclcl |
|
103 |
32 102
|
mpbird |
|
104 |
|
fnfvima |
|
105 |
97 100 103 104
|
syl3anc |
|
106 |
92 105
|
eqeltrrd |
|
107 |
67
|
subrgss |
|
108 |
89 107
|
syl |
|
109 |
60
|
ad2antrr |
|
110 |
|
eqid |
|
111 |
110
|
subrgsubm |
|
112 |
109 111
|
syl |
|
113 |
30
|
adantl |
|
114 |
|
eqid |
|
115 |
114 101 1 2 3
|
subrgvr1cl |
|
116 |
|
eqid |
|
117 |
116
|
submmulgcl |
|
118 |
112 113 115 117
|
syl3anc |
|
119 |
|
fnfvima |
|
120 |
97 100 118 119
|
syl3anc |
|
121 |
108 120
|
sseldd |
|
122 |
7 8 67 68 69 121
|
pwselbas |
|
123 |
122
|
feqmptd |
|
124 |
56
|
a1i |
|
125 |
|
simpr |
|
126 |
4 114 8 57 93 124 125
|
evl1vard |
|
127 |
|
eqid |
|
128 |
113
|
adantr |
|
129 |
4 57 8 93 124 125 126 116 127 128
|
evl1expd |
|
130 |
129
|
simprd |
|
131 |
|
cnfldexp |
|
132 |
125 128 131
|
syl2anc |
|
133 |
130 132
|
eqtrd |
|
134 |
133
|
mpteq2dva |
|
135 |
123 134
|
eqtrd |
|
136 |
135 120
|
eqeltrrd |
|
137 |
81
|
subrgmcl |
|
138 |
89 106 136 137
|
syl3anc |
|
139 |
88 138
|
eqeltrrd |
|
140 |
139
|
fmpttd |
|
141 |
40 12 139 44
|
fsuppmptdm |
|
142 |
9 55 12 66 140 141
|
gsumsubmcl |
|
143 |
51 142
|
eqeltrrd |
|
144 |
|
eleq1 |
|
145 |
143 144
|
syl5ibrcom |
|
146 |
145
|
rexlimdvva |
|
147 |
6 146
|
syl5 |
|
148 |
|
ffun |
|
149 |
95 148
|
ax-mp |
|
150 |
|
fvelima |
|
151 |
149 150
|
mpan |
|
152 |
99
|
sselda |
|
153 |
|
eqid |
|
154 |
|
eqid |
|
155 |
57 114 93 153 110 116 154
|
ply1coe |
|
156 |
13 152 155
|
sylancr |
|
157 |
156
|
fveq2d |
|
158 |
|
eqid |
|
159 |
57
|
ply1ring |
|
160 |
13 159
|
ax-mp |
|
161 |
|
ringcmn |
|
162 |
160 161
|
mp1i |
|
163 |
|
ringmnd |
|
164 |
53 163
|
mp1i |
|
165 |
|
nn0ex |
|
166 |
165
|
a1i |
|
167 |
|
rhmghm |
|
168 |
59 167
|
ax-mp |
|
169 |
|
ghmmhm |
|
170 |
168 169
|
mp1i |
|
171 |
57
|
ply1lmod |
|
172 |
13 171
|
mp1i |
|
173 |
16
|
ad2antrr |
|
174 |
|
eqid |
|
175 |
154 3 2 174
|
coe1f |
|
176 |
1
|
subrgbas |
|
177 |
176
|
feq3d |
|
178 |
175 177
|
imbitrrid |
|
179 |
178
|
imp |
|
180 |
179
|
ffvelcdmda |
|
181 |
173 180
|
sseldd |
|
182 |
110 93
|
mgpbas |
|
183 |
110
|
ringmgp |
|
184 |
160 183
|
mp1i |
|
185 |
|
simpr |
|
186 |
114 57 93
|
vr1cl |
|
187 |
13 186
|
mp1i |
|
188 |
182 116 184 185 187
|
mulgnn0cld |
|
189 |
57
|
ply1sca |
|
190 |
13 189
|
ax-mp |
|
191 |
93 190 153 8
|
lmodvscl |
|
192 |
172 181 188 191
|
syl3anc |
|
193 |
192
|
fmpttd |
|
194 |
165
|
mptex |
|
195 |
|
funmpt |
|
196 |
|
fvex |
|
197 |
194 195 196
|
3pm3.2i |
|
198 |
197
|
a1i |
|
199 |
154 93 57 21
|
coe1sfi |
|
200 |
152 199
|
syl |
|
201 |
200
|
fsuppimpd |
|
202 |
179
|
feqmptd |
|
203 |
202
|
oveq1d |
|
204 |
|
eqimss2 |
|
205 |
203 204
|
syl |
|
206 |
13 171
|
mp1i |
|
207 |
93 190 153 21 158
|
lmod0vs |
|
208 |
206 207
|
sylan |
|
209 |
|
c0ex |
|
210 |
209
|
a1i |
|
211 |
205 208 180 188 210
|
suppssov1 |
|
212 |
|
suppssfifsupp |
|
213 |
198 201 211 212
|
syl12anc |
|
214 |
93 158 162 164 166 170 193 213
|
gsummhm |
|
215 |
95
|
a1i |
|
216 |
215 192
|
cofmpt |
|
217 |
13
|
a1i |
|
218 |
10
|
a1i |
|
219 |
95
|
ffvelcdmi |
|
220 |
192 219
|
syl |
|
221 |
7 8 67 217 218 220
|
pwselbas |
|
222 |
221
|
feqmptd |
|
223 |
56
|
a1i |
|
224 |
|
simpr |
|
225 |
4 114 8 57 93 223 224
|
evl1vard |
|
226 |
185
|
adantr |
|
227 |
4 57 8 93 223 224 225 116 127 226
|
evl1expd |
|
228 |
224 226 131
|
syl2anc |
|
229 |
228
|
eqeq2d |
|
230 |
229
|
anbi2d |
|
231 |
227 230
|
mpbid |
|
232 |
181
|
adantr |
|
233 |
4 57 8 93 223 224 231 232 153 80
|
evl1vsd |
|
234 |
233
|
simprd |
|
235 |
234
|
mpteq2dva |
|
236 |
222 235
|
eqtrd |
|
237 |
236
|
mpteq2dva |
|
238 |
216 237
|
eqtrd |
|
239 |
238
|
oveq2d |
|
240 |
157 214 239
|
3eqtr2d |
|
241 |
10
|
a1i |
|
242 |
13 14
|
mp1i |
|
243 |
181
|
adantlr |
|
244 |
37
|
adantll |
|
245 |
243 244
|
mulcld |
|
246 |
245
|
anasss |
|
247 |
165
|
mptex |
|
248 |
|
funmpt |
|
249 |
247 248 43
|
3pm3.2i |
|
250 |
249
|
a1i |
|
251 |
|
fzfid |
|
252 |
|
eldifn |
|
253 |
252
|
adantl |
|
254 |
152
|
ad2antrr |
|
255 |
|
eldifi |
|
256 |
255
|
adantl |
|
257 |
|
eqid |
|
258 |
257 57 93 21 154
|
deg1ge |
|
259 |
258
|
3expia |
|
260 |
254 256 259
|
syl2anc |
|
261 |
|
0xr |
|
262 |
257 57 93
|
deg1xrcl |
|
263 |
152 262
|
syl |
|
264 |
263
|
ad2antrr |
|
265 |
|
xrmax2 |
|
266 |
261 264 265
|
sylancr |
|
267 |
256
|
nn0red |
|
268 |
267
|
rexrd |
|
269 |
|
ifcl |
|
270 |
264 261 269
|
sylancl |
|
271 |
|
xrletr |
|
272 |
268 264 270 271
|
syl3anc |
|
273 |
266 272
|
mpan2d |
|
274 |
260 273
|
syld |
|
275 |
274 256
|
jctild |
|
276 |
257 57 93
|
deg1cl |
|
277 |
152 276
|
syl |
|
278 |
|
elun |
|
279 |
277 278
|
sylib |
|
280 |
|
nn0ge0 |
|
281 |
280
|
iftrued |
|
282 |
|
id |
|
283 |
281 282
|
eqeltrd |
|
284 |
|
mnflt0 |
|
285 |
|
mnfxr |
|
286 |
|
xrltnle |
|
287 |
285 261 286
|
mp2an |
|
288 |
284 287
|
mpbi |
|
289 |
|
elsni |
|
290 |
289
|
breq2d |
|
291 |
288 290
|
mtbiri |
|
292 |
291
|
iffalsed |
|
293 |
|
0nn0 |
|
294 |
292 293
|
eqeltrdi |
|
295 |
283 294
|
jaoi |
|
296 |
279 295
|
syl |
|
297 |
296
|
ad2antrr |
|
298 |
|
fznn0 |
|
299 |
297 298
|
syl |
|
300 |
275 299
|
sylibrd |
|
301 |
300
|
necon1bd |
|
302 |
253 301
|
mpd |
|
303 |
302
|
oveq1d |
|
304 |
255 244
|
sylan2 |
|
305 |
304
|
mul02d |
|
306 |
303 305
|
eqtrd |
|
307 |
306
|
an32s |
|
308 |
307
|
mpteq2dva |
|
309 |
|
fconstmpt |
|
310 |
|
ringmnd |
|
311 |
13 310
|
ax-mp |
|
312 |
7 21
|
pws0g |
|
313 |
311 10 312
|
mp2an |
|
314 |
309 313
|
eqtr3i |
|
315 |
308 314
|
eqtrdi |
|
316 |
315 166
|
suppss2 |
|
317 |
|
suppssfifsupp |
|
318 |
250 251 316 317
|
syl12anc |
|
319 |
7 8 9 241 166 242 246 318
|
pwsgsum |
|
320 |
|
fz0ssnn0 |
|
321 |
|
resmpt |
|
322 |
320 321
|
ax-mp |
|
323 |
322
|
oveq2i |
|
324 |
13 14
|
mp1i |
|
325 |
165
|
a1i |
|
326 |
245
|
fmpttd |
|
327 |
306 325
|
suppss2 |
|
328 |
165
|
mptex |
|
329 |
|
funmpt |
|
330 |
328 329 209
|
3pm3.2i |
|
331 |
330
|
a1i |
|
332 |
|
fzfid |
|
333 |
|
suppssfifsupp |
|
334 |
331 332 327 333
|
syl12anc |
|
335 |
8 21 324 325 326 327 334
|
gsumres |
|
336 |
|
elfznn0 |
|
337 |
336 245
|
sylan2 |
|
338 |
332 337
|
gsumfsum |
|
339 |
323 335 338
|
3eqtr3a |
|
340 |
339
|
mpteq2dva |
|
341 |
240 319 340
|
3eqtrd |
|
342 |
16
|
adantr |
|
343 |
|
elplyr |
|
344 |
342 296 179 343
|
syl3anc |
|
345 |
341 344
|
eqeltrd |
|
346 |
|
eleq1 |
|
347 |
345 346
|
syl5ibcom |
|
348 |
347
|
rexlimdva |
|
349 |
151 348
|
syl5 |
|
350 |
147 349
|
impbid |
|
351 |
350
|
eqrdv |
|