Metamath Proof Explorer


Theorem plypf1

Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015) (Proof shortened by AV, 29-Sep-2019)

Ref Expression
Hypotheses plypf1.r R=fld𝑠S
plypf1.p P=Poly1R
plypf1.a A=BaseP
plypf1.e E=eval1fld
Assertion plypf1 SSubRingfldPolyS=EA

Proof

Step Hyp Ref Expression
1 plypf1.r R=fld𝑠S
2 plypf1.p P=Poly1R
3 plypf1.a A=BaseP
4 plypf1.e E=eval1fld
5 elply fPolySSn0aS00f=zk=0nakzk
6 5 simprbi fPolySn0aS00f=zk=0nakzk
7 eqid fld𝑠=fld𝑠
8 cnfldbas =Basefld
9 eqid 0fld𝑠=0fld𝑠
10 cnex V
11 10 a1i SSubRingfldn0aS00V
12 fzfid SSubRingfldn0aS000nFin
13 cnring fldRing
14 ringcmn fldRingfldCMnd
15 13 14 mp1i SSubRingfldn0aS00fldCMnd
16 8 subrgss SSubRingfldS
17 16 ad2antrr SSubRingfldn0aS00k0nS
18 elmapi aS00a:0S0
19 18 ad2antll SSubRingfldn0aS00a:0S0
20 subrgsubg SSubRingfldSSubGrpfld
21 cnfld0 0=0fld
22 21 subg0cl SSubGrpfld0S
23 20 22 syl SSubRingfld0S
24 23 adantr SSubRingfldn0aS000S
25 24 snssd SSubRingfldn0aS000S
26 ssequn2 0SS0=S
27 25 26 sylib SSubRingfldn0aS00S0=S
28 27 feq3d SSubRingfldn0aS00a:0S0a:0S
29 19 28 mpbid SSubRingfldn0aS00a:0S
30 elfznn0 k0nk0
31 ffvelcdm a:0Sk0akS
32 29 30 31 syl2an SSubRingfldn0aS00k0nakS
33 17 32 sseldd SSubRingfldn0aS00k0nak
34 33 adantrl SSubRingfldn0aS00zk0nak
35 simprl SSubRingfldn0aS00zk0nz
36 30 ad2antll SSubRingfldn0aS00zk0nk0
37 expcl zk0zk
38 35 36 37 syl2anc SSubRingfldn0aS00zk0nzk
39 34 38 mulcld SSubRingfldn0aS00zk0nakzk
40 eqid k0nzakzk=k0nzakzk
41 10 mptex zakzkV
42 41 a1i SSubRingfldn0aS00k0nzakzkV
43 fvex 0fld𝑠V
44 43 a1i SSubRingfldn0aS000fld𝑠V
45 40 12 42 44 fsuppmptdm SSubRingfldn0aS00finSupp0fld𝑠k0nzakzk
46 7 8 9 11 12 15 39 45 pwsgsum SSubRingfldn0aS00fld𝑠k=0nzakzk=zfldk=0nakzk
47 fzfid SSubRingfldn0aS00z0nFin
48 39 anassrs SSubRingfldn0aS00zk0nakzk
49 47 48 gsumfsum SSubRingfldn0aS00zfldk=0nakzk=k=0nakzk
50 49 mpteq2dva SSubRingfldn0aS00zfldk=0nakzk=zk=0nakzk
51 46 50 eqtrd SSubRingfldn0aS00fld𝑠k=0nzakzk=zk=0nakzk
52 7 pwsring fldRingVfld𝑠Ring
53 13 10 52 mp2an fld𝑠Ring
54 ringcmn fld𝑠Ringfld𝑠CMnd
55 53 54 mp1i SSubRingfldn0aS00fld𝑠CMnd
56 cncrng fldCRing
57 eqid Poly1fld=Poly1fld
58 4 57 7 8 evl1rhm fldCRingEPoly1fldRingHomfld𝑠
59 56 58 ax-mp EPoly1fldRingHomfld𝑠
60 57 1 2 3 subrgply1 SSubRingfldASubRingPoly1fld
61 60 adantr SSubRingfldn0aS00ASubRingPoly1fld
62 rhmima EPoly1fldRingHomfld𝑠ASubRingPoly1fldEASubRingfld𝑠
63 59 61 62 sylancr SSubRingfldn0aS00EASubRingfld𝑠
64 subrgsubg EASubRingfld𝑠EASubGrpfld𝑠
65 subgsubm EASubGrpfld𝑠EASubMndfld𝑠
66 63 64 65 3syl SSubRingfldn0aS00EASubMndfld𝑠
67 eqid Basefld𝑠=Basefld𝑠
68 13 a1i SSubRingfldn0aS00k0nfldRing
69 10 a1i SSubRingfldn0aS00k0nV
70 fconst6g ak×ak:
71 33 70 syl SSubRingfldn0aS00k0n×ak:
72 7 8 67 pwselbasb fldRingV×akBasefld𝑠×ak:
73 13 10 72 mp2an ×akBasefld𝑠×ak:
74 71 73 sylibr SSubRingfldn0aS00k0n×akBasefld𝑠
75 38 anass1rs SSubRingfldn0aS00k0nzzk
76 75 fmpttd SSubRingfldn0aS00k0nzzk:
77 7 8 67 pwselbasb fldRingVzzkBasefld𝑠zzk:
78 13 10 77 mp2an zzkBasefld𝑠zzk:
79 76 78 sylibr SSubRingfldn0aS00k0nzzkBasefld𝑠
80 cnfldmul ×=fld
81 eqid fld𝑠=fld𝑠
82 7 67 68 69 74 79 80 81 pwsmulrval SSubRingfldn0aS00k0n×akfld𝑠zzk=×ak×fzzk
83 33 adantr SSubRingfldn0aS00k0nzak
84 fconstmpt ×ak=zak
85 84 a1i SSubRingfldn0aS00k0n×ak=zak
86 eqidd SSubRingfldn0aS00k0nzzk=zzk
87 69 83 75 85 86 offval2 SSubRingfldn0aS00k0n×ak×fzzk=zakzk
88 82 87 eqtrd SSubRingfldn0aS00k0n×akfld𝑠zzk=zakzk
89 63 adantr SSubRingfldn0aS00k0nEASubRingfld𝑠
90 eqid algScPoly1fld=algScPoly1fld
91 4 57 8 90 evl1sca fldCRingakEalgScPoly1fldak=×ak
92 56 33 91 sylancr SSubRingfldn0aS00k0nEalgScPoly1fldak=×ak
93 eqid BasePoly1fld=BasePoly1fld
94 93 67 rhmf EPoly1fldRingHomfld𝑠E:BasePoly1fldBasefld𝑠
95 59 94 ax-mp E:BasePoly1fldBasefld𝑠
96 ffn E:BasePoly1fldBasefld𝑠EFnBasePoly1fld
97 95 96 mp1i SSubRingfldn0aS00k0nEFnBasePoly1fld
98 93 subrgss ASubRingPoly1fldABasePoly1fld
99 60 98 syl SSubRingfldABasePoly1fld
100 99 ad2antrr SSubRingfldn0aS00k0nABasePoly1fld
101 simpll SSubRingfldn0aS00k0nSSubRingfld
102 57 90 1 2 101 3 8 33 subrg1asclcl SSubRingfldn0aS00k0nalgScPoly1fldakAakS
103 32 102 mpbird SSubRingfldn0aS00k0nalgScPoly1fldakA
104 fnfvima EFnBasePoly1fldABasePoly1fldalgScPoly1fldakAEalgScPoly1fldakEA
105 97 100 103 104 syl3anc SSubRingfldn0aS00k0nEalgScPoly1fldakEA
106 92 105 eqeltrrd SSubRingfldn0aS00k0n×akEA
107 67 subrgss EASubRingfld𝑠EABasefld𝑠
108 89 107 syl SSubRingfldn0aS00k0nEABasefld𝑠
109 60 ad2antrr SSubRingfldn0aS00k0nASubRingPoly1fld
110 eqid mulGrpPoly1fld=mulGrpPoly1fld
111 110 subrgsubm ASubRingPoly1fldASubMndmulGrpPoly1fld
112 109 111 syl SSubRingfldn0aS00k0nASubMndmulGrpPoly1fld
113 30 adantl SSubRingfldn0aS00k0nk0
114 eqid var1fld=var1fld
115 114 101 1 2 3 subrgvr1cl SSubRingfldn0aS00k0nvar1fldA
116 eqid mulGrpPoly1fld=mulGrpPoly1fld
117 116 submmulgcl ASubMndmulGrpPoly1fldk0var1fldAkmulGrpPoly1fldvar1fldA
118 112 113 115 117 syl3anc SSubRingfldn0aS00k0nkmulGrpPoly1fldvar1fldA
119 fnfvima EFnBasePoly1fldABasePoly1fldkmulGrpPoly1fldvar1fldAEkmulGrpPoly1fldvar1fldEA
120 97 100 118 119 syl3anc SSubRingfldn0aS00k0nEkmulGrpPoly1fldvar1fldEA
121 108 120 sseldd SSubRingfldn0aS00k0nEkmulGrpPoly1fldvar1fldBasefld𝑠
122 7 8 67 68 69 121 pwselbas SSubRingfldn0aS00k0nEkmulGrpPoly1fldvar1fld:
123 122 feqmptd SSubRingfldn0aS00k0nEkmulGrpPoly1fldvar1fld=zEkmulGrpPoly1fldvar1fldz
124 56 a1i SSubRingfldn0aS00k0nzfldCRing
125 simpr SSubRingfldn0aS00k0nzz
126 4 114 8 57 93 124 125 evl1vard SSubRingfldn0aS00k0nzvar1fldBasePoly1fldEvar1fldz=z
127 eqid mulGrpfld=mulGrpfld
128 113 adantr SSubRingfldn0aS00k0nzk0
129 4 57 8 93 124 125 126 116 127 128 evl1expd SSubRingfldn0aS00k0nzkmulGrpPoly1fldvar1fldBasePoly1fldEkmulGrpPoly1fldvar1fldz=kmulGrpfldz
130 129 simprd SSubRingfldn0aS00k0nzEkmulGrpPoly1fldvar1fldz=kmulGrpfldz
131 cnfldexp zk0kmulGrpfldz=zk
132 125 128 131 syl2anc SSubRingfldn0aS00k0nzkmulGrpfldz=zk
133 130 132 eqtrd SSubRingfldn0aS00k0nzEkmulGrpPoly1fldvar1fldz=zk
134 133 mpteq2dva SSubRingfldn0aS00k0nzEkmulGrpPoly1fldvar1fldz=zzk
135 123 134 eqtrd SSubRingfldn0aS00k0nEkmulGrpPoly1fldvar1fld=zzk
136 135 120 eqeltrrd SSubRingfldn0aS00k0nzzkEA
137 81 subrgmcl EASubRingfld𝑠×akEAzzkEA×akfld𝑠zzkEA
138 89 106 136 137 syl3anc SSubRingfldn0aS00k0n×akfld𝑠zzkEA
139 88 138 eqeltrrd SSubRingfldn0aS00k0nzakzkEA
140 139 fmpttd SSubRingfldn0aS00k0nzakzk:0nEA
141 40 12 139 44 fsuppmptdm SSubRingfldn0aS00finSupp0fld𝑠k0nzakzk
142 9 55 12 66 140 141 gsumsubmcl SSubRingfldn0aS00fld𝑠k=0nzakzkEA
143 51 142 eqeltrrd SSubRingfldn0aS00zk=0nakzkEA
144 eleq1 f=zk=0nakzkfEAzk=0nakzkEA
145 143 144 syl5ibrcom SSubRingfldn0aS00f=zk=0nakzkfEA
146 145 rexlimdvva SSubRingfldn0aS00f=zk=0nakzkfEA
147 6 146 syl5 SSubRingfldfPolySfEA
148 ffun E:BasePoly1fldBasefld𝑠FunE
149 95 148 ax-mp FunE
150 fvelima FunEfEAaAEa=f
151 149 150 mpan fEAaAEa=f
152 99 sselda SSubRingfldaAaBasePoly1fld
153 eqid Poly1fld=Poly1fld
154 eqid coe1a=coe1a
155 57 114 93 153 110 116 154 ply1coe fldRingaBasePoly1flda=Poly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
156 13 152 155 sylancr SSubRingfldaAa=Poly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
157 156 fveq2d SSubRingfldaAEa=EPoly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
158 eqid 0Poly1fld=0Poly1fld
159 57 ply1ring fldRingPoly1fldRing
160 13 159 ax-mp Poly1fldRing
161 ringcmn Poly1fldRingPoly1fldCMnd
162 160 161 mp1i SSubRingfldaAPoly1fldCMnd
163 ringmnd fld𝑠Ringfld𝑠Mnd
164 53 163 mp1i SSubRingfldaAfld𝑠Mnd
165 nn0ex 0V
166 165 a1i SSubRingfldaA0V
167 rhmghm EPoly1fldRingHomfld𝑠EPoly1fldGrpHomfld𝑠
168 59 167 ax-mp EPoly1fldGrpHomfld𝑠
169 ghmmhm EPoly1fldGrpHomfld𝑠EPoly1fldMndHomfld𝑠
170 168 169 mp1i SSubRingfldaAEPoly1fldMndHomfld𝑠
171 57 ply1lmod fldRingPoly1fldLMod
172 13 171 mp1i SSubRingfldaAk0Poly1fldLMod
173 16 ad2antrr SSubRingfldaAk0S
174 eqid BaseR=BaseR
175 154 3 2 174 coe1f aAcoe1a:0BaseR
176 1 subrgbas SSubRingfldS=BaseR
177 176 feq3d SSubRingfldcoe1a:0Scoe1a:0BaseR
178 175 177 imbitrrid SSubRingfldaAcoe1a:0S
179 178 imp SSubRingfldaAcoe1a:0S
180 179 ffvelcdmda SSubRingfldaAk0coe1akS
181 173 180 sseldd SSubRingfldaAk0coe1ak
182 110 93 mgpbas BasePoly1fld=BasemulGrpPoly1fld
183 110 ringmgp Poly1fldRingmulGrpPoly1fldMnd
184 160 183 mp1i SSubRingfldaAk0mulGrpPoly1fldMnd
185 simpr SSubRingfldaAk0k0
186 114 57 93 vr1cl fldRingvar1fldBasePoly1fld
187 13 186 mp1i SSubRingfldaAk0var1fldBasePoly1fld
188 182 116 184 185 187 mulgnn0cld SSubRingfldaAk0kmulGrpPoly1fldvar1fldBasePoly1fld
189 57 ply1sca fldRingfld=ScalarPoly1fld
190 13 189 ax-mp fld=ScalarPoly1fld
191 93 190 153 8 lmodvscl Poly1fldLModcoe1akkmulGrpPoly1fldvar1fldBasePoly1fldcoe1akPoly1fldkmulGrpPoly1fldvar1fldBasePoly1fld
192 172 181 188 191 syl3anc SSubRingfldaAk0coe1akPoly1fldkmulGrpPoly1fldvar1fldBasePoly1fld
193 192 fmpttd SSubRingfldaAk0coe1akPoly1fldkmulGrpPoly1fldvar1fld:0BasePoly1fld
194 165 mptex k0coe1akPoly1fldkmulGrpPoly1fldvar1fldV
195 funmpt Funk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
196 fvex 0Poly1fldV
197 194 195 196 3pm3.2i k0coe1akPoly1fldkmulGrpPoly1fldvar1fldVFunk0coe1akPoly1fldkmulGrpPoly1fldvar1fld0Poly1fldV
198 197 a1i SSubRingfldaAk0coe1akPoly1fldkmulGrpPoly1fldvar1fldVFunk0coe1akPoly1fldkmulGrpPoly1fldvar1fld0Poly1fldV
199 154 93 57 21 coe1sfi aBasePoly1fldfinSupp0coe1a
200 152 199 syl SSubRingfldaAfinSupp0coe1a
201 200 fsuppimpd SSubRingfldaAcoe1asupp0Fin
202 179 feqmptd SSubRingfldaAcoe1a=k0coe1ak
203 202 oveq1d SSubRingfldaAcoe1asupp0=k0coe1aksupp0
204 eqimss2 coe1asupp0=k0coe1aksupp0k0coe1aksupp0coe1asupp0
205 203 204 syl SSubRingfldaAk0coe1aksupp0coe1asupp0
206 13 171 mp1i SSubRingfldaAPoly1fldLMod
207 93 190 153 21 158 lmod0vs Poly1fldLModxBasePoly1fld0Poly1fldx=0Poly1fld
208 206 207 sylan SSubRingfldaAxBasePoly1fld0Poly1fldx=0Poly1fld
209 c0ex 0V
210 209 a1i SSubRingfldaA0V
211 205 208 180 188 210 suppssov1 SSubRingfldaAk0coe1akPoly1fldkmulGrpPoly1fldvar1fldsupp0Poly1fldcoe1asupp0
212 suppssfifsupp k0coe1akPoly1fldkmulGrpPoly1fldvar1fldVFunk0coe1akPoly1fldkmulGrpPoly1fldvar1fld0Poly1fldVcoe1asupp0Fink0coe1akPoly1fldkmulGrpPoly1fldvar1fldsupp0Poly1fldcoe1asupp0finSupp0Poly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
213 198 201 211 212 syl12anc SSubRingfldaAfinSupp0Poly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
214 93 158 162 164 166 170 193 213 gsummhm SSubRingfldaAfld𝑠Ek0coe1akPoly1fldkmulGrpPoly1fldvar1fld=EPoly1fldk0coe1akPoly1fldkmulGrpPoly1fldvar1fld
215 95 a1i SSubRingfldaAE:BasePoly1fldBasefld𝑠
216 215 192 cofmpt SSubRingfldaAEk0coe1akPoly1fldkmulGrpPoly1fldvar1fld=k0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fld
217 13 a1i SSubRingfldaAk0fldRing
218 10 a1i SSubRingfldaAk0V
219 95 ffvelcdmi coe1akPoly1fldkmulGrpPoly1fldvar1fldBasePoly1fldEcoe1akPoly1fldkmulGrpPoly1fldvar1fldBasefld𝑠
220 192 219 syl SSubRingfldaAk0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fldBasefld𝑠
221 7 8 67 217 218 220 pwselbas SSubRingfldaAk0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fld:
222 221 feqmptd SSubRingfldaAk0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fld=zEcoe1akPoly1fldkmulGrpPoly1fldvar1fldz
223 56 a1i SSubRingfldaAk0zfldCRing
224 simpr SSubRingfldaAk0zz
225 4 114 8 57 93 223 224 evl1vard SSubRingfldaAk0zvar1fldBasePoly1fldEvar1fldz=z
226 185 adantr SSubRingfldaAk0zk0
227 4 57 8 93 223 224 225 116 127 226 evl1expd SSubRingfldaAk0zkmulGrpPoly1fldvar1fldBasePoly1fldEkmulGrpPoly1fldvar1fldz=kmulGrpfldz
228 224 226 131 syl2anc SSubRingfldaAk0zkmulGrpfldz=zk
229 228 eqeq2d SSubRingfldaAk0zEkmulGrpPoly1fldvar1fldz=kmulGrpfldzEkmulGrpPoly1fldvar1fldz=zk
230 229 anbi2d SSubRingfldaAk0zkmulGrpPoly1fldvar1fldBasePoly1fldEkmulGrpPoly1fldvar1fldz=kmulGrpfldzkmulGrpPoly1fldvar1fldBasePoly1fldEkmulGrpPoly1fldvar1fldz=zk
231 227 230 mpbid SSubRingfldaAk0zkmulGrpPoly1fldvar1fldBasePoly1fldEkmulGrpPoly1fldvar1fldz=zk
232 181 adantr SSubRingfldaAk0zcoe1ak
233 4 57 8 93 223 224 231 232 153 80 evl1vsd SSubRingfldaAk0zcoe1akPoly1fldkmulGrpPoly1fldvar1fldBasePoly1fldEcoe1akPoly1fldkmulGrpPoly1fldvar1fldz=coe1akzk
234 233 simprd SSubRingfldaAk0zEcoe1akPoly1fldkmulGrpPoly1fldvar1fldz=coe1akzk
235 234 mpteq2dva SSubRingfldaAk0zEcoe1akPoly1fldkmulGrpPoly1fldvar1fldz=zcoe1akzk
236 222 235 eqtrd SSubRingfldaAk0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fld=zcoe1akzk
237 236 mpteq2dva SSubRingfldaAk0Ecoe1akPoly1fldkmulGrpPoly1fldvar1fld=k0zcoe1akzk
238 216 237 eqtrd SSubRingfldaAEk0coe1akPoly1fldkmulGrpPoly1fldvar1fld=k0zcoe1akzk
239 238 oveq2d SSubRingfldaAfld𝑠Ek0coe1akPoly1fldkmulGrpPoly1fldvar1fld=fld𝑠k0zcoe1akzk
240 157 214 239 3eqtr2d SSubRingfldaAEa=fld𝑠k0zcoe1akzk
241 10 a1i SSubRingfldaAV
242 13 14 mp1i SSubRingfldaAfldCMnd
243 181 adantlr SSubRingfldaAzk0coe1ak
244 37 adantll SSubRingfldaAzk0zk
245 243 244 mulcld SSubRingfldaAzk0coe1akzk
246 245 anasss SSubRingfldaAzk0coe1akzk
247 165 mptex k0zcoe1akzkV
248 funmpt Funk0zcoe1akzk
249 247 248 43 3pm3.2i k0zcoe1akzkVFunk0zcoe1akzk0fld𝑠V
250 249 a1i SSubRingfldaAk0zcoe1akzkVFunk0zcoe1akzk0fld𝑠V
251 fzfid SSubRingfldaA0if0deg1fldadeg1flda0Fin
252 eldifn k00if0deg1fldadeg1flda0¬k0if0deg1fldadeg1flda0
253 252 adantl SSubRingfldaAzk00if0deg1fldadeg1flda0¬k0if0deg1fldadeg1flda0
254 152 ad2antrr SSubRingfldaAzk00if0deg1fldadeg1flda0aBasePoly1fld
255 eldifi k00if0deg1fldadeg1flda0k0
256 255 adantl SSubRingfldaAzk00if0deg1fldadeg1flda0k0
257 eqid deg1fld=deg1fld
258 257 57 93 21 154 deg1ge aBasePoly1fldk0coe1ak0kdeg1flda
259 258 3expia aBasePoly1fldk0coe1ak0kdeg1flda
260 254 256 259 syl2anc SSubRingfldaAzk00if0deg1fldadeg1flda0coe1ak0kdeg1flda
261 0xr 0*
262 257 57 93 deg1xrcl aBasePoly1flddeg1flda*
263 152 262 syl SSubRingfldaAdeg1flda*
264 263 ad2antrr SSubRingfldaAzk00if0deg1fldadeg1flda0deg1flda*
265 xrmax2 0*deg1flda*deg1fldaif0deg1fldadeg1flda0
266 261 264 265 sylancr SSubRingfldaAzk00if0deg1fldadeg1flda0deg1fldaif0deg1fldadeg1flda0
267 256 nn0red SSubRingfldaAzk00if0deg1fldadeg1flda0k
268 267 rexrd SSubRingfldaAzk00if0deg1fldadeg1flda0k*
269 ifcl deg1flda*0*if0deg1fldadeg1flda0*
270 264 261 269 sylancl SSubRingfldaAzk00if0deg1fldadeg1flda0if0deg1fldadeg1flda0*
271 xrletr k*deg1flda*if0deg1fldadeg1flda0*kdeg1fldadeg1fldaif0deg1fldadeg1flda0kif0deg1fldadeg1flda0
272 268 264 270 271 syl3anc SSubRingfldaAzk00if0deg1fldadeg1flda0kdeg1fldadeg1fldaif0deg1fldadeg1flda0kif0deg1fldadeg1flda0
273 266 272 mpan2d SSubRingfldaAzk00if0deg1fldadeg1flda0kdeg1fldakif0deg1fldadeg1flda0
274 260 273 syld SSubRingfldaAzk00if0deg1fldadeg1flda0coe1ak0kif0deg1fldadeg1flda0
275 274 256 jctild SSubRingfldaAzk00if0deg1fldadeg1flda0coe1ak0k0kif0deg1fldadeg1flda0
276 257 57 93 deg1cl aBasePoly1flddeg1flda0−∞
277 152 276 syl SSubRingfldaAdeg1flda0−∞
278 elun deg1flda0−∞deg1flda0deg1flda−∞
279 277 278 sylib SSubRingfldaAdeg1flda0deg1flda−∞
280 nn0ge0 deg1flda00deg1flda
281 280 iftrued deg1flda0if0deg1fldadeg1flda0=deg1flda
282 id deg1flda0deg1flda0
283 281 282 eqeltrd deg1flda0if0deg1fldadeg1flda00
284 mnflt0 −∞<0
285 mnfxr −∞*
286 xrltnle −∞*0*−∞<0¬0−∞
287 285 261 286 mp2an −∞<0¬0−∞
288 284 287 mpbi ¬0−∞
289 elsni deg1flda−∞deg1flda=−∞
290 289 breq2d deg1flda−∞0deg1flda0−∞
291 288 290 mtbiri deg1flda−∞¬0deg1flda
292 291 iffalsed deg1flda−∞if0deg1fldadeg1flda0=0
293 0nn0 00
294 292 293 eqeltrdi deg1flda−∞if0deg1fldadeg1flda00
295 283 294 jaoi deg1flda0deg1flda−∞if0deg1fldadeg1flda00
296 279 295 syl SSubRingfldaAif0deg1fldadeg1flda00
297 296 ad2antrr SSubRingfldaAzk00if0deg1fldadeg1flda0if0deg1fldadeg1flda00
298 fznn0 if0deg1fldadeg1flda00k0if0deg1fldadeg1flda0k0kif0deg1fldadeg1flda0
299 297 298 syl SSubRingfldaAzk00if0deg1fldadeg1flda0k0if0deg1fldadeg1flda0k0kif0deg1fldadeg1flda0
300 275 299 sylibrd SSubRingfldaAzk00if0deg1fldadeg1flda0coe1ak0k0if0deg1fldadeg1flda0
301 300 necon1bd SSubRingfldaAzk00if0deg1fldadeg1flda0¬k0if0deg1fldadeg1flda0coe1ak=0
302 253 301 mpd SSubRingfldaAzk00if0deg1fldadeg1flda0coe1ak=0
303 302 oveq1d SSubRingfldaAzk00if0deg1fldadeg1flda0coe1akzk=0zk
304 255 244 sylan2 SSubRingfldaAzk00if0deg1fldadeg1flda0zk
305 304 mul02d SSubRingfldaAzk00if0deg1fldadeg1flda00zk=0
306 303 305 eqtrd SSubRingfldaAzk00if0deg1fldadeg1flda0coe1akzk=0
307 306 an32s SSubRingfldaAk00if0deg1fldadeg1flda0zcoe1akzk=0
308 307 mpteq2dva SSubRingfldaAk00if0deg1fldadeg1flda0zcoe1akzk=z0
309 fconstmpt ×0=z0
310 ringmnd fldRingfldMnd
311 13 310 ax-mp fldMnd
312 7 21 pws0g fldMndV×0=0fld𝑠
313 311 10 312 mp2an ×0=0fld𝑠
314 309 313 eqtr3i z0=0fld𝑠
315 308 314 eqtrdi SSubRingfldaAk00if0deg1fldadeg1flda0zcoe1akzk=0fld𝑠
316 315 166 suppss2 SSubRingfldaAk0zcoe1akzksupp0fld𝑠0if0deg1fldadeg1flda0
317 suppssfifsupp k0zcoe1akzkVFunk0zcoe1akzk0fld𝑠V0if0deg1fldadeg1flda0Fink0zcoe1akzksupp0fld𝑠0if0deg1fldadeg1flda0finSupp0fld𝑠k0zcoe1akzk
318 250 251 316 317 syl12anc SSubRingfldaAfinSupp0fld𝑠k0zcoe1akzk
319 7 8 9 241 166 242 246 318 pwsgsum SSubRingfldaAfld𝑠k0zcoe1akzk=zfldk0coe1akzk
320 fz0ssnn0 0if0deg1fldadeg1flda00
321 resmpt 0if0deg1fldadeg1flda00k0coe1akzk0if0deg1fldadeg1flda0=k0if0deg1fldadeg1flda0coe1akzk
322 320 321 ax-mp k0coe1akzk0if0deg1fldadeg1flda0=k0if0deg1fldadeg1flda0coe1akzk
323 322 oveq2i fldk0coe1akzk0if0deg1fldadeg1flda0=fldk=0if0deg1fldadeg1flda0coe1akzk
324 13 14 mp1i SSubRingfldaAzfldCMnd
325 165 a1i SSubRingfldaAz0V
326 245 fmpttd SSubRingfldaAzk0coe1akzk:0
327 306 325 suppss2 SSubRingfldaAzk0coe1akzksupp00if0deg1fldadeg1flda0
328 165 mptex k0coe1akzkV
329 funmpt Funk0coe1akzk
330 328 329 209 3pm3.2i k0coe1akzkVFunk0coe1akzk0V
331 330 a1i SSubRingfldaAzk0coe1akzkVFunk0coe1akzk0V
332 fzfid SSubRingfldaAz0if0deg1fldadeg1flda0Fin
333 suppssfifsupp k0coe1akzkVFunk0coe1akzk0V0if0deg1fldadeg1flda0Fink0coe1akzksupp00if0deg1fldadeg1flda0finSupp0k0coe1akzk
334 331 332 327 333 syl12anc SSubRingfldaAzfinSupp0k0coe1akzk
335 8 21 324 325 326 327 334 gsumres SSubRingfldaAzfldk0coe1akzk0if0deg1fldadeg1flda0=fldk0coe1akzk
336 elfznn0 k0if0deg1fldadeg1flda0k0
337 336 245 sylan2 SSubRingfldaAzk0if0deg1fldadeg1flda0coe1akzk
338 332 337 gsumfsum SSubRingfldaAzfldk=0if0deg1fldadeg1flda0coe1akzk=k=0if0deg1fldadeg1flda0coe1akzk
339 323 335 338 3eqtr3a SSubRingfldaAzfldk0coe1akzk=k=0if0deg1fldadeg1flda0coe1akzk
340 339 mpteq2dva SSubRingfldaAzfldk0coe1akzk=zk=0if0deg1fldadeg1flda0coe1akzk
341 240 319 340 3eqtrd SSubRingfldaAEa=zk=0if0deg1fldadeg1flda0coe1akzk
342 16 adantr SSubRingfldaAS
343 elplyr Sif0deg1fldadeg1flda00coe1a:0Szk=0if0deg1fldadeg1flda0coe1akzkPolyS
344 342 296 179 343 syl3anc SSubRingfldaAzk=0if0deg1fldadeg1flda0coe1akzkPolyS
345 341 344 eqeltrd SSubRingfldaAEaPolyS
346 eleq1 Ea=fEaPolySfPolyS
347 345 346 syl5ibcom SSubRingfldaAEa=ffPolyS
348 347 rexlimdva SSubRingfldaAEa=ffPolyS
349 151 348 syl5 SSubRingfldfEAfPolyS
350 147 349 impbid SSubRingfldfPolySfEA
351 350 eqrdv SSubRingfldPolyS=EA