Metamath Proof Explorer


Theorem poimirlem20

Description: Lemma for poimir establishing existence for poimirlem21 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
poimirlem22.2 φTS
poimirlem22.3 φn1NpranFpn0
poimirlem21.4 φ2ndT=N
Assertion poimirlem20 φzSzT

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 poimirlem22.2 φTS
5 poimirlem22.3 φn1NpranFpn0
6 poimirlem21.4 φ2ndT=N
7 oveq2 1=ifn=2nd1stTN101st1stTn1=1st1stTnifn=2nd1stTN10
8 7 eleq1d 1=ifn=2nd1stTN101st1stTn10..^K1st1stTnifn=2nd1stTN100..^K
9 oveq2 0=ifn=2nd1stTN101st1stTn0=1st1stTnifn=2nd1stTN10
10 9 eleq1d 0=ifn=2nd1stTN101st1stTn00..^K1st1stTnifn=2nd1stTN100..^K
11 fveq2 n=2nd1stTN1st1stTn=1st1stT2nd1stTN
12 11 oveq1d n=2nd1stTN1st1stTn1=1st1stT2nd1stTN1
13 12 adantl φn=2nd1stTN1st1stTn1=1st1stT2nd1stTN1
14 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
15 14 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
16 4 15 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
17 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
18 16 17 syl φ1stT0..^K1N×f|f:1N1-1 onto1N
19 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
20 18 19 syl φ1st1stT0..^K1N
21 elmapi 1st1stT0..^K1N1st1stT:1N0..^K
22 20 21 syl φ1st1stT:1N0..^K
23 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
24 18 23 syl φ2nd1stTf|f:1N1-1 onto1N
25 fvex 2nd1stTV
26 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
27 25 26 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
28 24 27 sylib φ2nd1stT:1N1-1 onto1N
29 f1of 2nd1stT:1N1-1 onto1N2nd1stT:1N1N
30 28 29 syl φ2nd1stT:1N1N
31 elfz1end NN1N
32 1 31 sylib φN1N
33 30 32 ffvelcdmd φ2nd1stTN1N
34 22 33 ffvelcdmd φ1st1stT2nd1stTN0..^K
35 elfzonn0 1st1stT2nd1stTN0..^K1st1stT2nd1stTN0
36 34 35 syl φ1st1stT2nd1stTN0
37 fvex 2nd1stTNV
38 eleq1 n=2nd1stTNn1N2nd1stTN1N
39 38 anbi2d n=2nd1stTNφn1Nφ2nd1stTN1N
40 fveq2 n=2nd1stTNpn=p2nd1stTN
41 40 neeq1d n=2nd1stTNpn0p2nd1stTN0
42 41 rexbidv n=2nd1stTNpranFpn0pranFp2nd1stTN0
43 39 42 imbi12d n=2nd1stTNφn1NpranFpn0φ2nd1stTN1NpranFp2nd1stTN0
44 37 43 5 vtocl φ2nd1stTN1NpranFp2nd1stTN0
45 33 44 mpdan φpranFp2nd1stTN0
46 fveq1 p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0p2nd1stTN=1st1stT+f2nd1stT1y×12nd1stTy+1N×02nd1stTN
47 22 ffnd φ1st1stTFn1N
48 47 adantr φy0N11st1stTFn1N
49 1ex 1V
50 fnconstg 1V2nd1stT1y×1Fn2nd1stT1y
51 49 50 ax-mp 2nd1stT1y×1Fn2nd1stT1y
52 c0ex 0V
53 fnconstg 0V2nd1stTy+1N×0Fn2nd1stTy+1N
54 52 53 ax-mp 2nd1stTy+1N×0Fn2nd1stTy+1N
55 51 54 pm3.2i 2nd1stT1y×1Fn2nd1stT1y2nd1stTy+1N×0Fn2nd1stTy+1N
56 dff1o3 2nd1stT:1N1-1 onto1N2nd1stT:1Nonto1NFun2nd1stT-1
57 56 simprbi 2nd1stT:1N1-1 onto1NFun2nd1stT-1
58 28 57 syl φFun2nd1stT-1
59 imain Fun2nd1stT-12nd1stT1yy+1N=2nd1stT1y2nd1stTy+1N
60 58 59 syl φ2nd1stT1yy+1N=2nd1stT1y2nd1stTy+1N
61 elfznn0 y0N1y0
62 61 nn0red y0N1y
63 62 ltp1d y0N1y<y+1
64 fzdisj y<y+11yy+1N=
65 63 64 syl y0N11yy+1N=
66 65 imaeq2d y0N12nd1stT1yy+1N=2nd1stT
67 ima0 2nd1stT=
68 66 67 eqtrdi y0N12nd1stT1yy+1N=
69 60 68 sylan9req φy0N12nd1stT1y2nd1stTy+1N=
70 fnun 2nd1stT1y×1Fn2nd1stT1y2nd1stTy+1N×0Fn2nd1stTy+1N2nd1stT1y2nd1stTy+1N=2nd1stT1y×12nd1stTy+1N×0Fn2nd1stT1y2nd1stTy+1N
71 55 69 70 sylancr φy0N12nd1stT1y×12nd1stTy+1N×0Fn2nd1stT1y2nd1stTy+1N
72 imaundi 2nd1stT1yy+1N=2nd1stT1y2nd1stTy+1N
73 nn0p1nn y0y+1
74 nnuz =1
75 73 74 eleqtrdi y0y+11
76 61 75 syl y0N1y+11
77 76 adantl φy0N1y+11
78 1 nncnd φN
79 npcan1 NN-1+1=N
80 78 79 syl φN-1+1=N
81 80 adantr φy0N1N-1+1=N
82 elfzuz3 y0N1N1y
83 peano2uz N1yN-1+1y
84 82 83 syl y0N1N-1+1y
85 84 adantl φy0N1N-1+1y
86 81 85 eqeltrrd φy0N1Ny
87 fzsplit2 y+11Ny1N=1yy+1N
88 77 86 87 syl2anc φy0N11N=1yy+1N
89 88 imaeq2d φy0N12nd1stT1N=2nd1stT1yy+1N
90 f1ofo 2nd1stT:1N1-1 onto1N2nd1stT:1Nonto1N
91 foima 2nd1stT:1Nonto1N2nd1stT1N=1N
92 28 90 91 3syl φ2nd1stT1N=1N
93 92 adantr φy0N12nd1stT1N=1N
94 89 93 eqtr3d φy0N12nd1stT1yy+1N=1N
95 72 94 eqtr3id φy0N12nd1stT1y2nd1stTy+1N=1N
96 95 fneq2d φy0N12nd1stT1y×12nd1stTy+1N×0Fn2nd1stT1y2nd1stTy+1N2nd1stT1y×12nd1stTy+1N×0Fn1N
97 71 96 mpbid φy0N12nd1stT1y×12nd1stTy+1N×0Fn1N
98 ovex 1NV
99 98 a1i φy0N11NV
100 inidm 1N1N=1N
101 eqidd φy0N12nd1stTN1N1st1stT2nd1stTN=1st1stT2nd1stTN
102 f1ofn 2nd1stT:1N1-1 onto1N2nd1stTFn1N
103 28 102 syl φ2nd1stTFn1N
104 103 adantr φy0N12nd1stTFn1N
105 fzss1 y+11y+1N1N
106 76 105 syl y0N1y+1N1N
107 106 adantl φy0N1y+1N1N
108 eluzp1p1 N1yN-1+1y+1
109 uzss N-1+1y+1N-1+1y+1
110 82 108 109 3syl y0N1N-1+1y+1
111 110 adantl φy0N1N-1+1y+1
112 1 nnzd φN
113 112 uzidd φNN
114 80 fveq2d φN-1+1=N
115 113 114 eleqtrrd φNN-1+1
116 115 adantr φy0N1NN-1+1
117 111 116 sseldd φy0N1Ny+1
118 eluzfz2 Ny+1Ny+1N
119 117 118 syl φy0N1Ny+1N
120 fnfvima 2nd1stTFn1Ny+1N1NNy+1N2nd1stTN2nd1stTy+1N
121 104 107 119 120 syl3anc φy0N12nd1stTN2nd1stTy+1N
122 fvun2 2nd1stT1y×1Fn2nd1stT1y2nd1stTy+1N×0Fn2nd1stTy+1N2nd1stT1y2nd1stTy+1N=2nd1stTN2nd1stTy+1N2nd1stT1y×12nd1stTy+1N×02nd1stTN=2nd1stTy+1N×02nd1stTN
123 51 54 122 mp3an12 2nd1stT1y2nd1stTy+1N=2nd1stTN2nd1stTy+1N2nd1stT1y×12nd1stTy+1N×02nd1stTN=2nd1stTy+1N×02nd1stTN
124 69 121 123 syl2anc φy0N12nd1stT1y×12nd1stTy+1N×02nd1stTN=2nd1stTy+1N×02nd1stTN
125 52 fvconst2 2nd1stTN2nd1stTy+1N2nd1stTy+1N×02nd1stTN=0
126 121 125 syl φy0N12nd1stTy+1N×02nd1stTN=0
127 124 126 eqtrd φy0N12nd1stT1y×12nd1stTy+1N×02nd1stTN=0
128 127 adantr φy0N12nd1stTN1N2nd1stT1y×12nd1stTy+1N×02nd1stTN=0
129 48 97 99 99 100 101 128 ofval φy0N12nd1stTN1N1st1stT+f2nd1stT1y×12nd1stTy+1N×02nd1stTN=1st1stT2nd1stTN+0
130 33 129 mpidan φy0N11st1stT+f2nd1stT1y×12nd1stTy+1N×02nd1stTN=1st1stT2nd1stTN+0
131 36 nn0cnd φ1st1stT2nd1stTN
132 131 addridd φ1st1stT2nd1stTN+0=1st1stT2nd1stTN
133 132 adantr φy0N11st1stT2nd1stTN+0=1st1stT2nd1stTN
134 130 133 eqtrd φy0N11st1stT+f2nd1stT1y×12nd1stTy+1N×02nd1stTN=1st1stT2nd1stTN
135 46 134 sylan9eqr φy0N1p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0p2nd1stTN=1st1stT2nd1stTN
136 135 adantllr φpranFy0N1p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0p2nd1stTN=1st1stT2nd1stTN
137 fveq2 t=T2ndt=2ndT
138 137 breq2d t=Ty<2ndty<2ndT
139 138 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
140 2fveq3 t=T1st1stt=1st1stT
141 2fveq3 t=T2nd1stt=2nd1stT
142 141 imaeq1d t=T2nd1stt1j=2nd1stT1j
143 142 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
144 141 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
145 144 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
146 143 145 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
147 140 146 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
148 139 147 csbeq12dv t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
149 148 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
150 149 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
151 150 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
152 151 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
153 4 152 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
154 62 adantl φy0N1y
155 peano2zm NN1
156 112 155 syl φN1
157 156 zred φN1
158 157 adantr φy0N1N1
159 1 nnred φN
160 159 adantr φy0N1N
161 elfzle2 y0N1yN1
162 161 adantl φy0N1yN1
163 159 ltm1d φN1<N
164 163 adantr φy0N1N1<N
165 154 158 160 162 164 lelttrd φy0N1y<N
166 6 adantr φy0N12ndT=N
167 165 166 breqtrrd φy0N1y<2ndT
168 167 iftrued φy0N1ify<2ndTyy+1=y
169 168 csbeq1d φy0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=y/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
170 vex yV
171 oveq2 j=y1j=1y
172 171 imaeq2d j=y2nd1stT1j=2nd1stT1y
173 172 xpeq1d j=y2nd1stT1j×1=2nd1stT1y×1
174 oveq1 j=yj+1=y+1
175 174 oveq1d j=yj+1N=y+1N
176 175 imaeq2d j=y2nd1stTj+1N=2nd1stTy+1N
177 176 xpeq1d j=y2nd1stTj+1N×0=2nd1stTy+1N×0
178 173 177 uneq12d j=y2nd1stT1j×12nd1stTj+1N×0=2nd1stT1y×12nd1stTy+1N×0
179 178 oveq2d j=y1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
180 170 179 csbie y/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
181 169 180 eqtrdi φy0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
182 181 mpteq2dva φy0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=y0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0
183 153 182 eqtrd φF=y0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0
184 183 rneqd φranF=rany0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0
185 184 eleq2d φpranFprany0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0
186 eqid y0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0=y0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0
187 ovex 1st1stT+f2nd1stT1y×12nd1stTy+1N×0V
188 186 187 elrnmpti prany0N11st1stT+f2nd1stT1y×12nd1stTy+1N×0y0N1p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
189 185 188 bitrdi φpranFy0N1p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
190 189 biimpa φpranFy0N1p=1st1stT+f2nd1stT1y×12nd1stTy+1N×0
191 136 190 r19.29a φpranFp2nd1stTN=1st1stT2nd1stTN
192 191 neeq1d φpranFp2nd1stTN01st1stT2nd1stTN0
193 192 biimpd φpranFp2nd1stTN01st1stT2nd1stTN0
194 193 rexlimdva φpranFp2nd1stTN01st1stT2nd1stTN0
195 45 194 mpd φ1st1stT2nd1stTN0
196 elnnne0 1st1stT2nd1stTN1st1stT2nd1stTN01st1stT2nd1stTN0
197 36 195 196 sylanbrc φ1st1stT2nd1stTN
198 nnm1nn0 1st1stT2nd1stTN1st1stT2nd1stTN10
199 197 198 syl φ1st1stT2nd1stTN10
200 elfzo0 1st1stT2nd1stTN0..^K1st1stT2nd1stTN0K1st1stT2nd1stTN<K
201 34 200 sylib φ1st1stT2nd1stTN0K1st1stT2nd1stTN<K
202 201 simp2d φK
203 199 nn0red φ1st1stT2nd1stTN1
204 36 nn0red φ1st1stT2nd1stTN
205 202 nnred φK
206 204 ltm1d φ1st1stT2nd1stTN1<1st1stT2nd1stTN
207 elfzolt2 1st1stT2nd1stTN0..^K1st1stT2nd1stTN<K
208 34 207 syl φ1st1stT2nd1stTN<K
209 203 204 205 206 208 lttrd φ1st1stT2nd1stTN1<K
210 elfzo0 1st1stT2nd1stTN10..^K1st1stT2nd1stTN10K1st1stT2nd1stTN1<K
211 199 202 209 210 syl3anbrc φ1st1stT2nd1stTN10..^K
212 211 adantr φn=2nd1stTN1st1stT2nd1stTN10..^K
213 13 212 eqeltrd φn=2nd1stTN1st1stTn10..^K
214 213 adantlr φn1Nn=2nd1stTN1st1stTn10..^K
215 22 ffvelcdmda φn1N1st1stTn0..^K
216 elfzonn0 1st1stTn0..^K1st1stTn0
217 215 216 syl φn1N1st1stTn0
218 217 nn0cnd φn1N1st1stTn
219 218 subid1d φn1N1st1stTn0=1st1stTn
220 219 215 eqeltrd φn1N1st1stTn00..^K
221 220 adantr φn1N¬n=2nd1stTN1st1stTn00..^K
222 8 10 214 221 ifbothda φn1N1st1stTnifn=2nd1stTN100..^K
223 222 fmpttd φn1N1st1stTnifn=2nd1stTN10:1N0..^K
224 ovex 0..^KV
225 224 98 elmap n1N1st1stTnifn=2nd1stTN100..^K1Nn1N1st1stTnifn=2nd1stTN10:1N0..^K
226 223 225 sylibr φn1N1st1stTnifn=2nd1stTN100..^K1N
227 simpr φn1+1Nn1+1N
228 1z 1
229 peano2z 11+1
230 228 229 ax-mp 1+1
231 112 230 jctil φ1+1N
232 elfzelz n1+1Nn
233 232 228 jctir n1+1Nn1
234 fzsubel 1+1Nn1n1+1Nn11+1-1N1
235 231 233 234 syl2an φn1+1Nn1+1Nn11+1-1N1
236 227 235 mpbid φn1+1Nn11+1-1N1
237 ax-1cn 1
238 237 237 pncan3oi 1+1-1=1
239 238 oveq1i 1+1-1N1=1N1
240 236 239 eleqtrdi φn1+1Nn11N1
241 240 ralrimiva φn1+1Nn11N1
242 simpr φy1N1y1N1
243 156 228 jctil φ1N1
244 elfzelz y1N1y
245 244 228 jctir y1N1y1
246 fzaddel 1N1y1y1N1y+11+1N-1+1
247 243 245 246 syl2an φy1N1y1N1y+11+1N-1+1
248 242 247 mpbid φy1N1y+11+1N-1+1
249 80 oveq2d φ1+1N-1+1=1+1N
250 249 adantr φy1N11+1N-1+1=1+1N
251 248 250 eleqtrd φy1N1y+11+1N
252 232 zcnd n1+1Nn
253 244 zcnd y1N1y
254 subadd2 n1yn1=yy+1=n
255 237 254 mp3an2 nyn1=yy+1=n
256 eqcom y=n1n1=y
257 eqcom n=y+1y+1=n
258 255 256 257 3bitr4g nyy=n1n=y+1
259 252 253 258 syl2anr y1N1n1+1Ny=n1n=y+1
260 259 ralrimiva y1N1n1+1Ny=n1n=y+1
261 260 adantl φy1N1n1+1Ny=n1n=y+1
262 reu6i y+11+1Nn1+1Ny=n1n=y+1∃!n1+1Ny=n1
263 251 261 262 syl2anc φy1N1∃!n1+1Ny=n1
264 263 ralrimiva φy1N1∃!n1+1Ny=n1
265 eqid n1+1Nn1=n1+1Nn1
266 265 f1ompt n1+1Nn1:1+1N1-1 onto1N1n1+1Nn11N1y1N1∃!n1+1Ny=n1
267 241 264 266 sylanbrc φn1+1Nn1:1+1N1-1 onto1N1
268 f1osng 1VN1N:11-1 ontoN
269 49 1 268 sylancr φ1N:11-1 ontoN
270 157 159 ltnled φN1<N¬NN1
271 163 270 mpbid φ¬NN1
272 elfzle2 N1N1NN1
273 271 272 nsyl φ¬N1N1
274 disjsn 1N1N=¬N1N1
275 273 274 sylibr φ1N1N=
276 1re 1
277 276 ltp1i 1<1+1
278 230 zrei 1+1
279 276 278 ltnlei 1<1+1¬1+11
280 277 279 mpbi ¬1+11
281 elfzle1 11+1N1+11
282 280 281 mto ¬11+1N
283 disjsn 1+1N1=¬11+1N
284 282 283 mpbir 1+1N1=
285 f1oun n1+1Nn1:1+1N1-1 onto1N11N:11-1 ontoN1+1N1=1N1N=n1+1Nn11N:1+1N11-1 onto1N1N
286 284 285 mpanr1 n1+1Nn1:1+1N1-1 onto1N11N:11-1 ontoN1N1N=n1+1Nn11N:1+1N11-1 onto1N1N
287 267 269 275 286 syl21anc φn1+1Nn11N:1+1N11-1 onto1N1N
288 eleq1 n=1n1+1N11+1N
289 282 288 mtbiri n=1¬n1+1N
290 289 necon2ai n1+1Nn1
291 ifnefalse n1ifn=1Nn1=n1
292 290 291 syl n1+1Nifn=1Nn1=n1
293 292 mpteq2ia n1+1Nifn=1Nn1=n1+1Nn1
294 293 uneq1i n1+1Nifn=1Nn11N=n1+1Nn11N
295 49 a1i φ1V
296 1 74 eleqtrdi φN1
297 fzpred N11N=11+1N
298 296 297 syl φ1N=11+1N
299 uncom 11+1N=1+1N1
300 298 299 eqtr2di φ1+1N1=1N
301 iftrue n=1ifn=1Nn1=N
302 301 adantl φn=1ifn=1Nn1=N
303 295 1 300 302 fmptapd φn1+1Nifn=1Nn11N=n1Nifn=1Nn1
304 294 303 eqtr3id φn1+1Nn11N=n1Nifn=1Nn1
305 80 296 eqeltrd φN-1+11
306 uzid N1N1N1
307 peano2uz N1N1N-1+1N1
308 156 306 307 3syl φN-1+1N1
309 80 308 eqeltrrd φNN1
310 fzsplit2 N-1+11NN11N=1N1N-1+1N
311 305 309 310 syl2anc φ1N=1N1N-1+1N
312 80 oveq1d φN-1+1N=NN
313 fzsn NNN=N
314 112 313 syl φNN=N
315 312 314 eqtrd φN-1+1N=N
316 315 uneq2d φ1N1N-1+1N=1N1N
317 311 316 eqtr2d φ1N1N=1N
318 304 300 317 f1oeq123d φn1+1Nn11N:1+1N11-1 onto1N1Nn1Nifn=1Nn1:1N1-1 onto1N
319 287 318 mpbid φn1Nifn=1Nn1:1N1-1 onto1N
320 f1oco 2nd1stT:1N1-1 onto1Nn1Nifn=1Nn1:1N1-1 onto1N2nd1stTn1Nifn=1Nn1:1N1-1 onto1N
321 28 319 320 syl2anc φ2nd1stTn1Nifn=1Nn1:1N1-1 onto1N
322 98 mptex n1Nifn=1Nn1V
323 25 322 coex 2nd1stTn1Nifn=1Nn1V
324 f1oeq1 f=2nd1stTn1Nifn=1Nn1f:1N1-1 onto1N2nd1stTn1Nifn=1Nn1:1N1-1 onto1N
325 323 324 elab 2nd1stTn1Nifn=1Nn1f|f:1N1-1 onto1N2nd1stTn1Nifn=1Nn1:1N1-1 onto1N
326 321 325 sylibr φ2nd1stTn1Nifn=1Nn1f|f:1N1-1 onto1N
327 226 326 opelxpd φn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10..^K1N×f|f:1N1-1 onto1N
328 1 nnnn0d φN0
329 0elfz N000N
330 328 329 syl φ00N
331 327 330 opelxpd φn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn100..^K1N×f|f:1N1-1 onto1N×0N
332 1 2 3 4 5 6 poimirlem19 φF=y0N1n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
333 elfzle1 y0N10y
334 0re 0
335 lenlt 0y0y¬y<0
336 334 62 335 sylancr y0N10y¬y<0
337 333 336 mpbid y0N1¬y<0
338 337 iffalsed y0N1ify<0yy+1=y+1
339 338 csbeq1d y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=y+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
340 ovex y+1V
341 oveq2 j=y+11j=1y+1
342 341 imaeq2d j=y+12nd1stTn1Nifn=1Nn11j=2nd1stTn1Nifn=1Nn11y+1
343 342 xpeq1d j=y+12nd1stTn1Nifn=1Nn11j×1=2nd1stTn1Nifn=1Nn11y+1×1
344 oveq1 j=y+1j+1=y+1+1
345 344 oveq1d j=y+1j+1N=y+1+1N
346 345 imaeq2d j=y+12nd1stTn1Nifn=1Nn1j+1N=2nd1stTn1Nifn=1Nn1y+1+1N
347 346 xpeq1d j=y+12nd1stTn1Nifn=1Nn1j+1N×0=2nd1stTn1Nifn=1Nn1y+1+1N×0
348 343 347 uneq12d j=y+12nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
349 348 oveq2d j=y+1n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
350 340 349 csbie y+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
351 339 350 eqtrdi y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
352 351 mpteq2ia y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0=y0N1n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11y+1×12nd1stTn1Nifn=1Nn1y+1+1N×0
353 332 352 eqtr4di φF=y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
354 opex n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn1V
355 354 52 op2ndd t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102ndt=0
356 355 breq2d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10y<2ndty<0
357 356 ifbid t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10ify<2ndtyy+1=ify<0yy+1
358 354 52 op1std t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn101stt=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn1
359 98 mptex n1N1st1stTnifn=2nd1stTN10V
360 359 323 op1std 1stt=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn11st1stt=n1N1st1stTnifn=2nd1stTN10
361 358 360 syl t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn101st1stt=n1N1st1stTnifn=2nd1stTN10
362 359 323 op2ndd 1stt=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn12nd1stt=2nd1stTn1Nifn=1Nn1
363 358 362 syl t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1stt=2nd1stTn1Nifn=1Nn1
364 363 imaeq1d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1stt1j=2nd1stTn1Nifn=1Nn11j
365 364 xpeq1d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1stt1j×1=2nd1stTn1Nifn=1Nn11j×1
366 363 imaeq1d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1sttj+1N=2nd1stTn1Nifn=1Nn1j+1N
367 366 xpeq1d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1sttj+1N×0=2nd1stTn1Nifn=1Nn1j+1N×0
368 365 367 uneq12d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102nd1stt1j×12nd1sttj+1N×0=2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
369 361 368 oveq12d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn101st1stt+f2nd1stt1j×12nd1sttj+1N×0=n1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
370 357 369 csbeq12dv t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
371 370 mpteq2dv t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
372 371 eqeq2d t=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
373 372 2 elrab2 n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10Sn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn100..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<0yy+1/jn1N1st1stTnifn=2nd1stTN10+f2nd1stTn1Nifn=1Nn11j×12nd1stTn1Nifn=1Nn1j+1N×0
374 331 353 373 sylanbrc φn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10S
375 354 52 op2ndd T=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn102ndT=0
376 375 eqcoms n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10=T2ndT=0
377 1 nnne0d φN0
378 377 necomd φ0N
379 neeq1 2ndT=02ndTN0N
380 378 379 syl5ibrcom φ2ndT=02ndTN
381 376 380 syl5 φn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10=T2ndTN
382 381 necon2d φ2ndT=Nn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10T
383 6 382 mpd φn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10T
384 neeq1 z=n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10zTn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10T
385 384 rspcev n1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10Sn1N1st1stTnifn=2nd1stTN102nd1stTn1Nifn=1Nn10TzSzT
386 374 383 385 syl2anc φzSzT