Metamath Proof Explorer


Theorem rpvmasum2

Description: A partial result along the lines of rpvmasum . The sum of the von Mangoldt function over those integers n == A (mod N ) is asymptotic to ( 1 - M ) ( log x / phi ( x ) ) + O(1) , where M is the number of non-principal Dirichlet characters with sum_ n e. NN , X ( n ) / n = 0 . Our goal is to show this set is empty. Equation 9.4.3 of Shapiro, p. 375. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
rpvmasum2.u U=UnitZ
rpvmasum2.b φAU
rpvmasum2.t T=L-1A
rpvmasum2.z1 φfWA=1Z
Assertion rpvmasum2 φx+ϕNn1xTΛnnlogx1W𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 rpvmasum2.u U=UnitZ
9 rpvmasum2.b φAU
10 rpvmasum2.t T=L-1A
11 rpvmasum2.z1 φfWA=1Z
12 3 adantr φx+N
13 4 5 dchrfi NDFin
14 12 13 syl φx+DFin
15 fzfid φx+fD1xFin
16 eqid BaseZ=BaseZ
17 simpr φfDfD
18 4 1 5 16 17 dchrf φfDf:BaseZ
19 16 8 unitss UBaseZ
20 19 9 sselid φABaseZ
21 20 adantr φfDABaseZ
22 18 21 ffvelcdmd φfDfA
23 22 cjcld φfDfA
24 23 adantlr φx+fDfA
25 24 adantrl φx+n1xfDfA
26 18 ad4ant14 φx+n1xfDf:BaseZ
27 3 nnnn0d φN0
28 1 16 2 znzrhfo N0L:ontoBaseZ
29 fof L:ontoBaseZL:BaseZ
30 27 28 29 3syl φL:BaseZ
31 30 adantr φx+L:BaseZ
32 elfzelz n1xn
33 ffvelcdm L:BaseZnLnBaseZ
34 31 32 33 syl2an φx+n1xLnBaseZ
35 34 adantr φx+n1xfDLnBaseZ
36 26 35 ffvelcdmd φx+n1xfDfLn
37 36 anasss φx+n1xfDfLn
38 elfznn n1xn
39 38 adantl φx+n1xn
40 vmacl nΛn
41 39 40 syl φx+n1xΛn
42 41 39 nndivred φx+n1xΛnn
43 42 recnd φx+n1xΛnn
44 43 adantrr φx+n1xfDΛnn
45 37 44 mulcld φx+n1xfDfLnΛnn
46 25 45 mulcld φx+n1xfDfAfLnΛnn
47 46 anass1rs φx+fDn1xfAfLnΛnn
48 15 47 fsumcl φx+fDn=1xfAfLnΛnn
49 relogcl x+logx
50 49 adantl φx+logx
51 50 recnd φx+logx
52 51 adantr φx+fDlogx
53 ax-1cn 1
54 neg1cn 1
55 0cn 0
56 54 55 ifcli iffW10
57 53 56 ifcli iff=1˙1iffW10
58 mulcl logxiff=1˙1iffW10logxiff=1˙1iffW10
59 52 57 58 sylancl φx+fDlogxiff=1˙1iffW10
60 14 48 59 fsumsub φx+fDn=1xfAfLnΛnnlogxiff=1˙1iffW10=fDn=1xfAfLnΛnnfDlogxiff=1˙1iffW10
61 45 anass1rs φx+fDn1xfLnΛnn
62 15 61 fsumcl φx+fDn=1xfLnΛnn
63 24 62 59 subdid φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10=fAn=1xfLnΛnnfAlogxiff=1˙1iffW10
64 15 24 61 fsummulc2 φx+fDfAn=1xfLnΛnn=n=1xfAfLnΛnn
65 57 a1i φx+fDiff=1˙1iffW10
66 24 52 65 mul12d φx+fDfAlogxiff=1˙1iffW10=logxfAiff=1˙1iffW10
67 ovif2 fAiff=1˙1iffW10=iff=1˙fA1fAiffW10
68 fveq1 f=1˙fA=1˙A
69 3 ad2antrr φx+fDN
70 9 ad2antrr φx+fDAU
71 4 1 6 8 69 70 dchr1 φx+fD1˙A=1
72 68 71 sylan9eqr φx+fDf=1˙fA=1
73 72 fveq2d φx+fDf=1˙fA=1
74 1re 1
75 cjre 11=1
76 74 75 ax-mp 1=1
77 73 76 eqtrdi φx+fDf=1˙fA=1
78 77 oveq1d φx+fDf=1˙fA1=11
79 1t1e1 11=1
80 78 79 eqtrdi φx+fDf=1˙fA1=1
81 df-ne f1˙¬f=1˙
82 ovif2 fAiffW10=iffWfA-1fA0
83 11 fveq2d φfWfA=f1Z
84 83 ad5ant15 φx+fDf1˙fWfA=f1Z
85 4 1 5 dchrmhm DmulGrpZMndHommulGrpfld
86 simpr φx+fDfD
87 85 86 sselid φx+fDfmulGrpZMndHommulGrpfld
88 eqid mulGrpZ=mulGrpZ
89 eqid 1Z=1Z
90 88 89 ringidval 1Z=0mulGrpZ
91 eqid mulGrpfld=mulGrpfld
92 cnfld1 1=1fld
93 91 92 ringidval 1=0mulGrpfld
94 90 93 mhm0 fmulGrpZMndHommulGrpfldf1Z=1
95 87 94 syl φx+fDf1Z=1
96 95 ad2antrr φx+fDf1˙fWf1Z=1
97 84 96 eqtrd φx+fDf1˙fWfA=1
98 97 fveq2d φx+fDf1˙fWfA=1
99 98 76 eqtrdi φx+fDf1˙fWfA=1
100 99 oveq1d φx+fDf1˙fWfA-1=1-1
101 54 mullidi 1-1=1
102 100 101 eqtrdi φx+fDf1˙fWfA-1=1
103 102 ifeq1da φx+fDf1˙iffWfA-1fA0=iffW1fA0
104 24 adantr φx+fDf1˙fA
105 104 mul01d φx+fDf1˙fA0=0
106 105 ifeq2d φx+fDf1˙iffW1fA0=iffW10
107 103 106 eqtrd φx+fDf1˙iffWfA-1fA0=iffW10
108 82 107 eqtrid φx+fDf1˙fAiffW10=iffW10
109 81 108 sylan2br φx+fD¬f=1˙fAiffW10=iffW10
110 80 109 ifeq12da φx+fDiff=1˙fA1fAiffW10=iff=1˙1iffW10
111 67 110 eqtrid φx+fDfAiff=1˙1iffW10=iff=1˙1iffW10
112 111 oveq2d φx+fDlogxfAiff=1˙1iffW10=logxiff=1˙1iffW10
113 66 112 eqtrd φx+fDfAlogxiff=1˙1iffW10=logxiff=1˙1iffW10
114 64 113 oveq12d φx+fDfAn=1xfLnΛnnfAlogxiff=1˙1iffW10=n=1xfAfLnΛnnlogxiff=1˙1iffW10
115 63 114 eqtrd φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10=n=1xfAfLnΛnnlogxiff=1˙1iffW10
116 115 sumeq2dv φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10=fDn=1xfAfLnΛnnlogxiff=1˙1iffW10
117 fzfid φx+1xFin
118 inss1 1xT1x
119 ssfi 1xFin1xT1x1xTFin
120 117 118 119 sylancl φx+1xTFin
121 12 phicld φx+ϕN
122 121 nncnd φx+ϕN
123 118 a1i φx+1xT1x
124 123 sselda φx+n1xTn1x
125 124 43 syldan φx+n1xTΛnn
126 120 122 125 fsummulc2 φx+ϕNn1xTΛnn=n1xTϕNΛnn
127 122 adantr φx+n1xϕN
128 127 43 mulcld φx+n1xϕNΛnn
129 124 128 syldan φx+n1xTϕNΛnn
130 129 ralrimiva φx+n1xTϕNΛnn
131 117 olcd φx+1x11xFin
132 sumss2 1xT1xn1xTϕNΛnn1x11xFinn1xTϕNΛnn=n=1xifn1xTϕNΛnn0
133 123 130 131 132 syl21anc φx+n1xTϕNΛnn=n=1xifn1xTϕNΛnn0
134 elin n1xTn1xnT
135 134 baib n1xn1xTnT
136 135 adantl φx+n1xn1xTnT
137 10 eleq2i nTnL-1A
138 31 ffnd φx+LFn
139 fniniseg LFnnL-1AnLn=A
140 139 baibd LFnnnL-1ALn=A
141 138 32 140 syl2an φx+n1xnL-1ALn=A
142 137 141 bitrid φx+n1xnTLn=A
143 136 142 bitr2d φx+n1xLn=An1xT
144 43 mul02d φx+n1x0Λnn=0
145 143 144 ifbieq2d φx+n1xifLn=AϕNΛnn0Λnn=ifn1xTϕNΛnn0
146 ovif ifLn=AϕN0Λnn=ifLn=AϕNΛnn0Λnn
147 3 ad2antrr φx+n1xN
148 147 13 syl φx+n1xDFin
149 23 ad4ant14 φx+n1xfDfA
150 36 149 mulcld φx+n1xfDfLnfA
151 148 43 150 fsummulc1 φx+n1xfDfLnfAΛnn=fDfLnfAΛnn
152 9 ad2antrr φx+n1xAU
153 4 5 1 16 8 147 34 152 sum2dchr φx+n1xfDfLnfA=ifLn=AϕN0
154 153 oveq1d φx+n1xfDfLnfAΛnn=ifLn=AϕN0Λnn
155 43 adantr φx+n1xfDΛnn
156 mulass fLnfAΛnnfLnfAΛnn=fLnfAΛnn
157 mul12 fLnfAΛnnfLnfAΛnn=fAfLnΛnn
158 156 157 eqtrd fLnfAΛnnfLnfAΛnn=fAfLnΛnn
159 36 149 155 158 syl3anc φx+n1xfDfLnfAΛnn=fAfLnΛnn
160 159 sumeq2dv φx+n1xfDfLnfAΛnn=fDfAfLnΛnn
161 151 154 160 3eqtr3d φx+n1xifLn=AϕN0Λnn=fDfAfLnΛnn
162 146 161 eqtr3id φx+n1xifLn=AϕNΛnn0Λnn=fDfAfLnΛnn
163 145 162 eqtr3d φx+n1xifn1xTϕNΛnn0=fDfAfLnΛnn
164 163 sumeq2dv φx+n=1xifn1xTϕNΛnn0=n=1xfDfAfLnΛnn
165 126 133 164 3eqtrd φx+ϕNn1xTΛnn=n=1xfDfAfLnΛnn
166 117 14 46 fsumcom φx+n=1xfDfAfLnΛnn=fDn=1xfAfLnΛnn
167 165 166 eqtrd φx+ϕNn1xTΛnn=fDn=1xfAfLnΛnn
168 4 dchrabl NGAbel
169 ablgrp GAbelGGrp
170 5 6 grpidcl GGrp1˙D
171 12 168 169 170 4syl φx+1˙D
172 51 mulridd φx+logx1=logx
173 172 51 eqeltrd φx+logx1
174 iftrue f=1˙iff=1˙1iffW10=1
175 174 oveq2d f=1˙logxiff=1˙1iffW10=logx1
176 175 sumsn 1˙Dlogx1f1˙logxiff=1˙1iffW10=logx1
177 171 173 176 syl2anc φx+f1˙logxiff=1˙1iffW10=logx1
178 eldifsn fD1˙fDf1˙
179 ifnefalse f1˙iff=1˙1iffW10=iffW10
180 179 ad2antll φx+fDf1˙iff=1˙1iffW10=iffW10
181 negeq iffW10=1iffW10=1
182 negeq iffW10=0iffW10=0
183 neg0 0=0
184 182 183 eqtrdi iffW10=0iffW10=0
185 181 184 ifsb iffW10=iffW10
186 180 185 eqtr4di φx+fDf1˙iff=1˙1iffW10=iffW10
187 186 oveq2d φx+fDf1˙logxiff=1˙1iffW10=logxiffW10
188 51 adantr φx+fDf1˙logx
189 53 55 ifcli iffW10
190 mulneg2 logxiffW10logxiffW10=logxiffW10
191 188 189 190 sylancl φx+fDf1˙logxiffW10=logxiffW10
192 187 191 eqtrd φx+fDf1˙logxiff=1˙1iffW10=logxiffW10
193 178 192 sylan2b φx+fD1˙logxiff=1˙1iffW10=logxiffW10
194 193 sumeq2dv φx+fD1˙logxiff=1˙1iffW10=fD1˙logxiffW10
195 diffi DFinD1˙Fin
196 14 195 syl φx+D1˙Fin
197 51 adantr φx+fD1˙logx
198 mulcl logxiffW10logxiffW10
199 197 189 198 sylancl φx+fD1˙logxiffW10
200 196 199 fsumneg φx+fD1˙logxiffW10=fD1˙logxiffW10
201 189 a1i φx+fD1˙iffW10
202 196 51 201 fsummulc2 φx+logxfD1˙iffW10=fD1˙logxiffW10
203 7 ssrab3 WD1˙
204 difss D1˙D
205 203 204 sstri WD
206 ssfi DFinWDWFin
207 14 205 206 sylancl φx+WFin
208 fsumconst WFin1fW1=W1
209 207 53 208 sylancl φx+fW1=W1
210 203 a1i φx+WD1˙
211 53 a1i φx+1
212 211 ralrimivw φx+fW1
213 196 olcd φx+D1˙1D1˙Fin
214 sumss2 WD1˙fW1D1˙1D1˙FinfW1=fD1˙iffW10
215 210 212 213 214 syl21anc φx+fW1=fD1˙iffW10
216 hashcl WFinW0
217 207 216 syl φx+W0
218 217 nn0cnd φx+W
219 218 mulridd φx+W1=W
220 209 215 219 3eqtr3d φx+fD1˙iffW10=W
221 220 oveq2d φx+logxfD1˙iffW10=logxW
222 202 221 eqtr3d φx+fD1˙logxiffW10=logxW
223 222 negeqd φx+fD1˙logxiffW10=logxW
224 194 200 223 3eqtrd φx+fD1˙logxiff=1˙1iffW10=logxW
225 177 224 oveq12d φx+f1˙logxiff=1˙1iffW10+fD1˙logxiff=1˙1iffW10=logx1+logxW
226 51 218 mulcld φx+logxW
227 173 226 negsubd φx+logx1+logxW=logx1logxW
228 225 227 eqtrd φx+f1˙logxiff=1˙1iffW10+fD1˙logxiff=1˙1iffW10=logx1logxW
229 disjdif 1˙D1˙=
230 229 a1i φx+1˙D1˙=
231 undif2 1˙D1˙=1˙D
232 171 snssd φx+1˙D
233 ssequn1 1˙D1˙D=D
234 232 233 sylib φx+1˙D=D
235 231 234 eqtr2id φx+D=1˙D1˙
236 230 235 14 59 fsumsplit φx+fDlogxiff=1˙1iffW10=f1˙logxiff=1˙1iffW10+fD1˙logxiff=1˙1iffW10
237 51 211 218 subdid φx+logx1W=logx1logxW
238 228 236 237 3eqtr4rd φx+logx1W=fDlogxiff=1˙1iffW10
239 167 238 oveq12d φx+ϕNn1xTΛnnlogx1W=fDn=1xfAfLnΛnnfDlogxiff=1˙1iffW10
240 60 116 239 3eqtr4d φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10=ϕNn1xTΛnnlogx1W
241 240 mpteq2dva φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10=x+ϕNn1xTΛnnlogx1W
242 rpssre +
243 242 a1i φ+
244 3 13 syl φDFin
245 22 adantlr φx+fDfA
246 245 cjcld φx+fDfA
247 62 59 subcld φx+fDn=1xfLnΛnnlogxiff=1˙1iffW10
248 246 247 mulcld φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10
249 248 anasss φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10
250 23 adantr φfDx+fA
251 247 an32s φfDx+n=1xfLnΛnnlogxiff=1˙1iffW10
252 o1const +fAx+fA𝑂1
253 242 23 252 sylancr φfDx+fA𝑂1
254 fveq1 f=1˙fLn=1˙Ln
255 254 oveq1d f=1˙fLnΛnn=1˙LnΛnn
256 255 sumeq2sdv f=1˙n=1xfLnΛnn=n=1x1˙LnΛnn
257 256 175 oveq12d f=1˙n=1xfLnΛnnlogxiff=1˙1iffW10=n=1x1˙LnΛnnlogx1
258 257 adantl φfDf=1˙n=1xfLnΛnnlogxiff=1˙1iffW10=n=1x1˙LnΛnnlogx1
259 49 recnd x+logx
260 259 mulridd x+logx1=logx
261 260 oveq2d x+n=1x1˙LnΛnnlogx1=n=1x1˙LnΛnnlogx
262 258 261 sylan9eq φfDf=1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10=n=1x1˙LnΛnnlogx
263 262 mpteq2dva φfDf=1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10=x+n=1x1˙LnΛnnlogx
264 1 2 3 4 5 6 rpvmasumlem φx+n=1x1˙LnΛnnlogx𝑂1
265 264 ad2antrr φfDf=1˙x+n=1x1˙LnΛnnlogx𝑂1
266 263 265 eqeltrd φfDf=1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10𝑂1
267 179 oveq2d f1˙logxiff=1˙1iffW10=logxiffW10
268 267 oveq2d f1˙n=1xfLnΛnnlogxiff=1˙1iffW10=n=1xfLnΛnnlogxiffW10
269 51 adantlr φfDx+logx
270 mulcom logx1logx-1=-1logx
271 269 54 270 sylancl φfDx+logx-1=-1logx
272 269 mulm1d φfDx+-1logx=logx
273 271 272 eqtrd φfDx+logx-1=logx
274 269 mul01d φfDx+logx0=0
275 273 274 ifeq12d φfDx+iffWlogx-1logx0=iffWlogx0
276 ovif2 logxiffW10=iffWlogx-1logx0
277 negeq iffWlogx0=logxiffWlogx0=logx
278 negeq iffWlogx0=0iffWlogx0=0
279 278 183 eqtrdi iffWlogx0=0iffWlogx0=0
280 277 279 ifsb iffWlogx0=iffWlogx0
281 275 276 280 3eqtr4g φfDx+logxiffW10=iffWlogx0
282 281 oveq2d φfDx+n=1xfLnΛnnlogxiffW10=n=1xfLnΛnniffWlogx0
283 62 an32s φfDx+n=1xfLnΛnn
284 ifcl logx0iffWlogx0
285 269 55 284 sylancl φfDx+iffWlogx0
286 283 285 subnegd φfDx+n=1xfLnΛnniffWlogx0=n=1xfLnΛnn+iffWlogx0
287 282 286 eqtrd φfDx+n=1xfLnΛnnlogxiffW10=n=1xfLnΛnn+iffWlogx0
288 268 287 sylan9eqr φfDx+f1˙n=1xfLnΛnnlogxiff=1˙1iffW10=n=1xfLnΛnn+iffWlogx0
289 288 an32s φfDf1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10=n=1xfLnΛnn+iffWlogx0
290 289 mpteq2dva φfDf1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10=x+n=1xfLnΛnn+iffWlogx0
291 3 ad2antrr φfDf1˙N
292 simplr φfDf1˙fD
293 simpr φfDf1˙f1˙
294 eqid afLaa=afLaa
295 1 2 291 4 5 6 292 293 294 dchrmusumlema φfDf1˙tc0+∞seq1+afLaaty1+∞seq1+afLaaytcy
296 3 adantr φfDN
297 296 ad2antrr φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyN
298 292 adantr φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyfD
299 simplr φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyf1˙
300 simprl φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyc0+∞
301 simprrl φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyseq1+afLaat
302 simprrr φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyy1+∞seq1+afLaaytcy
303 1 2 297 4 5 6 298 299 294 300 301 302 7 dchrvmaeq0 φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyfWt=0
304 ifbi fWt=0iffWlogx0=ift=0logx0
305 304 oveq2d fWt=0n=1xfLnΛnn+iffWlogx0=n=1xfLnΛnn+ift=0logx0
306 305 mpteq2dv fWt=0x+n=1xfLnΛnn+iffWlogx0=x+n=1xfLnΛnn+ift=0logx0
307 303 306 syl φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyx+n=1xfLnΛnn+iffWlogx0=x+n=1xfLnΛnn+ift=0logx0
308 1 2 297 4 5 6 298 299 294 300 301 302 dchrvmasumif φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyx+n=1xfLnΛnn+ift=0logx0𝑂1
309 307 308 eqeltrd φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyx+n=1xfLnΛnn+iffWlogx0𝑂1
310 309 rexlimdvaa φfDf1˙c0+∞seq1+afLaaty1+∞seq1+afLaaytcyx+n=1xfLnΛnn+iffWlogx0𝑂1
311 310 exlimdv φfDf1˙tc0+∞seq1+afLaaty1+∞seq1+afLaaytcyx+n=1xfLnΛnn+iffWlogx0𝑂1
312 295 311 mpd φfDf1˙x+n=1xfLnΛnn+iffWlogx0𝑂1
313 290 312 eqeltrd φfDf1˙x+n=1xfLnΛnnlogxiff=1˙1iffW10𝑂1
314 266 313 pm2.61dane φfDx+n=1xfLnΛnnlogxiff=1˙1iffW10𝑂1
315 250 251 253 314 o1mul2 φfDx+fAn=1xfLnΛnnlogxiff=1˙1iffW10𝑂1
316 243 244 249 315 fsumo1 φx+fDfAn=1xfLnΛnnlogxiff=1˙1iffW10𝑂1
317 241 316 eqeltrrd φx+ϕNn1xTΛnnlogx1W𝑂1