| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum2.g |
|
| 5 |
|
rpvmasum2.d |
|
| 6 |
|
rpvmasum2.1 |
|
| 7 |
|
rpvmasum2.w |
|
| 8 |
|
rpvmasum2.u |
|
| 9 |
|
rpvmasum2.b |
|
| 10 |
|
rpvmasum2.t |
|
| 11 |
|
rpvmasum2.z1 |
|
| 12 |
3
|
adantr |
|
| 13 |
4 5
|
dchrfi |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
fzfid |
|
| 16 |
|
eqid |
|
| 17 |
|
simpr |
|
| 18 |
4 1 5 16 17
|
dchrf |
|
| 19 |
16 8
|
unitss |
|
| 20 |
19 9
|
sselid |
|
| 21 |
20
|
adantr |
|
| 22 |
18 21
|
ffvelcdmd |
|
| 23 |
22
|
cjcld |
|
| 24 |
23
|
adantlr |
|
| 25 |
24
|
adantrl |
|
| 26 |
18
|
ad4ant14 |
|
| 27 |
3
|
nnnn0d |
|
| 28 |
1 16 2
|
znzrhfo |
|
| 29 |
|
fof |
|
| 30 |
27 28 29
|
3syl |
|
| 31 |
30
|
adantr |
|
| 32 |
|
elfzelz |
|
| 33 |
|
ffvelcdm |
|
| 34 |
31 32 33
|
syl2an |
|
| 35 |
34
|
adantr |
|
| 36 |
26 35
|
ffvelcdmd |
|
| 37 |
36
|
anasss |
|
| 38 |
|
elfznn |
|
| 39 |
38
|
adantl |
|
| 40 |
|
vmacl |
|
| 41 |
39 40
|
syl |
|
| 42 |
41 39
|
nndivred |
|
| 43 |
42
|
recnd |
|
| 44 |
43
|
adantrr |
|
| 45 |
37 44
|
mulcld |
|
| 46 |
25 45
|
mulcld |
|
| 47 |
46
|
anass1rs |
|
| 48 |
15 47
|
fsumcl |
|
| 49 |
|
relogcl |
|
| 50 |
49
|
adantl |
|
| 51 |
50
|
recnd |
|
| 52 |
51
|
adantr |
|
| 53 |
|
ax-1cn |
|
| 54 |
|
neg1cn |
|
| 55 |
|
0cn |
|
| 56 |
54 55
|
ifcli |
|
| 57 |
53 56
|
ifcli |
|
| 58 |
|
mulcl |
|
| 59 |
52 57 58
|
sylancl |
|
| 60 |
14 48 59
|
fsumsub |
|
| 61 |
45
|
anass1rs |
|
| 62 |
15 61
|
fsumcl |
|
| 63 |
24 62 59
|
subdid |
|
| 64 |
15 24 61
|
fsummulc2 |
|
| 65 |
57
|
a1i |
|
| 66 |
24 52 65
|
mul12d |
|
| 67 |
|
ovif2 |
|
| 68 |
|
fveq1 |
|
| 69 |
3
|
ad2antrr |
|
| 70 |
9
|
ad2antrr |
|
| 71 |
4 1 6 8 69 70
|
dchr1 |
|
| 72 |
68 71
|
sylan9eqr |
|
| 73 |
72
|
fveq2d |
|
| 74 |
|
1re |
|
| 75 |
|
cjre |
|
| 76 |
74 75
|
ax-mp |
|
| 77 |
73 76
|
eqtrdi |
|
| 78 |
77
|
oveq1d |
|
| 79 |
|
1t1e1 |
|
| 80 |
78 79
|
eqtrdi |
|
| 81 |
|
df-ne |
|
| 82 |
|
ovif2 |
|
| 83 |
11
|
fveq2d |
|
| 84 |
83
|
ad5ant15 |
|
| 85 |
4 1 5
|
dchrmhm |
|
| 86 |
|
simpr |
|
| 87 |
85 86
|
sselid |
|
| 88 |
|
eqid |
|
| 89 |
|
eqid |
|
| 90 |
88 89
|
ringidval |
|
| 91 |
|
eqid |
|
| 92 |
|
cnfld1 |
|
| 93 |
91 92
|
ringidval |
|
| 94 |
90 93
|
mhm0 |
|
| 95 |
87 94
|
syl |
|
| 96 |
95
|
ad2antrr |
|
| 97 |
84 96
|
eqtrd |
|
| 98 |
97
|
fveq2d |
|
| 99 |
98 76
|
eqtrdi |
|
| 100 |
99
|
oveq1d |
|
| 101 |
54
|
mullidi |
|
| 102 |
100 101
|
eqtrdi |
|
| 103 |
102
|
ifeq1da |
|
| 104 |
24
|
adantr |
|
| 105 |
104
|
mul01d |
|
| 106 |
105
|
ifeq2d |
|
| 107 |
103 106
|
eqtrd |
|
| 108 |
82 107
|
eqtrid |
|
| 109 |
81 108
|
sylan2br |
|
| 110 |
80 109
|
ifeq12da |
|
| 111 |
67 110
|
eqtrid |
|
| 112 |
111
|
oveq2d |
|
| 113 |
66 112
|
eqtrd |
|
| 114 |
64 113
|
oveq12d |
|
| 115 |
63 114
|
eqtrd |
|
| 116 |
115
|
sumeq2dv |
|
| 117 |
|
fzfid |
|
| 118 |
|
inss1 |
|
| 119 |
|
ssfi |
|
| 120 |
117 118 119
|
sylancl |
|
| 121 |
12
|
phicld |
|
| 122 |
121
|
nncnd |
|
| 123 |
118
|
a1i |
|
| 124 |
123
|
sselda |
|
| 125 |
124 43
|
syldan |
|
| 126 |
120 122 125
|
fsummulc2 |
|
| 127 |
122
|
adantr |
|
| 128 |
127 43
|
mulcld |
|
| 129 |
124 128
|
syldan |
|
| 130 |
129
|
ralrimiva |
|
| 131 |
117
|
olcd |
|
| 132 |
|
sumss2 |
|
| 133 |
123 130 131 132
|
syl21anc |
|
| 134 |
|
elin |
|
| 135 |
134
|
baib |
|
| 136 |
135
|
adantl |
|
| 137 |
10
|
eleq2i |
|
| 138 |
31
|
ffnd |
|
| 139 |
|
fniniseg |
|
| 140 |
139
|
baibd |
|
| 141 |
138 32 140
|
syl2an |
|
| 142 |
137 141
|
bitrid |
|
| 143 |
136 142
|
bitr2d |
|
| 144 |
43
|
mul02d |
|
| 145 |
143 144
|
ifbieq2d |
|
| 146 |
|
ovif |
|
| 147 |
3
|
ad2antrr |
|
| 148 |
147 13
|
syl |
|
| 149 |
23
|
ad4ant14 |
|
| 150 |
36 149
|
mulcld |
|
| 151 |
148 43 150
|
fsummulc1 |
|
| 152 |
9
|
ad2antrr |
|
| 153 |
4 5 1 16 8 147 34 152
|
sum2dchr |
|
| 154 |
153
|
oveq1d |
|
| 155 |
43
|
adantr |
|
| 156 |
|
mulass |
|
| 157 |
|
mul12 |
|
| 158 |
156 157
|
eqtrd |
|
| 159 |
36 149 155 158
|
syl3anc |
|
| 160 |
159
|
sumeq2dv |
|
| 161 |
151 154 160
|
3eqtr3d |
|
| 162 |
146 161
|
eqtr3id |
|
| 163 |
145 162
|
eqtr3d |
|
| 164 |
163
|
sumeq2dv |
|
| 165 |
126 133 164
|
3eqtrd |
|
| 166 |
117 14 46
|
fsumcom |
|
| 167 |
165 166
|
eqtrd |
|
| 168 |
4
|
dchrabl |
|
| 169 |
|
ablgrp |
|
| 170 |
5 6
|
grpidcl |
|
| 171 |
12 168 169 170
|
4syl |
|
| 172 |
51
|
mulridd |
|
| 173 |
172 51
|
eqeltrd |
|
| 174 |
|
iftrue |
|
| 175 |
174
|
oveq2d |
|
| 176 |
175
|
sumsn |
|
| 177 |
171 173 176
|
syl2anc |
|
| 178 |
|
eldifsn |
|
| 179 |
|
ifnefalse |
|
| 180 |
179
|
ad2antll |
|
| 181 |
|
negeq |
|
| 182 |
|
negeq |
|
| 183 |
|
neg0 |
|
| 184 |
182 183
|
eqtrdi |
|
| 185 |
181 184
|
ifsb |
|
| 186 |
180 185
|
eqtr4di |
|
| 187 |
186
|
oveq2d |
|
| 188 |
51
|
adantr |
|
| 189 |
53 55
|
ifcli |
|
| 190 |
|
mulneg2 |
|
| 191 |
188 189 190
|
sylancl |
|
| 192 |
187 191
|
eqtrd |
|
| 193 |
178 192
|
sylan2b |
|
| 194 |
193
|
sumeq2dv |
|
| 195 |
|
diffi |
|
| 196 |
14 195
|
syl |
|
| 197 |
51
|
adantr |
|
| 198 |
|
mulcl |
|
| 199 |
197 189 198
|
sylancl |
|
| 200 |
196 199
|
fsumneg |
|
| 201 |
189
|
a1i |
|
| 202 |
196 51 201
|
fsummulc2 |
|
| 203 |
7
|
ssrab3 |
|
| 204 |
|
difss |
|
| 205 |
203 204
|
sstri |
|
| 206 |
|
ssfi |
|
| 207 |
14 205 206
|
sylancl |
|
| 208 |
|
fsumconst |
|
| 209 |
207 53 208
|
sylancl |
|
| 210 |
203
|
a1i |
|
| 211 |
53
|
a1i |
|
| 212 |
211
|
ralrimivw |
|
| 213 |
196
|
olcd |
|
| 214 |
|
sumss2 |
|
| 215 |
210 212 213 214
|
syl21anc |
|
| 216 |
|
hashcl |
|
| 217 |
207 216
|
syl |
|
| 218 |
217
|
nn0cnd |
|
| 219 |
218
|
mulridd |
|
| 220 |
209 215 219
|
3eqtr3d |
|
| 221 |
220
|
oveq2d |
|
| 222 |
202 221
|
eqtr3d |
|
| 223 |
222
|
negeqd |
|
| 224 |
194 200 223
|
3eqtrd |
|
| 225 |
177 224
|
oveq12d |
|
| 226 |
51 218
|
mulcld |
|
| 227 |
173 226
|
negsubd |
|
| 228 |
225 227
|
eqtrd |
|
| 229 |
|
disjdif |
|
| 230 |
229
|
a1i |
|
| 231 |
|
undif2 |
|
| 232 |
171
|
snssd |
|
| 233 |
|
ssequn1 |
|
| 234 |
232 233
|
sylib |
|
| 235 |
231 234
|
eqtr2id |
|
| 236 |
230 235 14 59
|
fsumsplit |
|
| 237 |
51 211 218
|
subdid |
|
| 238 |
228 236 237
|
3eqtr4rd |
|
| 239 |
167 238
|
oveq12d |
|
| 240 |
60 116 239
|
3eqtr4d |
|
| 241 |
240
|
mpteq2dva |
|
| 242 |
|
rpssre |
|
| 243 |
242
|
a1i |
|
| 244 |
3 13
|
syl |
|
| 245 |
22
|
adantlr |
|
| 246 |
245
|
cjcld |
|
| 247 |
62 59
|
subcld |
|
| 248 |
246 247
|
mulcld |
|
| 249 |
248
|
anasss |
|
| 250 |
23
|
adantr |
|
| 251 |
247
|
an32s |
|
| 252 |
|
o1const |
|
| 253 |
242 23 252
|
sylancr |
|
| 254 |
|
fveq1 |
|
| 255 |
254
|
oveq1d |
|
| 256 |
255
|
sumeq2sdv |
|
| 257 |
256 175
|
oveq12d |
|
| 258 |
257
|
adantl |
|
| 259 |
49
|
recnd |
|
| 260 |
259
|
mulridd |
|
| 261 |
260
|
oveq2d |
|
| 262 |
258 261
|
sylan9eq |
|
| 263 |
262
|
mpteq2dva |
|
| 264 |
1 2 3 4 5 6
|
rpvmasumlem |
|
| 265 |
264
|
ad2antrr |
|
| 266 |
263 265
|
eqeltrd |
|
| 267 |
179
|
oveq2d |
|
| 268 |
267
|
oveq2d |
|
| 269 |
51
|
adantlr |
|
| 270 |
|
mulcom |
|
| 271 |
269 54 270
|
sylancl |
|
| 272 |
269
|
mulm1d |
|
| 273 |
271 272
|
eqtrd |
|
| 274 |
269
|
mul01d |
|
| 275 |
273 274
|
ifeq12d |
|
| 276 |
|
ovif2 |
|
| 277 |
|
negeq |
|
| 278 |
|
negeq |
|
| 279 |
278 183
|
eqtrdi |
|
| 280 |
277 279
|
ifsb |
|
| 281 |
275 276 280
|
3eqtr4g |
|
| 282 |
281
|
oveq2d |
|
| 283 |
62
|
an32s |
|
| 284 |
|
ifcl |
|
| 285 |
269 55 284
|
sylancl |
|
| 286 |
283 285
|
subnegd |
|
| 287 |
282 286
|
eqtrd |
|
| 288 |
268 287
|
sylan9eqr |
|
| 289 |
288
|
an32s |
|
| 290 |
289
|
mpteq2dva |
|
| 291 |
3
|
ad2antrr |
|
| 292 |
|
simplr |
|
| 293 |
|
simpr |
|
| 294 |
|
eqid |
|
| 295 |
1 2 291 4 5 6 292 293 294
|
dchrmusumlema |
|
| 296 |
3
|
adantr |
|
| 297 |
296
|
ad2antrr |
|
| 298 |
292
|
adantr |
|
| 299 |
|
simplr |
|
| 300 |
|
simprl |
|
| 301 |
|
simprrl |
|
| 302 |
|
simprrr |
|
| 303 |
1 2 297 4 5 6 298 299 294 300 301 302 7
|
dchrvmaeq0 |
|
| 304 |
|
ifbi |
|
| 305 |
304
|
oveq2d |
|
| 306 |
305
|
mpteq2dv |
|
| 307 |
303 306
|
syl |
|
| 308 |
1 2 297 4 5 6 298 299 294 300 301 302
|
dchrvmasumif |
|
| 309 |
307 308
|
eqeltrd |
|
| 310 |
309
|
rexlimdvaa |
|
| 311 |
310
|
exlimdv |
|
| 312 |
295 311
|
mpd |
|
| 313 |
290 312
|
eqeltrd |
|
| 314 |
266 313
|
pm2.61dane |
|
| 315 |
250 251 253 314
|
o1mul2 |
|
| 316 |
243 244 249 315
|
fsumo1 |
|
| 317 |
241 316
|
eqeltrrd |
|