Metamath Proof Explorer


Theorem fourierdlem81

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by its period T . In this lemma, T is assumed to be strictly positive. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem81.a φA
fourierdlem81.b φB
fourierdlem81.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem81.m φM
fourierdlem81.t φT+
fourierdlem81.q φQPM
fourierdlem81.fper φxABFx+T=Fx
fourierdlem81.s S=i0MQi+T
fourierdlem81.f φF:
fourierdlem81.cncf φi0..^MFQiQi+1:QiQi+1cn
fourierdlem81.r φi0..^MRFQiQi+1limQi
fourierdlem81.l φi0..^MLFQiQi+1limQi+1
fourierdlem81.g G=xQiQi+1ifx=QiRifx=Qi+1LFx
fourierdlem81.h H=xSiSi+1GxT
Assertion fourierdlem81 φA+TB+TFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem81.a φA
2 fourierdlem81.b φB
3 fourierdlem81.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
4 fourierdlem81.m φM
5 fourierdlem81.t φT+
6 fourierdlem81.q φQPM
7 fourierdlem81.fper φxABFx+T=Fx
8 fourierdlem81.s S=i0MQi+T
9 fourierdlem81.f φF:
10 fourierdlem81.cncf φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem81.r φi0..^MRFQiQi+1limQi
12 fourierdlem81.l φi0..^MLFQiQi+1limQi+1
13 fourierdlem81.g G=xQiQi+1ifx=QiRifx=Qi+1LFx
14 fourierdlem81.h H=xSiSi+1GxT
15 3 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
16 4 15 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
17 6 16 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
18 17 simprd φQ0=AQM=Bi0..^MQi<Qi+1
19 18 simpld φQ0=AQM=B
20 19 simpld φQ0=A
21 20 eqcomd φA=Q0
22 19 simprd φQM=B
23 22 eqcomd φB=QM
24 21 23 oveq12d φAB=Q0QM
25 24 itgeq1d φABFxdx=Q0QMFxdx
26 0zd φ0
27 nnuz =1
28 0p1e1 0+1=1
29 28 fveq2i 0+1=1
30 27 29 eqtr4i =0+1
31 4 30 eleqtrdi φM0+1
32 17 simpld φQ0M
33 reex V
34 33 a1i φV
35 ovex 0MV
36 35 a1i φ0MV
37 34 36 elmapd φQ0MQ:0M
38 32 37 mpbid φQ:0M
39 18 simprd φi0..^MQi<Qi+1
40 39 r19.21bi φi0..^MQi<Qi+1
41 9 adantr φxQ0QMF:
42 20 1 eqeltrd φQ0
43 22 2 eqeltrd φQM
44 42 43 iccssred φQ0QM
45 44 sselda φxQ0QMx
46 41 45 ffvelcdmd φxQ0QMFx
47 38 adantr φi0..^MQ:0M
48 elfzofz i0..^Mi0M
49 48 adantl φi0..^Mi0M
50 47 49 ffvelcdmd φi0..^MQi
51 fzofzp1 i0..^Mi+10M
52 51 adantl φi0..^Mi+10M
53 47 52 ffvelcdmd φi0..^MQi+1
54 9 feqmptd φF=xFx
55 54 reseq1d φFQiQi+1=xFxQiQi+1
56 55 adantr φi0..^MFQiQi+1=xFxQiQi+1
57 ioossre QiQi+1
58 57 a1i φi0..^MQiQi+1
59 58 resmptd φi0..^MxFxQiQi+1=xQiQi+1Fx
60 56 59 eqtr2d φi0..^MxQiQi+1Fx=FQiQi+1
61 50 53 10 12 11 iblcncfioo φi0..^MFQiQi+1𝐿1
62 60 61 eqeltrd φi0..^MxQiQi+1Fx𝐿1
63 9 ad2antrr φi0..^MxQiQi+1F:
64 50 53 iccssred φi0..^MQiQi+1
65 64 sselda φi0..^MxQiQi+1x
66 63 65 ffvelcdmd φi0..^MxQiQi+1Fx
67 50 53 62 66 ibliooicc φi0..^MxQiQi+1Fx𝐿1
68 26 31 38 40 46 67 itgspltprt φQ0QMFxdx=i0..^MQiQi+1Fxdx
69 8 a1i φS=i0MQi+T
70 fveq2 i=0Qi=Q0
71 70 oveq1d i=0Qi+T=Q0+T
72 71 adantl φi=0Qi+T=Q0+T
73 4 nnnn0d φM0
74 nn0uz 0=0
75 73 74 eleqtrdi φM0
76 eluzfz1 M000M
77 75 76 syl φ00M
78 5 rpred φT
79 42 78 readdcld φQ0+T
80 69 72 77 79 fvmptd φS0=Q0+T
81 20 oveq1d φQ0+T=A+T
82 80 81 eqtr2d φA+T=S0
83 fveq2 i=MQi=QM
84 83 oveq1d i=MQi+T=QM+T
85 84 adantl φi=MQi+T=QM+T
86 eluzfz2 M0M0M
87 75 86 syl φM0M
88 43 78 readdcld φQM+T
89 69 85 87 88 fvmptd φSM=QM+T
90 22 oveq1d φQM+T=B+T
91 89 90 eqtr2d φB+T=SM
92 82 91 oveq12d φA+TB+T=S0SM
93 92 itgeq1d φA+TB+TFxdx=S0SMFxdx
94 38 ffvelcdmda φi0MQi
95 78 adantr φi0MT
96 94 95 readdcld φi0MQi+T
97 96 8 fmptd φS:0M
98 78 adantr φi0..^MT
99 50 53 98 40 ltadd1dd φi0..^MQi+T<Qi+1+T
100 48 96 sylan2 φi0..^MQi+T
101 8 fvmpt2 i0MQi+TSi=Qi+T
102 49 100 101 syl2anc φi0..^MSi=Qi+T
103 fveq2 i=jQi=Qj
104 103 oveq1d i=jQi+T=Qj+T
105 104 cbvmptv i0MQi+T=j0MQj+T
106 8 105 eqtri S=j0MQj+T
107 106 a1i φi0..^MS=j0MQj+T
108 fveq2 j=i+1Qj=Qi+1
109 108 oveq1d j=i+1Qj+T=Qi+1+T
110 109 adantl φi0..^Mj=i+1Qj+T=Qi+1+T
111 53 98 readdcld φi0..^MQi+1+T
112 107 110 52 111 fvmptd φi0..^MSi+1=Qi+1+T
113 99 102 112 3brtr4d φi0..^MSi<Si+1
114 9 adantr φxS0SMF:
115 80 79 eqeltrd φS0
116 115 adantr φxS0SMS0
117 89 88 eqeltrd φSM
118 117 adantr φxS0SMSM
119 116 118 iccssred φxS0SMS0SM
120 simpr φxS0SMxS0SM
121 119 120 sseldd φxS0SMx
122 114 121 ffvelcdmd φxS0SMFx
123 102 100 eqeltrd φi0..^MSi
124 112 111 eqeltrd φi0..^MSi+1
125 ioosscn QiQi+1
126 125 a1i φi0..^MQiQi+1
127 eqeq1 w=xw=z+Tx=z+T
128 127 rexbidv w=xzQiQi+1w=z+TzQiQi+1x=z+T
129 oveq1 z=yz+T=y+T
130 129 eqeq2d z=yx=z+Tx=y+T
131 130 cbvrexvw zQiQi+1x=z+TyQiQi+1x=y+T
132 128 131 bitrdi w=xzQiQi+1w=z+TyQiQi+1x=y+T
133 132 cbvrabv w|zQiQi+1w=z+T=x|yQiQi+1x=y+T
134 fdm F:domF=
135 9 134 syl φdomF=
136 135 feq2d φF:domFF:
137 9 136 mpbird φF:domF
138 137 adantr φi0..^MF:domF
139 elioore zQiQi+1z
140 139 adantl φzQiQi+1z
141 78 adantr φzQiQi+1T
142 140 141 readdcld φzQiQi+1z+T
143 142 adantlr φi0..^MzQiQi+1z+T
144 143 3adant3 φi0..^MzQiQi+1w=z+Tz+T
145 simp3 φi0..^MzQiQi+1w=z+Tw=z+T
146 135 3ad2ant1 φzQiQi+1w=z+TdomF=
147 146 3adant1r φi0..^MzQiQi+1w=z+TdomF=
148 144 145 147 3eltr4d φi0..^MzQiQi+1w=z+TwdomF
149 148 3exp φi0..^MzQiQi+1w=z+TwdomF
150 149 adantr φi0..^MwzQiQi+1w=z+TwdomF
151 150 rexlimdv φi0..^MwzQiQi+1w=z+TwdomF
152 151 ralrimiva φi0..^MwzQiQi+1w=z+TwdomF
153 rabss w|zQiQi+1w=z+TdomFwzQiQi+1w=z+TwdomF
154 152 153 sylibr φi0..^Mw|zQiQi+1w=z+TdomF
155 simpll φi0..^MxQiQi+1φ
156 1 rexrd φA*
157 156 ad2antrr φi0..^MxQiQi+1A*
158 2 rexrd φB*
159 158 ad2antrr φi0..^MxQiQi+1B*
160 3 4 6 fourierdlem15 φQ:0MAB
161 160 ad2antrr φi0..^MxQiQi+1Q:0MAB
162 simplr φi0..^MxQiQi+1i0..^M
163 ioossicc QiQi+1QiQi+1
164 163 sseli xQiQi+1xQiQi+1
165 164 adantl φi0..^MxQiQi+1xQiQi+1
166 157 159 161 162 165 fourierdlem1 φi0..^MxQiQi+1xAB
167 155 166 7 syl2anc φi0..^MxQiQi+1Fx+T=Fx
168 126 98 133 138 154 167 10 cncfperiod φi0..^MFw|zQiQi+1w=z+T:w|zQiQi+1w=z+Tcn
169 128 elrab xw|zQiQi+1w=z+TxzQiQi+1x=z+T
170 169 simprbi xw|zQiQi+1w=z+TzQiQi+1x=z+T
171 simpr φi0..^MzQiQi+1x=z+TzQiQi+1x=z+T
172 nfv zφi0..^M
173 nfre1 zzQiQi+1x=z+T
174 172 173 nfan zφi0..^MzQiQi+1x=z+T
175 nfv zxSi<xx<Si+1
176 simp3 φzQiQi+1x=z+Tx=z+T
177 142 3adant3 φzQiQi+1x=z+Tz+T
178 176 177 eqeltrd φzQiQi+1x=z+Tx
179 178 3adant1r φi0..^MzQiQi+1x=z+Tx
180 50 adantr φi0..^MzQiQi+1Qi
181 139 adantl φi0..^MzQiQi+1z
182 78 ad2antrr φi0..^MzQiQi+1T
183 simpr φi0..^MzQiQi+1zQiQi+1
184 50 rexrd φi0..^MQi*
185 184 adantr φi0..^MzQiQi+1Qi*
186 53 rexrd φi0..^MQi+1*
187 186 adantr φi0..^MzQiQi+1Qi+1*
188 elioo2 Qi*Qi+1*zQiQi+1zQi<zz<Qi+1
189 185 187 188 syl2anc φi0..^MzQiQi+1zQiQi+1zQi<zz<Qi+1
190 183 189 mpbid φi0..^MzQiQi+1zQi<zz<Qi+1
191 190 simp2d φi0..^MzQiQi+1Qi<z
192 180 181 182 191 ltadd1dd φi0..^MzQiQi+1Qi+T<z+T
193 192 3adant3 φi0..^MzQiQi+1x=z+TQi+T<z+T
194 102 3ad2ant1 φi0..^MzQiQi+1x=z+TSi=Qi+T
195 simp3 φi0..^MzQiQi+1x=z+Tx=z+T
196 193 194 195 3brtr4d φi0..^MzQiQi+1x=z+TSi<x
197 53 adantr φi0..^MzQiQi+1Qi+1
198 190 simp3d φi0..^MzQiQi+1z<Qi+1
199 181 197 182 198 ltadd1dd φi0..^MzQiQi+1z+T<Qi+1+T
200 199 3adant3 φi0..^MzQiQi+1x=z+Tz+T<Qi+1+T
201 112 3ad2ant1 φi0..^MzQiQi+1x=z+TSi+1=Qi+1+T
202 200 195 201 3brtr4d φi0..^MzQiQi+1x=z+Tx<Si+1
203 179 196 202 3jca φi0..^MzQiQi+1x=z+TxSi<xx<Si+1
204 203 3exp φi0..^MzQiQi+1x=z+TxSi<xx<Si+1
205 204 adantr φi0..^MzQiQi+1x=z+TzQiQi+1x=z+TxSi<xx<Si+1
206 174 175 205 rexlimd φi0..^MzQiQi+1x=z+TzQiQi+1x=z+TxSi<xx<Si+1
207 171 206 mpd φi0..^MzQiQi+1x=z+TxSi<xx<Si+1
208 123 rexrd φi0..^MSi*
209 208 adantr φi0..^MzQiQi+1x=z+TSi*
210 124 rexrd φi0..^MSi+1*
211 210 adantr φi0..^MzQiQi+1x=z+TSi+1*
212 elioo2 Si*Si+1*xSiSi+1xSi<xx<Si+1
213 209 211 212 syl2anc φi0..^MzQiQi+1x=z+TxSiSi+1xSi<xx<Si+1
214 207 213 mpbird φi0..^MzQiQi+1x=z+TxSiSi+1
215 170 214 sylan2 φi0..^Mxw|zQiQi+1w=z+TxSiSi+1
216 elioore xSiSi+1x
217 216 recnd xSiSi+1x
218 217 adantl φi0..^MxSiSi+1x
219 184 adantr φi0..^MxSiSi+1Qi*
220 186 adantr φi0..^MxSiSi+1Qi+1*
221 216 adantl φxSiSi+1x
222 78 adantr φxSiSi+1T
223 221 222 resubcld φxSiSi+1xT
224 223 adantlr φi0..^MxSiSi+1xT
225 102 oveq1d φi0..^MSiT=Qi+T-T
226 50 recnd φi0..^MQi
227 98 recnd φi0..^MT
228 226 227 pncand φi0..^MQi+T-T=Qi
229 225 228 eqtr2d φi0..^MQi=SiT
230 229 adantr φi0..^MxSiSi+1Qi=SiT
231 123 adantr φi0..^MxSiSi+1Si
232 216 adantl φi0..^MxSiSi+1x
233 78 ad2antrr φi0..^MxSiSi+1T
234 simpr φi0..^MxSiSi+1xSiSi+1
235 208 adantr φi0..^MxSiSi+1Si*
236 210 adantr φi0..^MxSiSi+1Si+1*
237 235 236 212 syl2anc φi0..^MxSiSi+1xSiSi+1xSi<xx<Si+1
238 234 237 mpbid φi0..^MxSiSi+1xSi<xx<Si+1
239 238 simp2d φi0..^MxSiSi+1Si<x
240 231 232 233 239 ltsub1dd φi0..^MxSiSi+1SiT<xT
241 230 240 eqbrtrd φi0..^MxSiSi+1Qi<xT
242 124 adantr φi0..^MxSiSi+1Si+1
243 238 simp3d φi0..^MxSiSi+1x<Si+1
244 232 242 233 243 ltsub1dd φi0..^MxSiSi+1xT<Si+1T
245 112 oveq1d φi0..^MSi+1T=Qi+1+T-T
246 53 recnd φi0..^MQi+1
247 246 227 pncand φi0..^MQi+1+T-T=Qi+1
248 245 247 eqtrd φi0..^MSi+1T=Qi+1
249 248 adantr φi0..^MxSiSi+1Si+1T=Qi+1
250 244 249 breqtrd φi0..^MxSiSi+1xT<Qi+1
251 219 220 224 241 250 eliood φi0..^MxSiSi+1xTQiQi+1
252 221 recnd φxSiSi+1x
253 222 recnd φxSiSi+1T
254 252 253 npcand φxSiSi+1x-T+T=x
255 254 eqcomd φxSiSi+1x=x-T+T
256 255 adantlr φi0..^MxSiSi+1x=x-T+T
257 oveq1 z=xTz+T=x-T+T
258 257 eqeq2d z=xTx=z+Tx=x-T+T
259 258 rspcev xTQiQi+1x=x-T+TzQiQi+1x=z+T
260 251 256 259 syl2anc φi0..^MxSiSi+1zQiQi+1x=z+T
261 218 260 169 sylanbrc φi0..^MxSiSi+1xw|zQiQi+1w=z+T
262 215 261 impbida φi0..^Mxw|zQiQi+1w=z+TxSiSi+1
263 262 eqrdv φi0..^Mw|zQiQi+1w=z+T=SiSi+1
264 263 reseq2d φi0..^MFw|zQiQi+1w=z+T=FSiSi+1
265 9 adantr φi0..^MF:
266 ioossre SiSi+1
267 266 a1i φi0..^MSiSi+1
268 265 267 feqresmpt φi0..^MFSiSi+1=xSiSi+1Fx
269 264 268 eqtrd φi0..^MFw|zQiQi+1w=z+T=xSiSi+1Fx
270 263 oveq1d φi0..^Mw|zQiQi+1w=z+Tcn=SiSi+1cn
271 168 269 270 3eltr3d φi0..^MxSiSi+1Fx:SiSi+1cn
272 57 135 sseqtrrid φQiQi+1domF
273 272 adantr φi0..^MQiQi+1domF
274 eqid w|zQiQi+1w=z+T=w|zQiQi+1w=z+T
275 simpll φi0..^MzQiQi+1φ
276 156 ad2antrr φi0..^MzQiQi+1A*
277 158 ad2antrr φi0..^MzQiQi+1B*
278 160 ad2antrr φi0..^MzQiQi+1Q:0MAB
279 simplr φi0..^MzQiQi+1i0..^M
280 163 183 sselid φi0..^MzQiQi+1zQiQi+1
281 276 277 278 279 280 fourierdlem1 φi0..^MzQiQi+1zAB
282 eleq1 x=zxABzAB
283 282 anbi2d x=zφxABφzAB
284 oveq1 x=zx+T=z+T
285 284 fveq2d x=zFx+T=Fz+T
286 fveq2 x=zFx=Fz
287 285 286 eqeq12d x=zFx+T=FxFz+T=Fz
288 283 287 imbi12d x=zφxABFx+T=FxφzABFz+T=Fz
289 288 7 chvarvv φzABFz+T=Fz
290 275 281 289 syl2anc φi0..^MzQiQi+1Fz+T=Fz
291 138 126 273 227 274 154 290 12 limcperiod φi0..^MLFw|zQiQi+1w=z+TlimQi+1+T
292 112 eqcomd φi0..^MQi+1+T=Si+1
293 269 292 oveq12d φi0..^MFw|zQiQi+1w=z+TlimQi+1+T=xSiSi+1FxlimSi+1
294 291 293 eleqtrd φi0..^MLxSiSi+1FxlimSi+1
295 138 126 273 227 274 154 290 11 limcperiod φi0..^MRFw|zQiQi+1w=z+TlimQi+T
296 102 eqcomd φi0..^MQi+T=Si
297 269 296 oveq12d φi0..^MFw|zQiQi+1w=z+TlimQi+T=xSiSi+1FxlimSi
298 295 297 eleqtrd φi0..^MRxSiSi+1FxlimSi
299 123 124 271 294 298 iblcncfioo φi0..^MxSiSi+1Fx𝐿1
300 9 ad2antrr φi0..^MxSiSi+1F:
301 123 adantr φi0..^MxSiSi+1Si
302 124 adantr φi0..^MxSiSi+1Si+1
303 simpr φi0..^MxSiSi+1xSiSi+1
304 eliccre SiSi+1xSiSi+1x
305 301 302 303 304 syl3anc φi0..^MxSiSi+1x
306 300 305 ffvelcdmd φi0..^MxSiSi+1Fx
307 123 124 299 306 ibliooicc φi0..^MxSiSi+1Fx𝐿1
308 26 31 97 113 122 307 itgspltprt φS0SMFxdx=i0..^MSiSi+1Fxdx
309 iftrue x=Siifx=SiRifx=Si+1LFSiSi+1x=R
310 309 adantl φi0..^Mx=Siifx=SiRifx=Si+1LFSiSi+1x=R
311 iftrue x=Qiifx=QiRifx=Qi+1LFx=R
312 iftrue x=Qiifx=QiRifx=Qi+1LFQiQi+1x=R
313 311 312 eqtr4d x=Qiifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
314 313 adantl φi0..^MxQiQi+1x=Qiifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
315 iffalse ¬x=Qiifx=QiRifx=Qi+1LFx=ifx=Qi+1LFx
316 315 adantr ¬x=Qix=Qi+1ifx=QiRifx=Qi+1LFx=ifx=Qi+1LFx
317 iftrue x=Qi+1ifx=Qi+1LFx=L
318 317 adantl ¬x=Qix=Qi+1ifx=Qi+1LFx=L
319 iffalse ¬x=Qiifx=QiRifx=Qi+1LFQiQi+1x=ifx=Qi+1LFQiQi+1x
320 319 adantr ¬x=Qix=Qi+1ifx=QiRifx=Qi+1LFQiQi+1x=ifx=Qi+1LFQiQi+1x
321 iftrue x=Qi+1ifx=Qi+1LFQiQi+1x=L
322 321 adantl ¬x=Qix=Qi+1ifx=Qi+1LFQiQi+1x=L
323 320 322 eqtr2d ¬x=Qix=Qi+1L=ifx=QiRifx=Qi+1LFQiQi+1x
324 316 318 323 3eqtrd ¬x=Qix=Qi+1ifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
325 324 adantll φi0..^MxQiQi+1¬x=Qix=Qi+1ifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
326 315 ad2antlr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=QiRifx=Qi+1LFx=ifx=Qi+1LFx
327 iffalse ¬x=Qi+1ifx=Qi+1LFx=Fx
328 327 adantl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=Qi+1LFx=Fx
329 319 ad2antlr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=QiRifx=Qi+1LFQiQi+1x=ifx=Qi+1LFQiQi+1x
330 iffalse ¬x=Qi+1ifx=Qi+1LFQiQi+1x=FQiQi+1x
331 330 adantl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=Qi+1LFQiQi+1x=FQiQi+1x
332 184 ad3antrrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi*
333 186 ad3antrrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi+1*
334 65 ad2antrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1x
335 50 ad2antrr φi0..^MxQiQi+1¬x=QiQi
336 65 adantr φi0..^MxQiQi+1¬x=Qix
337 184 ad2antrr φi0..^MxQiQi+1¬x=QiQi*
338 186 ad2antrr φi0..^MxQiQi+1¬x=QiQi+1*
339 simplr φi0..^MxQiQi+1¬x=QixQiQi+1
340 iccgelb Qi*Qi+1*xQiQi+1Qix
341 337 338 339 340 syl3anc φi0..^MxQiQi+1¬x=QiQix
342 neqne ¬x=QixQi
343 342 adantl φi0..^MxQiQi+1¬x=QixQi
344 335 336 341 343 leneltd φi0..^MxQiQi+1¬x=QiQi<x
345 344 adantr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi<x
346 53 ad3antrrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi+1
347 184 adantr φi0..^MxQiQi+1Qi*
348 186 adantr φi0..^MxQiQi+1Qi+1*
349 simpr φi0..^MxQiQi+1xQiQi+1
350 iccleub Qi*Qi+1*xQiQi+1xQi+1
351 347 348 349 350 syl3anc φi0..^MxQiQi+1xQi+1
352 351 ad2antrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1xQi+1
353 neqne ¬x=Qi+1xQi+1
354 353 necomd ¬x=Qi+1Qi+1x
355 354 adantl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi+1x
356 334 346 352 355 leneltd φi0..^MxQiQi+1¬x=Qi¬x=Qi+1x<Qi+1
357 332 333 334 345 356 eliood φi0..^MxQiQi+1¬x=Qi¬x=Qi+1xQiQi+1
358 fvres xQiQi+1FQiQi+1x=Fx
359 357 358 syl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1FQiQi+1x=Fx
360 329 331 359 3eqtrrd φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Fx=ifx=QiRifx=Qi+1LFQiQi+1x
361 326 328 360 3eqtrd φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
362 325 361 pm2.61dan φi0..^MxQiQi+1¬x=Qiifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
363 314 362 pm2.61dan φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
364 363 mpteq2dva φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
365 13 364 eqtrid φi0..^MG=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
366 eqeq1 x=wx=Qiw=Qi
367 eqeq1 x=wx=Qi+1w=Qi+1
368 fveq2 x=wFQiQi+1x=FQiQi+1w
369 367 368 ifbieq2d x=wifx=Qi+1LFQiQi+1x=ifw=Qi+1LFQiQi+1w
370 366 369 ifbieq2d x=wifx=QiRifx=Qi+1LFQiQi+1x=ifw=QiRifw=Qi+1LFQiQi+1w
371 370 cbvmptv xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
372 365 371 eqtrdi φi0..^MG=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
373 372 adantr φi0..^Mx=SiG=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
374 simpr φi0..^Mx=Siw=xTw=xT
375 oveq1 x=SixT=SiT
376 375 ad2antlr φi0..^Mx=Siw=xTxT=SiT
377 229 eqcomd φi0..^MSiT=Qi
378 377 ad2antrr φi0..^Mx=Siw=xTSiT=Qi
379 374 376 378 3eqtrd φi0..^Mx=Siw=xTw=Qi
380 379 iftrued φi0..^Mx=Siw=xTifw=QiRifw=Qi+1LFQiQi+1w=R
381 375 adantl φi0..^Mx=SixT=SiT
382 50 53 40 ltled φi0..^MQiQi+1
383 lbicc2 Qi*Qi+1*QiQi+1QiQiQi+1
384 184 186 382 383 syl3anc φi0..^MQiQiQi+1
385 377 384 eqeltrd φi0..^MSiTQiQi+1
386 385 adantr φi0..^Mx=SiSiTQiQi+1
387 381 386 eqeltrd φi0..^Mx=SixTQiQi+1
388 limccl FQiQi+1limQi
389 388 11 sselid φi0..^MR
390 389 adantr φi0..^Mx=SiR
391 373 380 387 390 fvmptd φi0..^Mx=SiGxT=R
392 310 391 eqtr4d φi0..^Mx=Siifx=SiRifx=Si+1LFSiSi+1x=GxT
393 392 adantlr φi0..^MxSiSi+1x=Siifx=SiRifx=Si+1LFSiSi+1x=GxT
394 iffalse ¬x=Siifx=SiRifx=Si+1LFSiSi+1x=ifx=Si+1LFSiSi+1x
395 394 adantl φi0..^MxSiSi+1¬x=Siifx=SiRifx=Si+1LFSiSi+1x=ifx=Si+1LFSiSi+1x
396 372 adantr φi0..^Mx=Si+1G=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
397 eqeq1 w=Si+1Tw=QiSi+1T=Qi
398 eqeq1 w=Si+1Tw=Qi+1Si+1T=Qi+1
399 fveq2 w=Si+1TFQiQi+1w=FQiQi+1Si+1T
400 398 399 ifbieq2d w=Si+1Tifw=Qi+1LFQiQi+1w=ifSi+1T=Qi+1LFQiQi+1Si+1T
401 397 400 ifbieq2d w=Si+1Tifw=QiRifw=Qi+1LFQiQi+1w=ifSi+1T=QiRifSi+1T=Qi+1LFQiQi+1Si+1T
402 401 adantl φi0..^Mw=Si+1Tifw=QiRifw=Qi+1LFQiQi+1w=ifSi+1T=QiRifSi+1T=Qi+1LFQiQi+1Si+1T
403 eqeq1 Si+1T=Qi+1Si+1T=QiQi+1=Qi
404 iftrue Si+1T=Qi+1ifSi+1T=Qi+1LFQiQi+1Si+1T=L
405 403 404 ifbieq2d Si+1T=Qi+1ifSi+1T=QiRifSi+1T=Qi+1LFQiQi+1Si+1T=ifQi+1=QiRL
406 248 405 syl φi0..^MifSi+1T=QiRifSi+1T=Qi+1LFQiQi+1Si+1T=ifQi+1=QiRL
407 406 adantr φi0..^Mw=Si+1TifSi+1T=QiRifSi+1T=Qi+1LFQiQi+1Si+1T=ifQi+1=QiRL
408 50 40 gtned φi0..^MQi+1Qi
409 408 neneqd φi0..^M¬Qi+1=Qi
410 409 iffalsed φi0..^MifQi+1=QiRL=L
411 410 adantr φi0..^Mw=Si+1TifQi+1=QiRL=L
412 402 407 411 3eqtrd φi0..^Mw=Si+1Tifw=QiRifw=Qi+1LFQiQi+1w=L
413 412 adantlr φi0..^Mx=Si+1w=Si+1Tifw=QiRifw=Qi+1LFQiQi+1w=L
414 ubicc2 Qi*Qi+1*QiQi+1Qi+1QiQi+1
415 184 186 382 414 syl3anc φi0..^MQi+1QiQi+1
416 248 415 eqeltrd φi0..^MSi+1TQiQi+1
417 416 adantr φi0..^Mx=Si+1Si+1TQiQi+1
418 limccl FQiQi+1limQi+1
419 418 12 sselid φi0..^ML
420 419 adantr φi0..^Mx=Si+1L
421 396 413 417 420 fvmptd φi0..^Mx=Si+1GSi+1T=L
422 oveq1 x=Si+1xT=Si+1T
423 422 fveq2d x=Si+1GxT=GSi+1T
424 423 adantl φi0..^Mx=Si+1GxT=GSi+1T
425 iftrue x=Si+1ifx=Si+1LFSiSi+1x=L
426 425 adantl φi0..^Mx=Si+1ifx=Si+1LFSiSi+1x=L
427 421 424 426 3eqtr4rd φi0..^Mx=Si+1ifx=Si+1LFSiSi+1x=GxT
428 427 ad4ant14 φi0..^MxSiSi+1¬x=Six=Si+1ifx=Si+1LFSiSi+1x=GxT
429 iffalse ¬x=Si+1ifx=Si+1LFSiSi+1x=FSiSi+1x
430 429 adantl φi0..^MxSiSi+1¬x=Si¬x=Si+1ifx=Si+1LFSiSi+1x=FSiSi+1x
431 372 adantr φi0..^MxSiSi+1G=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
432 431 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1G=wQiQi+1ifw=QiRifw=Qi+1LFQiQi+1w
433 eqeq1 w=xTw=QixT=Qi
434 eqeq1 w=xTw=Qi+1xT=Qi+1
435 fveq2 w=xTFQiQi+1w=FQiQi+1xT
436 434 435 ifbieq2d w=xTifw=Qi+1LFQiQi+1w=ifxT=Qi+1LFQiQi+1xT
437 433 436 ifbieq2d w=xTifw=QiRifw=Qi+1LFQiQi+1w=ifxT=QiRifxT=Qi+1LFQiQi+1xT
438 437 adantl φi0..^MxSiSi+1¬x=Si¬x=Si+1w=xTifw=QiRifw=Qi+1LFQiQi+1w=ifxT=QiRifxT=Qi+1LFQiQi+1xT
439 305 recnd φi0..^MxSiSi+1x
440 227 adantr φi0..^MxSiSi+1T
441 439 440 npcand φi0..^MxSiSi+1x-T+T=x
442 441 eqcomd φi0..^MxSiSi+1x=x-T+T
443 442 adantr φi0..^MxSiSi+1xT=Qix=x-T+T
444 oveq1 xT=Qix-T+T=Qi+T
445 444 adantl φi0..^MxSiSi+1xT=Qix-T+T=Qi+T
446 296 ad2antrr φi0..^MxSiSi+1xT=QiQi+T=Si
447 443 445 446 3eqtrd φi0..^MxSiSi+1xT=Qix=Si
448 447 stoic1a φi0..^MxSiSi+1¬x=Si¬xT=Qi
449 448 iffalsed φi0..^MxSiSi+1¬x=SiifxT=QiRifxT=Qi+1LFQiQi+1xT=ifxT=Qi+1LFQiQi+1xT
450 449 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1w=xTifxT=QiRifxT=Qi+1LFQiQi+1xT=ifxT=Qi+1LFQiQi+1xT
451 442 adantr φi0..^MxSiSi+1xT=Qi+1x=x-T+T
452 oveq1 xT=Qi+1x-T+T=Qi+1+T
453 452 adantl φi0..^MxSiSi+1xT=Qi+1x-T+T=Qi+1+T
454 292 ad2antrr φi0..^MxSiSi+1xT=Qi+1Qi+1+T=Si+1
455 451 453 454 3eqtrd φi0..^MxSiSi+1xT=Qi+1x=Si+1
456 455 stoic1a φi0..^MxSiSi+1¬x=Si+1¬xT=Qi+1
457 456 iffalsed φi0..^MxSiSi+1¬x=Si+1ifxT=Qi+1LFQiQi+1xT=FQiQi+1xT
458 457 adantlr φi0..^MxSiSi+1¬x=Si¬x=Si+1ifxT=Qi+1LFQiQi+1xT=FQiQi+1xT
459 458 adantr φi0..^MxSiSi+1¬x=Si¬x=Si+1w=xTifxT=Qi+1LFQiQi+1xT=FQiQi+1xT
460 438 450 459 3eqtrd φi0..^MxSiSi+1¬x=Si¬x=Si+1w=xTifw=QiRifw=Qi+1LFQiQi+1w=FQiQi+1xT
461 50 adantr φi0..^MxSiSi+1Qi
462 53 adantr φi0..^MxSiSi+1Qi+1
463 78 ad2antrr φi0..^MxSiSi+1T
464 305 463 resubcld φi0..^MxSiSi+1xT
465 229 adantr φi0..^MxSiSi+1Qi=SiT
466 208 adantr φi0..^MxSiSi+1Si*
467 210 adantr φi0..^MxSiSi+1Si+1*
468 iccgelb Si*Si+1*xSiSi+1Six
469 466 467 303 468 syl3anc φi0..^MxSiSi+1Six
470 301 305 463 469 lesub1dd φi0..^MxSiSi+1SiTxT
471 465 470 eqbrtrd φi0..^MxSiSi+1QixT
472 iccleub Si*Si+1*xSiSi+1xSi+1
473 466 467 303 472 syl3anc φi0..^MxSiSi+1xSi+1
474 305 302 463 473 lesub1dd φi0..^MxSiSi+1xTSi+1T
475 248 adantr φi0..^MxSiSi+1Si+1T=Qi+1
476 474 475 breqtrd φi0..^MxSiSi+1xTQi+1
477 461 462 464 471 476 eliccd φi0..^MxSiSi+1xTQiQi+1
478 477 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1xTQiQi+1
479 138 273 fssresd φi0..^MFQiQi+1:QiQi+1
480 479 ad3antrrr φi0..^MxSiSi+1¬x=Si¬x=Si+1FQiQi+1:QiQi+1
481 184 ad3antrrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Qi*
482 186 ad3antrrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Qi+1*
483 305 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1x
484 98 ad3antrrr φi0..^MxSiSi+1¬x=Si¬x=Si+1T
485 483 484 resubcld φi0..^MxSiSi+1¬x=Si¬x=Si+1xT
486 50 ad2antrr φi0..^MxSiSi+1¬x=SiQi
487 464 adantr φi0..^MxSiSi+1¬x=SixT
488 471 adantr φi0..^MxSiSi+1¬x=SiQixT
489 448 neqned φi0..^MxSiSi+1¬x=SixTQi
490 486 487 488 489 leneltd φi0..^MxSiSi+1¬x=SiQi<xT
491 490 adantr φi0..^MxSiSi+1¬x=Si¬x=Si+1Qi<xT
492 464 adantr φi0..^MxSiSi+1¬x=Si+1xT
493 53 ad2antrr φi0..^MxSiSi+1¬x=Si+1Qi+1
494 476 adantr φi0..^MxSiSi+1¬x=Si+1xTQi+1
495 eqcom xT=Qi+1Qi+1=xT
496 455 ex φi0..^MxSiSi+1xT=Qi+1x=Si+1
497 495 496 biimtrrid φi0..^MxSiSi+1Qi+1=xTx=Si+1
498 497 con3dimp φi0..^MxSiSi+1¬x=Si+1¬Qi+1=xT
499 498 neqned φi0..^MxSiSi+1¬x=Si+1Qi+1xT
500 492 493 494 499 leneltd φi0..^MxSiSi+1¬x=Si+1xT<Qi+1
501 500 adantlr φi0..^MxSiSi+1¬x=Si¬x=Si+1xT<Qi+1
502 481 482 485 491 501 eliood φi0..^MxSiSi+1¬x=Si¬x=Si+1xTQiQi+1
503 480 502 ffvelcdmd φi0..^MxSiSi+1¬x=Si¬x=Si+1FQiQi+1xT
504 432 460 478 503 fvmptd φi0..^MxSiSi+1¬x=Si¬x=Si+1GxT=FQiQi+1xT
505 fvres xTQiQi+1FQiQi+1xT=FxT
506 502 505 syl φi0..^MxSiSi+1¬x=Si¬x=Si+1FQiQi+1xT=FxT
507 504 506 eqtrd φi0..^MxSiSi+1¬x=Si¬x=Si+1GxT=FxT
508 466 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Si*
509 467 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Si+1*
510 123 ad2antrr φi0..^MxSiSi+1¬x=SiSi
511 305 adantr φi0..^MxSiSi+1¬x=Six
512 469 adantr φi0..^MxSiSi+1¬x=SiSix
513 neqne ¬x=SixSi
514 513 adantl φi0..^MxSiSi+1¬x=SixSi
515 510 511 512 514 leneltd φi0..^MxSiSi+1¬x=SiSi<x
516 515 adantr φi0..^MxSiSi+1¬x=Si¬x=Si+1Si<x
517 302 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Si+1
518 473 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1xSi+1
519 neqne ¬x=Si+1xSi+1
520 519 necomd ¬x=Si+1Si+1x
521 520 adantl φi0..^MxSiSi+1¬x=Si¬x=Si+1Si+1x
522 483 517 518 521 leneltd φi0..^MxSiSi+1¬x=Si¬x=Si+1x<Si+1
523 508 509 483 516 522 eliood φi0..^MxSiSi+1¬x=Si¬x=Si+1xSiSi+1
524 fvres xSiSi+1FSiSi+1x=Fx
525 523 524 syl φi0..^MxSiSi+1¬x=Si¬x=Si+1FSiSi+1x=Fx
526 441 fveq2d φi0..^MxSiSi+1Fx-T+T=Fx
527 526 eqcomd φi0..^MxSiSi+1Fx=Fx-T+T
528 527 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1Fx=Fx-T+T
529 439 440 subcld φi0..^MxSiSi+1xT
530 elex xTxTV
531 529 530 syl φi0..^MxSiSi+1xTV
532 531 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1xTV
533 simp-4l φi0..^MxSiSi+1¬x=Si¬x=Si+1φ
534 156 adantr φi0..^MA*
535 158 adantr φi0..^MB*
536 160 adantr φi0..^MQ:0MAB
537 simpr φi0..^Mi0..^M
538 534 535 536 537 fourierdlem8 φi0..^MQiQi+1AB
539 538 adantr φi0..^MxSiSi+1QiQi+1AB
540 539 477 sseldd φi0..^MxSiSi+1xTAB
541 540 ad2antrr φi0..^MxSiSi+1¬x=Si¬x=Si+1xTAB
542 533 541 jca φi0..^MxSiSi+1¬x=Si¬x=Si+1φxTAB
543 eleq1 y=xTyABxTAB
544 543 anbi2d y=xTφyABφxTAB
545 oveq1 y=xTy+T=x-T+T
546 545 fveq2d y=xTFy+T=Fx-T+T
547 fveq2 y=xTFy=FxT
548 546 547 eqeq12d y=xTFy+T=FyFx-T+T=FxT
549 544 548 imbi12d y=xTφyABFy+T=FyφxTABFx-T+T=FxT
550 eleq1 x=yxAByAB
551 550 anbi2d x=yφxABφyAB
552 oveq1 x=yx+T=y+T
553 552 fveq2d x=yFx+T=Fy+T
554 fveq2 x=yFx=Fy
555 553 554 eqeq12d x=yFx+T=FxFy+T=Fy
556 551 555 imbi12d x=yφxABFx+T=FxφyABFy+T=Fy
557 556 7 chvarvv φyABFy+T=Fy
558 549 557 vtoclg xTVφxTABFx-T+T=FxT
559 532 542 558 sylc φi0..^MxSiSi+1¬x=Si¬x=Si+1Fx-T+T=FxT
560 525 528 559 3eqtrd φi0..^MxSiSi+1¬x=Si¬x=Si+1FSiSi+1x=FxT
561 507 560 eqtr4d φi0..^MxSiSi+1¬x=Si¬x=Si+1GxT=FSiSi+1x
562 430 561 eqtr4d φi0..^MxSiSi+1¬x=Si¬x=Si+1ifx=Si+1LFSiSi+1x=GxT
563 428 562 pm2.61dan φi0..^MxSiSi+1¬x=Siifx=Si+1LFSiSi+1x=GxT
564 395 563 eqtrd φi0..^MxSiSi+1¬x=Siifx=SiRifx=Si+1LFSiSi+1x=GxT
565 393 564 pm2.61dan φi0..^MxSiSi+1ifx=SiRifx=Si+1LFSiSi+1x=GxT
566 310 390 eqeltrd φi0..^Mx=Siifx=SiRifx=Si+1LFSiSi+1x
567 566 adantlr φi0..^MxSiSi+1x=Siifx=SiRifx=Si+1LFSiSi+1x
568 426 420 eqeltrd φi0..^Mx=Si+1ifx=Si+1LFSiSi+1x
569 568 ad4ant14 φi0..^MxSiSi+1¬x=Six=Si+1ifx=Si+1LFSiSi+1x
570 265 267 fssresd φi0..^MFSiSi+1:SiSi+1
571 570 ad3antrrr φi0..^MxSiSi+1¬x=Si¬x=Si+1FSiSi+1:SiSi+1
572 571 523 ffvelcdmd φi0..^MxSiSi+1¬x=Si¬x=Si+1FSiSi+1x
573 430 572 eqeltrd φi0..^MxSiSi+1¬x=Si¬x=Si+1ifx=Si+1LFSiSi+1x
574 569 573 pm2.61dan φi0..^MxSiSi+1¬x=Siifx=Si+1LFSiSi+1x
575 395 574 eqeltrd φi0..^MxSiSi+1¬x=Siifx=SiRifx=Si+1LFSiSi+1x
576 567 575 pm2.61dan φi0..^MxSiSi+1ifx=SiRifx=Si+1LFSiSi+1x
577 eqid xSiSi+1ifx=SiRifx=Si+1LFSiSi+1x=xSiSi+1ifx=SiRifx=Si+1LFSiSi+1x
578 577 fvmpt2 xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx=ifx=SiRifx=Si+1LFSiSi+1x
579 303 576 578 syl2anc φi0..^MxSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx=ifx=SiRifx=Si+1LFSiSi+1x
580 nfv xφi0..^M
581 eqid xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
582 580 581 50 53 10 12 11 cncfiooicc φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x:QiQi+1cn
583 365 582 eqeltrd φi0..^MG:QiQi+1cn
584 cncff G:QiQi+1cnG:QiQi+1
585 583 584 syl φi0..^MG:QiQi+1
586 585 adantr φi0..^MxSiSi+1G:QiQi+1
587 586 477 ffvelcdmd φi0..^MxSiSi+1GxT
588 14 fvmpt2 xSiSi+1GxTHx=GxT
589 303 587 588 syl2anc φi0..^MxSiSi+1Hx=GxT
590 565 579 589 3eqtr4rd φi0..^MxSiSi+1Hx=xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx
591 590 itgeq2dv φi0..^MSiSi+1Hxdx=SiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxdx
592 ioossicc SiSi+1SiSi+1
593 592 sseli xSiSi+1xSiSi+1
594 593 adantl φi0..^MxSiSi+1xSiSi+1
595 593 576 sylan2 φi0..^MxSiSi+1ifx=SiRifx=Si+1LFSiSi+1x
596 594 595 578 syl2anc φi0..^MxSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx=ifx=SiRifx=Si+1LFSiSi+1x
597 231 239 gtned φi0..^MxSiSi+1xSi
598 597 neneqd φi0..^MxSiSi+1¬x=Si
599 598 iffalsed φi0..^MxSiSi+1ifx=SiRifx=Si+1LFSiSi+1x=ifx=Si+1LFSiSi+1x
600 232 243 ltned φi0..^MxSiSi+1xSi+1
601 600 neneqd φi0..^MxSiSi+1¬x=Si+1
602 601 iffalsed φi0..^MxSiSi+1ifx=Si+1LFSiSi+1x=FSiSi+1x
603 524 adantl φi0..^MxSiSi+1FSiSi+1x=Fx
604 602 603 eqtrd φi0..^MxSiSi+1ifx=Si+1LFSiSi+1x=Fx
605 596 599 604 3eqtrd φi0..^MxSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx=Fx
606 605 itgeq2dv φi0..^MSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxdx=SiSi+1Fxdx
607 579 576 eqeltrd φi0..^MxSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xx
608 123 124 607 itgioo φi0..^MSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxdx=SiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxdx
609 123 124 306 itgioo φi0..^MSiSi+1Fxdx=SiSi+1Fxdx
610 606 608 609 3eqtr3d φi0..^MSiSi+1xSiSi+1ifx=SiRifx=Si+1LFSiSi+1xxdx=SiSi+1Fxdx
611 591 610 eqtr2d φi0..^MSiSi+1Fxdx=SiSi+1Hxdx
612 102 112 oveq12d φi0..^MSiSi+1=Qi+TQi+1+T
613 612 itgeq1d φi0..^MSiSi+1Hxdx=Qi+TQi+1+THxdx
614 simpr φi0..^MxQi+TQi+1+TxQi+TQi+1+T
615 612 eqcomd φi0..^MQi+TQi+1+T=SiSi+1
616 615 adantr φi0..^MxQi+TQi+1+TQi+TQi+1+T=SiSi+1
617 614 616 eleqtrd φi0..^MxQi+TQi+1+TxSiSi+1
618 585 adantr φi0..^MxQi+TQi+1+TG:QiQi+1
619 50 adantr φi0..^MxQi+TQi+1+TQi
620 53 adantr φi0..^MxQi+TQi+1+TQi+1
621 100 adantr φi0..^MxQi+TQi+1+TQi+T
622 111 adantr φi0..^MxQi+TQi+1+TQi+1+T
623 eliccre Qi+TQi+1+TxQi+TQi+1+Tx
624 621 622 614 623 syl3anc φi0..^MxQi+TQi+1+Tx
625 78 ad2antrr φi0..^MxQi+TQi+1+TT
626 624 625 resubcld φi0..^MxQi+TQi+1+TxT
627 228 eqcomd φi0..^MQi=Qi+T-T
628 627 adantr φi0..^MxQi+TQi+1+TQi=Qi+T-T
629 621 rexrd φi0..^MxQi+TQi+1+TQi+T*
630 622 rexrd φi0..^MxQi+TQi+1+TQi+1+T*
631 iccgelb Qi+T*Qi+1+T*xQi+TQi+1+TQi+Tx
632 629 630 614 631 syl3anc φi0..^MxQi+TQi+1+TQi+Tx
633 621 624 625 632 lesub1dd φi0..^MxQi+TQi+1+TQi+T-TxT
634 628 633 eqbrtrd φi0..^MxQi+TQi+1+TQixT
635 iccleub Qi+T*Qi+1+T*xQi+TQi+1+TxQi+1+T
636 629 630 614 635 syl3anc φi0..^MxQi+TQi+1+TxQi+1+T
637 624 622 625 636 lesub1dd φi0..^MxQi+TQi+1+TxTQi+1+T-T
638 247 adantr φi0..^MxQi+TQi+1+TQi+1+T-T=Qi+1
639 637 638 breqtrd φi0..^MxQi+TQi+1+TxTQi+1
640 619 620 626 634 639 eliccd φi0..^MxQi+TQi+1+TxTQiQi+1
641 618 640 ffvelcdmd φi0..^MxQi+TQi+1+TGxT
642 617 641 588 syl2anc φi0..^MxQi+TQi+1+THx=GxT
643 eqidd φi0..^MxQi+TQi+1+TyQi+TQi+1+TGyT=yQi+TQi+1+TGyT
644 oveq1 y=xyT=xT
645 644 fveq2d y=xGyT=GxT
646 645 adantl φi0..^MxQi+TQi+1+Ty=xGyT=GxT
647 643 646 614 641 fvmptd φi0..^MxQi+TQi+1+TyQi+TQi+1+TGyTx=GxT
648 642 647 eqtr4d φi0..^MxQi+TQi+1+THx=yQi+TQi+1+TGyTx
649 648 itgeq2dv φi0..^MQi+TQi+1+THxdx=Qi+TQi+1+TyQi+TQi+1+TGyTxdx
650 5 adantr φi0..^MT+
651 645 cbvmptv yQi+TQi+1+TGyT=xQi+TQi+1+TGxT
652 50 53 382 583 650 651 itgiccshift φi0..^MQi+TQi+1+TyQi+TQi+1+TGyTxdx=QiQi+1Gxdx
653 613 649 652 3eqtrd φi0..^MSiSi+1Hxdx=QiQi+1Gxdx
654 135 adantr φi0..^MdomF=
655 64 654 sseqtrrd φi0..^MQiQi+1domF
656 50 53 138 10 655 11 12 13 itgioocnicc φi0..^MG𝐿1QiQi+1Gxdx=QiQi+1Fxdx
657 656 simprd φi0..^MQiQi+1Gxdx=QiQi+1Fxdx
658 611 653 657 3eqtrd φi0..^MSiSi+1Fxdx=QiQi+1Fxdx
659 658 sumeq2dv φi0..^MSiSi+1Fxdx=i0..^MQiQi+1Fxdx
660 93 308 659 3eqtrrd φi0..^MQiQi+1Fxdx=A+TB+TFxdx
661 25 68 660 3eqtrrd φA+TB+TFxdx=ABFxdx