Metamath Proof Explorer


Theorem ostth3

Description: - Lemma for ostth : p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
ostth.1 φFA
ostth3.2 φn¬1<Fn
ostth3.3 φP
ostth3.4 φFP<1
ostth3.5 R=logFPlogP
ostth3.6 S=ifFPFpFpFP
Assertion ostth3 φa+F=yJPya

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 ostth.1 φFA
6 ostth3.2 φn¬1<Fn
7 ostth3.3 φP
8 ostth3.4 φFP<1
9 ostth3.5 R=logFPlogP
10 ostth3.6 S=ifFPFpFpFP
11 prmuz2 PP2
12 7 11 syl φP2
13 eluz2b2 P2P1<P
14 12 13 sylib φP1<P
15 14 simpld φP
16 nnq PP
17 15 16 syl φP
18 1 qrngbas =BaseQ
19 2 18 abvcl FAPFP
20 5 17 19 syl2anc φFP
21 15 nnne0d φP0
22 1 qrng0 0=0Q
23 2 18 22 abvgt0 FAPP00<FP
24 5 17 21 23 syl3anc φ0<FP
25 20 24 elrpd φFP+
26 25 relogcld φlogFP
27 15 nnred φP
28 14 simprd φ1<P
29 27 28 rplogcld φlogP+
30 26 29 rerpdivcld φlogFPlogP
31 30 renegcld φlogFPlogP
32 9 31 eqeltrid φR
33 1rp 1+
34 logltb FP+1+FP<1logFP<log1
35 25 33 34 sylancl φFP<1logFP<log1
36 8 35 mpbid φlogFP<log1
37 log1 log1=0
38 36 37 breqtrdi φlogFP<0
39 29 rpcnd φlogP
40 39 mul01d φlogP0=0
41 38 40 breqtrrd φlogFP<logP0
42 0red φ0
43 26 42 29 ltdivmuld φlogFPlogP<0logFP<logP0
44 41 43 mpbird φlogFPlogP<0
45 30 lt0neg1d φlogFPlogP<00<logFPlogP
46 44 45 mpbid φ0<logFPlogP
47 46 9 breqtrrdi φ0<R
48 32 47 elrpd φR+
49 1 2 3 padicabvcxp PR+yJPyRA
50 7 48 49 syl2anc φyJPyRA
51 fveq2 y=PJPy=JPP
52 51 oveq1d y=PJPyR=JPPR
53 eqid yJPyR=yJPyR
54 ovex JPPRV
55 52 53 54 fvmpt PyJPyRP=JPPR
56 17 55 syl φyJPyRP=JPPR
57 3 padicval PPJPP=ifP=00PPpCntP
58 7 17 57 syl2anc φJPP=ifP=00PPpCntP
59 21 neneqd φ¬P=0
60 59 iffalsed φifP=00PPpCntP=PPpCntP
61 15 nncnd φP
62 61 exp1d φP1=P
63 62 oveq2d φPpCntP1=PpCntP
64 1z 1
65 pcid P1PpCntP1=1
66 7 64 65 sylancl φPpCntP1=1
67 63 66 eqtr3d φPpCntP=1
68 67 negeqd φPpCntP=1
69 68 oveq2d φPPpCntP=P1
70 neg1z 1
71 70 a1i φ1
72 61 21 71 cxpexpzd φP1=P1
73 69 72 eqtr4d φPPpCntP=P1
74 58 60 73 3eqtrd φJPP=P1
75 74 oveq1d φJPPR=P1R
76 32 recnd φR
77 76 mulm1d φ-1R=R
78 9 negeqi R=logFPlogP
79 30 recnd φlogFPlogP
80 79 negnegd φlogFPlogP=logFPlogP
81 78 80 eqtrid φR=logFPlogP
82 77 81 eqtrd φ-1R=logFPlogP
83 82 oveq2d φP-1R=PlogFPlogP
84 15 nnrpd φP+
85 neg1rr 1
86 85 a1i φ1
87 84 86 76 cxpmuld φP-1R=P1R
88 61 21 79 cxpefd φPlogFPlogP=elogFPlogPlogP
89 26 recnd φlogFP
90 29 rpne0d φlogP0
91 89 39 90 divcan1d φlogFPlogPlogP=logFP
92 91 fveq2d φelogFPlogPlogP=elogFP
93 25 reeflogd φelogFP=FP
94 88 92 93 3eqtrd φPlogFPlogP=FP
95 83 87 94 3eqtr3d φP1R=FP
96 56 75 95 3eqtrrd φFP=yJPyRP
97 fveq2 P=pFP=Fp
98 fveq2 P=pyJPyRP=yJPyRp
99 97 98 eqeq12d P=pFP=yJPyRPFp=yJPyRp
100 96 99 syl5ibcom φP=pFp=yJPyRp
101 100 adantr φpP=pFp=yJPyRp
102 prmnn pp
103 102 ad2antlr φpPpp
104 nnq pp
105 103 104 syl φpPpp
106 fveq2 y=pJPy=JPp
107 106 oveq1d y=pJPyR=JPpR
108 ovex JPpRV
109 107 53 108 fvmpt pyJPyRp=JPpR
110 105 109 syl φpPpyJPyRp=JPpR
111 76 ad2antrr φpPpR
112 111 1cxpd φpPp1R=1
113 7 ad2antrr φpPpP
114 3 padicval PpJPp=ifp=00PPpCntp
115 113 105 114 syl2anc φpPpJPp=ifp=00PPpCntp
116 103 nnne0d φpPpp0
117 116 neneqd φpPp¬p=0
118 117 iffalsed φpPpifp=00PPpCntp=PPpCntp
119 pceq0 PpPpCntp=0¬Pp
120 7 102 119 syl2an φpPpCntp=0¬Pp
121 dvdsprm P2pPpP=p
122 12 121 sylan φpPpP=p
123 122 necon3bbid φp¬PpPp
124 120 123 bitrd φpPpCntp=0Pp
125 124 biimpar φpPpPpCntp=0
126 125 negeqd φpPpPpCntp=0
127 neg0 0=0
128 126 127 eqtrdi φpPpPpCntp=0
129 128 oveq2d φpPpPPpCntp=P0
130 61 ad2antrr φpPpP
131 130 exp0d φpPpP0=1
132 129 131 eqtrd φpPpPPpCntp=1
133 115 118 132 3eqtrd φpPpJPp=1
134 133 oveq1d φpPpJPpR=1R
135 2re 2
136 135 a1i φpPpFp<12
137 5 ad2antrr φpPpFA
138 2 18 abvcl FApFp
139 137 105 138 syl2anc φpPpFp
140 2 18 22 abvgt0 FApp00<Fp
141 137 105 116 140 syl3anc φpPp0<Fp
142 139 141 elrpd φpPpFp+
143 142 adantrr φpPpFp<1Fp+
144 25 ad2antrr φpPpFp<1FP+
145 143 144 ifcld φpPpFp<1ifFPFpFpFP+
146 10 145 eqeltrid φpPpFp<1S+
147 146 rprecred φpPpFp<11S
148 simprr φpPpFp<1Fp<1
149 8 ad2antrr φpPpFp<1FP<1
150 breq1 Fp=ifFPFpFpFPFp<1ifFPFpFpFP<1
151 breq1 FP=ifFPFpFpFPFP<1ifFPFpFpFP<1
152 150 151 ifboth Fp<1FP<1ifFPFpFpFP<1
153 148 149 152 syl2anc φpPpFp<1ifFPFpFpFP<1
154 10 153 eqbrtrid φpPpFp<1S<1
155 146 reclt1d φpPpFp<1S<11<1S
156 154 155 mpbid φpPpFp<11<1S
157 expnbnd 21S1<1Sk2<1Sk
158 136 147 156 157 syl3anc φpPpFp<1k2<1Sk
159 146 rpcnd φpPpFp<1S
160 159 adantr φpPpFp<1kS
161 146 rpne0d φpPpFp<1S0
162 161 adantr φpPpFp<1kS0
163 nnz kk
164 163 adantl φpPpFp<1kk
165 160 162 164 exprecd φpPpFp<1k1Sk=1Sk
166 5 ad3antrrr φpPpFp<1kFA
167 ax-1ne0 10
168 1 qrng1 1=1Q
169 2 168 22 abv1z FA10F1=1
170 166 167 169 sylancl φpPpFp<1kF1=1
171 15 ad2antrr φpPpFp<1P
172 nnnn0 kk0
173 nnexpcl Pk0Pk
174 171 172 173 syl2an φpPpFp<1kPk
175 174 nnzd φpPpFp<1kPk
176 102 ad2antlr φpPpFp<1p
177 nnexpcl pk0pk
178 176 172 177 syl2an φpPpFp<1kpk
179 178 nnzd φpPpFp<1kpk
180 bezout PkpkabPkgcdpk=Pka+pkb
181 175 179 180 syl2anc φpPpFp<1kabPkgcdpk=Pka+pkb
182 simprl φpPpFp<1Pp
183 7 ad2antrr φpPpFp<1P
184 simplr φpPpFp<1p
185 prmrp PpPgcdp=1Pp
186 183 184 185 syl2anc φpPpFp<1Pgcdp=1Pp
187 182 186 mpbird φpPpFp<1Pgcdp=1
188 187 adantr φpPpFp<1kPgcdp=1
189 171 adantr φpPpFp<1kP
190 176 adantr φpPpFp<1kp
191 simpr φpPpFp<1kk
192 rppwr PpkPgcdp=1Pkgcdpk=1
193 189 190 191 192 syl3anc φpPpFp<1kPgcdp=1Pkgcdpk=1
194 188 193 mpd φpPpFp<1kPkgcdpk=1
195 194 adantrr φpPpFp<1kabPkgcdpk=1
196 195 eqeq1d φpPpFp<1kabPkgcdpk=Pka+pkb1=Pka+pkb
197 5 ad3antrrr φpPpFp<1kabFA
198 174 adantrr φpPpFp<1kabPk
199 nnq PkPk
200 198 199 syl φpPpFp<1kabPk
201 simprrl φpPpFp<1kaba
202 zq aa
203 201 202 syl φpPpFp<1kaba
204 qmulcl PkaPka
205 200 203 204 syl2anc φpPpFp<1kabPka
206 178 adantrr φpPpFp<1kabpk
207 nnq pkpk
208 206 207 syl φpPpFp<1kabpk
209 simprrr φpPpFp<1kabb
210 zq bb
211 209 210 syl φpPpFp<1kabb
212 qmulcl pkbpkb
213 208 211 212 syl2anc φpPpFp<1kabpkb
214 qaddcl PkapkbPka+pkb
215 205 213 214 syl2anc φpPpFp<1kabPka+pkb
216 2 18 abvcl FAPka+pkbFPka+pkb
217 197 215 216 syl2anc φpPpFp<1kabFPka+pkb
218 2 18 abvcl FAPkaFPka
219 197 205 218 syl2anc φpPpFp<1kabFPka
220 2 18 abvcl FApkbFpkb
221 197 213 220 syl2anc φpPpFp<1kabFpkb
222 219 221 readdcld φpPpFp<1kabFPka+Fpkb
223 rpexpcl S+kSk+
224 146 163 223 syl2an φpPpFp<1kSk+
225 224 rpred φpPpFp<1kSk
226 225 adantrr φpPpFp<1kabSk
227 remulcl 2Sk2Sk
228 135 226 227 sylancr φpPpFp<1kab2Sk
229 qex V
230 cnfldadd +=+fld
231 1 230 ressplusg V+=+Q
232 229 231 ax-mp +=+Q
233 2 18 232 abvtri FAPkapkbFPka+pkbFPka+Fpkb
234 197 205 213 233 syl3anc φpPpFp<1kabFPka+pkbFPka+Fpkb
235 cnfldmul ×=fld
236 1 235 ressmulr V×=Q
237 229 236 ax-mp ×=Q
238 2 18 237 abvmul FAPkaFPka=FPkFa
239 197 200 203 238 syl3anc φpPpFp<1kabFPka=FPkFa
240 17 ad3antrrr φpPpFp<1kabP
241 172 ad2antrl φpPpFp<1kabk0
242 1 2 qabvexp FAPk0FPk=FPk
243 197 240 241 242 syl3anc φpPpFp<1kabFPk=FPk
244 243 oveq1d φpPpFp<1kabFPkFa=FPkFa
245 239 244 eqtrd φpPpFp<1kabFPka=FPkFa
246 197 240 19 syl2anc φpPpFp<1kabFP
247 246 241 reexpcld φpPpFp<1kabFPk
248 2 18 abvcl FAaFa
249 197 203 248 syl2anc φpPpFp<1kabFa
250 247 249 remulcld φpPpFp<1kabFPkFa
251 elz aaa=0aa
252 251 simprbi aa=0aa
253 252 adantl φaa=0aa
254 2 22 abv0 FAF0=0
255 5 254 syl φF0=0
256 0le1 01
257 255 256 eqbrtrdi φF01
258 257 adantr φaF01
259 fveq2 a=0Fa=F0
260 259 breq1d a=0Fa1F01
261 258 260 syl5ibrcom φaa=0Fa1
262 nnq nn
263 2 18 abvcl FAnFn
264 5 262 263 syl2an φnFn
265 1re 1
266 lenlt Fn1Fn1¬1<Fn
267 264 265 266 sylancl φnFn1¬1<Fn
268 267 ralbidva φnFn1n¬1<Fn
269 6 268 mpbird φnFn1
270 fveq2 n=aFn=Fa
271 270 breq1d n=aFn1Fa1
272 271 rspccv nFn1aFa1
273 269 272 syl φaFa1
274 273 adantr φaaFa1
275 5 adantr φaaFA
276 202 ad2antrl φaaa
277 eqid invgQ=invgQ
278 2 18 277 abvneg FAaFinvgQa=Fa
279 275 276 278 syl2anc φaaFinvgQa=Fa
280 fveq2 n=invgQaFn=FinvgQa
281 280 breq1d n=invgQaFn1FinvgQa1
282 269 adantr φaanFn1
283 1 qrngneg ainvgQa=a
284 276 283 syl φaainvgQa=a
285 simprr φaaa
286 284 285 eqeltrd φaainvgQa
287 281 282 286 rspcdva φaaFinvgQa1
288 279 287 eqbrtrrd φaaFa1
289 288 expr φaaFa1
290 261 274 289 3jaod φaa=0aaFa1
291 253 290 mpd φaFa1
292 291 ralrimiva φaFa1
293 292 ad3antrrr φpPpFp<1kabaFa1
294 rsp aFa1aFa1
295 293 201 294 sylc φpPpFp<1kabFa1
296 265 a1i φpPpFp<1kab1
297 163 ad2antrl φpPpFp<1kabk
298 24 ad3antrrr φpPpFp<1kab0<FP
299 expgt0 FPk0<FP0<FPk
300 246 297 298 299 syl3anc φpPpFp<1kab0<FPk
301 lemul2 Fa1FPk0<FPkFa1FPkFaFPk1
302 249 296 247 300 301 syl112anc φpPpFp<1kabFa1FPkFaFPk1
303 295 302 mpbid φpPpFp<1kabFPkFaFPk1
304 247 recnd φpPpFp<1kabFPk
305 304 mulridd φpPpFp<1kabFPk1=FPk
306 303 305 breqtrd φpPpFp<1kabFPkFaFPk
307 146 rpred φpPpFp<1S
308 307 adantr φpPpFp<1kabS
309 144 adantr φpPpFp<1kabFP+
310 309 rpge0d φpPpFp<1kab0FP
311 176 adantr φpPpFp<1kabp
312 311 104 syl φpPpFp<1kabp
313 197 312 138 syl2anc φpPpFp<1kabFp
314 max1 FPFpFPifFPFpFpFP
315 246 313 314 syl2anc φpPpFp<1kabFPifFPFpFpFP
316 315 10 breqtrrdi φpPpFp<1kabFPS
317 leexp1a FPSk00FPFPSFPkSk
318 246 308 241 310 316 317 syl32anc φpPpFp<1kabFPkSk
319 250 247 226 306 318 letrd φpPpFp<1kabFPkFaSk
320 245 319 eqbrtrd φpPpFp<1kabFPkaSk
321 2 18 237 abvmul FApkbFpkb=FpkFb
322 197 208 211 321 syl3anc φpPpFp<1kabFpkb=FpkFb
323 1 2 qabvexp FApk0Fpk=Fpk
324 197 312 241 323 syl3anc φpPpFp<1kabFpk=Fpk
325 324 oveq1d φpPpFp<1kabFpkFb=FpkFb
326 322 325 eqtrd φpPpFp<1kabFpkb=FpkFb
327 313 241 reexpcld φpPpFp<1kabFpk
328 2 18 abvcl FAbFb
329 197 211 328 syl2anc φpPpFp<1kabFb
330 327 329 remulcld φpPpFp<1kabFpkFb
331 fveq2 a=bFa=Fb
332 331 breq1d a=bFa1Fb1
333 332 293 209 rspcdva φpPpFp<1kabFb1
334 311 nnne0d φpPpFp<1kabp0
335 197 312 334 140 syl3anc φpPpFp<1kab0<Fp
336 expgt0 Fpk0<Fp0<Fpk
337 313 297 335 336 syl3anc φpPpFp<1kab0<Fpk
338 lemul2 Fb1Fpk0<FpkFb1FpkFbFpk1
339 329 296 327 337 338 syl112anc φpPpFp<1kabFb1FpkFbFpk1
340 333 339 mpbid φpPpFp<1kabFpkFbFpk1
341 327 recnd φpPpFp<1kabFpk
342 341 mulridd φpPpFp<1kabFpk1=Fpk
343 340 342 breqtrd φpPpFp<1kabFpkFbFpk
344 143 adantr φpPpFp<1kabFp+
345 344 rpge0d φpPpFp<1kab0Fp
346 max2 FPFpFpifFPFpFpFP
347 246 313 346 syl2anc φpPpFp<1kabFpifFPFpFpFP
348 347 10 breqtrrdi φpPpFp<1kabFpS
349 leexp1a FpSk00FpFpSFpkSk
350 313 308 241 345 348 349 syl32anc φpPpFp<1kabFpkSk
351 330 327 226 343 350 letrd φpPpFp<1kabFpkFbSk
352 326 351 eqbrtrd φpPpFp<1kabFpkbSk
353 219 221 226 226 320 352 le2addd φpPpFp<1kabFPka+FpkbSk+Sk
354 224 rpcnd φpPpFp<1kSk
355 354 2timesd φpPpFp<1k2Sk=Sk+Sk
356 355 adantrr φpPpFp<1kab2Sk=Sk+Sk
357 353 356 breqtrrd φpPpFp<1kabFPka+Fpkb2Sk
358 217 222 228 234 357 letrd φpPpFp<1kabFPka+pkb2Sk
359 fveq2 1=Pka+pkbF1=FPka+pkb
360 359 breq1d 1=Pka+pkbF12SkFPka+pkb2Sk
361 358 360 syl5ibrcom φpPpFp<1kab1=Pka+pkbF12Sk
362 196 361 sylbid φpPpFp<1kabPkgcdpk=Pka+pkbF12Sk
363 362 anassrs φpPpFp<1kabPkgcdpk=Pka+pkbF12Sk
364 363 rexlimdvva φpPpFp<1kabPkgcdpk=Pka+pkbF12Sk
365 181 364 mpd φpPpFp<1kF12Sk
366 170 365 eqbrtrrd φpPpFp<1k12Sk
367 224 rpregt0d φpPpFp<1kSk0<Sk
368 ledivmul2 12Sk0<Sk1Sk212Sk
369 265 135 367 368 mp3an12i φpPpFp<1k1Sk212Sk
370 366 369 mpbird φpPpFp<1k1Sk2
371 165 370 eqbrtrd φpPpFp<1k1Sk2
372 reexpcl 1Sk01Sk
373 147 172 372 syl2an φpPpFp<1k1Sk
374 lenlt 1Sk21Sk2¬2<1Sk
375 373 135 374 sylancl φpPpFp<1k1Sk2¬2<1Sk
376 371 375 mpbid φpPpFp<1k¬2<1Sk
377 376 pm2.21d φpPpFp<1k2<1Sk¬Fp<1
378 377 rexlimdva φpPpFp<1k2<1Sk¬Fp<1
379 158 378 mpd φpPpFp<1¬Fp<1
380 379 expr φpPpFp<1¬Fp<1
381 380 pm2.01d φpPp¬Fp<1
382 fveq2 n=pFn=Fp
383 382 breq2d n=p1<Fn1<Fp
384 383 notbid n=p¬1<Fn¬1<Fp
385 6 ad2antrr φpPpn¬1<Fn
386 384 385 103 rspcdva φpPp¬1<Fp
387 lttri3 Fp1Fp=1¬Fp<1¬1<Fp
388 139 265 387 sylancl φpPpFp=1¬Fp<1¬1<Fp
389 381 386 388 mpbir2and φpPpFp=1
390 112 134 389 3eqtr4d φpPpJPpR=Fp
391 110 390 eqtr2d φpPpFp=yJPyRp
392 391 ex φpPpFp=yJPyRp
393 101 392 pm2.61dne φpFp=yJPyRp
394 1 2 5 50 393 ostthlem2 φF=yJPyR
395 oveq2 a=RJPya=JPyR
396 395 mpteq2dv a=RyJPya=yJPyR
397 396 rspceeqv R+F=yJPyRa+F=yJPya
398 48 394 397 syl2anc φa+F=yJPya