Metamath Proof Explorer


Theorem esumcvg

Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 . (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Hypotheses esumcvg.j J=TopOpen𝑠*𝑠0+∞
esumcvg.f F=n*k=1nA
esumcvg.a φkA0+∞
esumcvg.m k=mA=B
Assertion esumcvg φFtJ*kA

Proof

Step Hyp Ref Expression
1 esumcvg.j J=TopOpen𝑠*𝑠0+∞
2 esumcvg.f F=n*k=1nA
3 esumcvg.a φkA0+∞
4 esumcvg.m k=mA=B
5 nnuz =1
6 1zzd φmB0+∞Fdom1
7 simpr φmB0+∞FdomFdom
8 rge0ssre 0+∞
9 ax-resscn
10 8 9 sstri 0+∞
11 4 eleq1d k=mA0+∞B0+∞
12 11 cbvralvw kA0+∞mB0+∞
13 rsp kA0+∞kA0+∞
14 12 13 sylbir mB0+∞kA0+∞
15 14 adantl φmB0+∞kA0+∞
16 15 imp φmB0+∞kA0+∞
17 10 16 sselid φmB0+∞kA
18 17 adantlr φmB0+∞FdomkA
19 fzfid φmB0+∞n1nFin
20 elfznn k1nk
21 20 16 sylan2 φmB0+∞k1nA0+∞
22 21 adantlr φmB0+∞nk1nA0+∞
23 19 22 esumpfinval φmB0+∞n*k=1nA=k=1nA
24 23 mpteq2dva φmB0+∞n*k=1nA=nk=1nA
25 2 24 eqtrid φmB0+∞F=nk=1nA
26 10 22 sselid φmB0+∞nk1nA
27 19 26 fsumcl φmB0+∞nk=1nA
28 25 27 fvmpt2d φmB0+∞nFn=k=1nA
29 28 adantlr φmB0+∞FdomnFn=k=1nA
30 5 6 7 18 29 isumclim3 φmB0+∞FdomFkA
31 19 22 fsumrp0cl φmB0+∞nk=1nA0+∞
32 23 31 eqeltrd φmB0+∞n*k=1nA0+∞
33 32 2 fmptd φmB0+∞F:0+∞
34 33 adantr φmB0+∞FdomF:0+∞
35 simplll φmB0+∞Fdomkφ
36 eqidd φkmB=mB
37 eqcom k=mm=k
38 eqcom A=BB=A
39 4 37 38 3imtr3i m=kB=A
40 39 adantl φkm=kB=A
41 simpr φkk
42 36 40 41 3 fvmptd φkmBk=A
43 35 42 sylancom φmB0+∞FdomkmBk=A
44 16 adantlr φmB0+∞FdomkA0+∞
45 elrege0 A0+∞A0A
46 44 45 sylib φmB0+∞FdomkA0A
47 46 simpld φmB0+∞FdomkA
48 ovex 1nV
49 simpll φnk1nφ
50 20 adantl φnk1nk
51 49 50 3 syl2anc φnk1nA0+∞
52 51 ralrimiva φnk1nA0+∞
53 nfcv _k1n
54 53 esumcl 1nVk1nA0+∞*k=1nA0+∞
55 48 52 54 sylancr φn*k=1nA0+∞
56 55 2 fmptd φF:0+∞
57 56 ffnd φFFn
58 57 adantr φmB0+∞FFn
59 1z 1
60 seqfn 1seq1+mBFn1
61 59 60 ax-mp seq1+mBFn1
62 5 fneq2i seq1+mBFnseq1+mBFn1
63 61 62 mpbir seq1+mBFn
64 63 a1i φmB0+∞seq1+mBFn
65 simplll φmB0+∞nk1nφ
66 20 42 sylan2 φk1nmBk=A
67 65 66 sylancom φmB0+∞nk1nmBk=A
68 simpr φmB0+∞nn
69 68 5 eleqtrdi φmB0+∞nn1
70 67 69 26 fsumser φmB0+∞nk=1nA=seq1+mBn
71 28 70 eqtrd φmB0+∞nFn=seq1+mBn
72 58 64 71 eqfnfvd φmB0+∞F=seq1+mB
73 72 adantr φmB0+∞FdomF=seq1+mB
74 73 7 eqeltrrd φmB0+∞Fdomseq1+mBdom
75 5 6 43 47 74 isumrecl φmB0+∞FdomkA
76 46 simprd φmB0+∞Fdomk0A
77 5 6 43 47 74 76 isumge0 φmB0+∞Fdom0kA
78 elrege0 kA0+∞kA0kA
79 75 77 78 sylanbrc φmB0+∞FdomkA0+∞
80 ssid 0+∞0+∞
81 1 34 79 80 lmlimxrge0 φmB0+∞FdomFtJkAFkA
82 30 81 mpbird φmB0+∞FdomFtJkA
83 2 7 eqeltrrid φmB0+∞Fdomn*k=1nAdom
84 24 eleq1d φmB0+∞n*k=1nAdomnk=1nAdom
85 84 adantr φmB0+∞Fdomn*k=1nAdomnk=1nAdom
86 83 85 mpbid φmB0+∞Fdomnk=1nAdom
87 44 4 86 esumpcvgval φmB0+∞Fdom*kA=kA
88 82 87 breqtrrd φmB0+∞FdomFtJ*kA
89 33 adantr φmB0+∞¬FdomF:0+∞
90 simpr φmB0+∞¬Fdomnn
91 90 nnzd φmB0+∞¬Fdomnn
92 uzid nnn
93 peano2uz nnn+1n
94 91 92 93 3syl φmB0+∞¬Fdomnn+1n
95 simplll φmB0+∞¬FdomnkφmB0+∞
96 95 16 sylancom φmB0+∞¬FdomnkA0+∞
97 90 94 96 esumpmono φmB0+∞¬Fdomn*k=1nA*k=1n+1A
98 28 23 eqtr4d φmB0+∞nFn=*k=1nA
99 98 adantlr φmB0+∞¬FdomnFn=*k=1nA
100 oveq2 l=n1l=1n
101 esumeq1 1l=1n*k=1lA=*k=1nA
102 100 101 syl l=n*k=1lA=*k=1nA
103 102 cbvmptv l*k=1lA=n*k=1nA
104 2 103 eqtr4i F=l*k=1lA
105 104 a1i φmB0+∞¬FdomnF=l*k=1lA
106 simpr3 φmB0+∞¬Fdomnl=n+1l=n+1
107 oveq2 l=n+11l=1n+1
108 esumeq1 1l=1n+1*k=1lA=*k=1n+1A
109 106 107 108 3syl φmB0+∞¬Fdomnl=n+1*k=1lA=*k=1n+1A
110 109 3anassrs φmB0+∞¬Fdomnl=n+1*k=1lA=*k=1n+1A
111 90 peano2nnd φmB0+∞¬Fdomnn+1
112 ovex 1n+1V
113 simp-4l φmB0+∞¬Fdomnk1n+1φ
114 elfznn k1n+1k
115 114 adantl φmB0+∞¬Fdomnk1n+1k
116 113 115 3 syl2anc φmB0+∞¬Fdomnk1n+1A0+∞
117 116 ralrimiva φmB0+∞¬Fdomnk1n+1A0+∞
118 nfcv _k1n+1
119 118 esumcl 1n+1Vk1n+1A0+∞*k=1n+1A0+∞
120 112 117 119 sylancr φmB0+∞¬Fdomn*k=1n+1A0+∞
121 105 110 111 120 fvmptd φmB0+∞¬FdomnFn+1=*k=1n+1A
122 97 99 121 3brtr4d φmB0+∞¬FdomnFnFn+1
123 simpr φmB0+∞¬Fdom¬Fdom
124 1 89 122 123 lmdvglim φmB0+∞¬FdomFtJ+∞
125 nfv kφmB0+∞
126 nfcv _k
127 nnex V
128 127 a1i φmB0+∞V
129 3 adantlr φmB0+∞kA0+∞
130 simpr φmB0+∞x𝒫Finx𝒫Fin
131 simpll φmB0+∞x𝒫FinkxφmB0+∞
132 inss1 𝒫Fin𝒫
133 simplr φmB0+∞x𝒫Finkxx𝒫Fin
134 132 133 sselid φmB0+∞x𝒫Finkxx𝒫
135 134 elpwid φmB0+∞x𝒫Finkxx
136 simpr φmB0+∞x𝒫Finkxkx
137 135 136 sseldd φmB0+∞x𝒫Finkxk
138 131 137 16 syl2anc φmB0+∞x𝒫FinkxA0+∞
139 138 fmpttd φmB0+∞x𝒫FinkxA:x0+∞
140 esumpfinvallem x𝒫FinkxA:x0+∞fldkxA=𝑠*𝑠0+∞kxA
141 130 139 140 syl2anc φmB0+∞x𝒫FinfldkxA=𝑠*𝑠0+∞kxA
142 inss2 𝒫FinFin
143 142 130 sselid φmB0+∞x𝒫FinxFin
144 131 137 17 syl2anc φmB0+∞x𝒫FinkxA
145 143 144 gsumfsum φmB0+∞x𝒫FinfldkxA=kxA
146 141 145 eqtr3d φmB0+∞x𝒫Fin𝑠*𝑠0+∞kxA=kxA
147 125 126 128 129 146 esumval φmB0+∞*kA=supranx𝒫FinkxA*<
148 147 adantr φmB0+∞¬Fdom*kA=supranx𝒫FinkxA*<
149 89 122 123 lmdvg φmB0+∞¬Fdomylnly<Fn
150 149 r19.21bi φmB0+∞¬Fdomylnly<Fn
151 nnz ll
152 uzid lll
153 151 152 syl lll
154 simpr ln=ln=l
155 154 fveq2d ln=lFn=Fl
156 155 breq2d ln=ly<Fny<Fl
157 153 156 rspcdv lnly<Fny<Fl
158 157 reximia lnly<Fnly<Fl
159 150 158 syl φmB0+∞¬Fdomyly<Fl
160 simplr φmB0+∞¬Fdomyly
161 89 ad2antrr φmB0+∞¬FdomylF:0+∞
162 simpr φmB0+∞¬Fdomyll
163 161 162 ffvelcdmd φmB0+∞¬FdomylFl0+∞
164 8 163 sselid φmB0+∞¬FdomylFl
165 ltle yFly<FlyFl
166 160 164 165 syl2anc φmB0+∞¬Fdomyly<FlyFl
167 oveq2 n=l1n=1l
168 esumeq1 1n=1l*k=1nA=*k=1lA
169 167 168 syl n=l*k=1nA=*k=1lA
170 esumex *k=1lAV
171 170 a1i φmB0+∞¬Fdomyl*k=1lAV
172 2 169 162 171 fvmptd3 φmB0+∞¬FdomylFl=*k=1lA
173 fzfid φmB0+∞¬Fdomyl1lFin
174 simp-4l φmB0+∞¬Fdomylk1lφmB0+∞
175 elfznn k1lk
176 175 adantl φmB0+∞¬Fdomylk1lk
177 174 176 16 syl2anc φmB0+∞¬Fdomylk1lA0+∞
178 173 177 esumpfinval φmB0+∞¬Fdomyl*k=1lA=k=1lA
179 172 178 eqtrd φmB0+∞¬FdomylFl=k=1lA
180 179 breq2d φmB0+∞¬FdomylyFlyk=1lA
181 166 180 sylibd φmB0+∞¬Fdomyly<Flyk=1lA
182 181 reximdva φmB0+∞¬Fdomyly<Fllyk=1lA
183 159 182 mpd φmB0+∞¬Fdomylyk=1lA
184 fzssuz 1l1
185 184 5 sseqtrri 1l
186 ovex 1lV
187 186 elpw 1l𝒫1l
188 185 187 mpbir 1l𝒫
189 fzfi 1lFin
190 elin 1l𝒫Fin1l𝒫1lFin
191 188 189 190 mpbir2an 1l𝒫Fin
192 sumex k=1lAV
193 eqid x𝒫FinkxA=x𝒫FinkxA
194 sumeq1 x=1lkxA=k=1lA
195 193 194 elrnmpt1s 1l𝒫Fink=1lAVk=1lAranx𝒫FinkxA
196 191 192 195 mp2an k=1lAranx𝒫FinkxA
197 nfv zyk=1lA
198 breq2 z=k=1lAyzyk=1lA
199 197 198 rspce k=1lAranx𝒫FinkxAyk=1lAzranx𝒫FinkxAyz
200 196 199 mpan yk=1lAzranx𝒫FinkxAyz
201 200 rexlimivw lyk=1lAzranx𝒫FinkxAyz
202 183 201 syl φmB0+∞¬Fdomyzranx𝒫FinkxAyz
203 202 ralrimiva φmB0+∞¬Fdomyzranx𝒫FinkxAyz
204 simpr φmB0+∞¬Fdomx𝒫Finx𝒫Fin
205 142 204 sselid φmB0+∞¬Fdomx𝒫FinxFin
206 138 adantllr φmB0+∞¬Fdomx𝒫FinkxA0+∞
207 8 206 sselid φmB0+∞¬Fdomx𝒫FinkxA
208 205 207 fsumrecl φmB0+∞¬Fdomx𝒫FinkxA
209 208 rexrd φmB0+∞¬Fdomx𝒫FinkxA*
210 209 fmpttd φmB0+∞¬Fdomx𝒫FinkxA:𝒫Fin*
211 frn x𝒫FinkxA:𝒫Fin*ranx𝒫FinkxA*
212 supxrunb1 ranx𝒫FinkxA*yzranx𝒫FinkxAyzsupranx𝒫FinkxA*<=+∞
213 210 211 212 3syl φmB0+∞¬Fdomyzranx𝒫FinkxAyzsupranx𝒫FinkxA*<=+∞
214 203 213 mpbid φmB0+∞¬Fdomsupranx𝒫FinkxA*<=+∞
215 148 214 eqtrd φmB0+∞¬Fdom*kA=+∞
216 124 215 breqtrrd φmB0+∞¬FdomFtJ*kA
217 88 216 pm2.61dan φmB0+∞FtJ*kA
218 2 reseq1i Fk=n*k=1nAk
219 eleq1w l=klk
220 219 anbi2d l=kφlφk
221 sbequ12r l=klkA=+∞A=+∞
222 220 221 anbi12d l=kφllkA=+∞φkA=+∞
223 fveq2 l=kl=k
224 223 reseq2d l=kn*k=1nAl=n*k=1nAk
225 223 xpeq1d l=kl×+∞=k×+∞
226 224 225 eqeq12d l=kn*k=1nAl=l×+∞n*k=1nAk=k×+∞
227 222 226 imbi12d l=kφllkA=+∞n*k=1nAl=l×+∞φkA=+∞n*k=1nAk=k×+∞
228 nfv kφl
229 nfs1v klkA=+∞
230 228 229 nfan kφllkA=+∞
231 nfv knl
232 230 231 nfan kφllkA=+∞nl
233 ovexd φllkA=+∞nl1nV
234 simp-4l φllkA=+∞nlk1nφ
235 20 adantl φllkA=+∞nlk1nk
236 234 235 3 syl2anc φllkA=+∞nlk1nA0+∞
237 simpllr φllkA=+∞nll
238 elnnuz ll1
239 eluzfz l1nll1n
240 238 239 sylanb lnll1n
241 237 240 sylancom φllkA=+∞nll1n
242 simplr φllkA=+∞nllkA=+∞
243 sbequ12 k=lA=+∞lkA=+∞
244 229 243 rspce l1nlkA=+∞k1nA=+∞
245 241 242 244 syl2anc φllkA=+∞nlk1nA=+∞
246 232 233 236 245 esumpinfval φllkA=+∞nl*k=1nA=+∞
247 246 ralrimiva φllkA=+∞nl*k=1nA=+∞
248 eqidd φllkA=+∞l=l
249 mpteq12 l=lnl*k=1nA=+∞nl*k=1nA=nl+∞
250 248 249 sylan φllkA=+∞nl*k=1nA=+∞nl*k=1nA=nl+∞
251 simplr φllkA=+∞l
252 uznnssnn ll
253 resmpt ln*k=1nAl=nl*k=1nA
254 251 252 253 3syl φllkA=+∞n*k=1nAl=nl*k=1nA
255 254 adantr φllkA=+∞nl*k=1nA=+∞n*k=1nAl=nl*k=1nA
256 fconstmpt l×+∞=nl+∞
257 256 a1i φllkA=+∞nl*k=1nA=+∞l×+∞=nl+∞
258 250 255 257 3eqtr4d φllkA=+∞nl*k=1nA=+∞n*k=1nAl=l×+∞
259 247 258 mpdan φllkA=+∞n*k=1nAl=l×+∞
260 227 259 chvarvv φkA=+∞n*k=1nAk=k×+∞
261 218 260 eqtrid φkA=+∞Fk=k×+∞
262 261 ex φkA=+∞Fk=k×+∞
263 262 reximdva φkA=+∞kFk=k×+∞
264 263 imp φkA=+∞kFk=k×+∞
265 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
266 1 265 eqtri J=ordTop𝑡0+∞
267 letopon ordTopTopOn*
268 iccssxr 0+∞*
269 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
270 267 268 269 mp2an ordTop𝑡0+∞TopOn0+∞
271 266 270 eqeltri JTopOn0+∞
272 271 a1i φkJTopOn0+∞
273 0xr 0*
274 pnfxr +∞*
275 0lepnf 0+∞
276 ubicc2 0*+∞*0+∞+∞0+∞
277 273 274 275 276 mp3an +∞0+∞
278 277 a1i φk+∞0+∞
279 41 nnzd φkk
280 eqid k=k
281 280 lmconst JTopOn0+∞+∞0+∞kk×+∞tJ+∞
282 272 278 279 281 syl3anc φkk×+∞tJ+∞
283 breq1 Fk=k×+∞FktJ+∞k×+∞tJ+∞
284 283 biimprd Fk=k×+∞k×+∞tJ+∞FktJ+∞
285 282 284 mpan9 φkFk=k×+∞FktJ+∞
286 ovexd φk0+∞V
287 cnex V
288 287 a1i φkV
289 56 adantr φkF:0+∞
290 nnsscn
291 290 a1i φk
292 elpm2r 0+∞VVF:0+∞F0+∞𝑝𝑚
293 286 288 289 291 292 syl22anc φkF0+∞𝑝𝑚
294 272 293 279 lmres φkFtJ+∞FktJ+∞
295 294 biimpar φkFktJ+∞FtJ+∞
296 285 295 syldan φkFk=k×+∞FtJ+∞
297 296 r19.29an φkFk=k×+∞FtJ+∞
298 264 297 syldan φkA=+∞FtJ+∞
299 nfv kφ
300 nfre1 kkA=+∞
301 299 300 nfan kφkA=+∞
302 127 a1i φkA=+∞V
303 3 adantlr φkA=+∞kA0+∞
304 simpr φkA=+∞kA=+∞
305 301 302 303 304 esumpinfval φkA=+∞*kA=+∞
306 298 305 breqtrrd φkA=+∞FtJ*kA
307 eleq1w k=mkm
308 307 anbi2d k=mφkφm
309 4 eleq1d k=mA0+∞B0+∞
310 308 309 imbi12d k=mφkA0+∞φmB0+∞
311 310 3 chvarvv φmB0+∞
312 eliccelico 0*+∞*0+∞B0+∞B0+∞B=+∞
313 273 274 275 312 mp3an B0+∞B0+∞B=+∞
314 311 313 sylib φmB0+∞B=+∞
315 314 ralrimiva φmB0+∞B=+∞
316 r19.30 mB0+∞B=+∞mB0+∞mB=+∞
317 315 316 syl φmB0+∞mB=+∞
318 4 eqeq1d k=mA=+∞B=+∞
319 318 cbvrexvw kA=+∞mB=+∞
320 319 orbi2i mB0+∞kA=+∞mB0+∞mB=+∞
321 317 320 sylibr φmB0+∞kA=+∞
322 217 306 321 mpjaodan φFtJ*kA