Metamath Proof Explorer


Theorem algextdeglem1

Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
Assertion algextdeglem1 φ L 𝑠 F = K

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 2 oveq1i L 𝑠 F = E 𝑠 E fldGen F A 𝑠 F
9 ovex E fldGen F A V
10 eqid Base E = Base E
11 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
12 6 11 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
13 12 simp1d φ E DivRing
14 12 simp2d φ F SubRing E
15 subrgsubg F SubRing E F SubGrp E
16 10 subgss F SubGrp E F Base E
17 14 15 16 3syl φ F Base E
18 eqid E evalSub 1 F = E evalSub 1 F
19 eqid 0 E = 0 E
20 5 fldcrngd φ E CRing
21 18 1 10 19 20 14 irngssv φ E IntgRing F Base E
22 21 7 sseldd φ A Base E
23 22 snssd φ A Base E
24 17 23 unssd φ F A Base E
25 10 13 24 fldgenssid φ F A E fldGen F A
26 25 unssad φ F E fldGen F A
27 ressabs E fldGen F A V F E fldGen F A E 𝑠 E fldGen F A 𝑠 F = E 𝑠 F
28 9 26 27 sylancr φ E 𝑠 E fldGen F A 𝑠 F = E 𝑠 F
29 8 28 eqtrid φ L 𝑠 F = E 𝑠 F
30 29 1 eqtr4di φ L 𝑠 F = K