Metamath Proof Explorer


Theorem itg2addnc

Description: Alternate proof of itg2add using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub , which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc , and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017) (Revised by Brendan Leahy, 13-Mar-2018)

Ref Expression
Hypotheses itg2addnc.f1 φFMblFn
itg2addnc.f2 φF:0+∞
itg2addnc.f3 φ2F
itg2addnc.g2 φG:0+∞
itg2addnc.g3 φ2G
Assertion itg2addnc φ2F+fG=2F+2G

Proof

Step Hyp Ref Expression
1 itg2addnc.f1 φFMblFn
2 itg2addnc.f2 φF:0+∞
3 itg2addnc.f3 φ2F
4 itg2addnc.g2 φG:0+∞
5 itg2addnc.g3 φ2G
6 simprr fdom1c+ziffz=00fz+cfFx=1fx=1f
7 itg1cl fdom11f
8 7 adantr fdom1c+ziffz=00fz+cfFx=1f1f
9 6 8 eqeltrd fdom1c+ziffz=00fz+cfFx=1fx
10 9 rexlimiva fdom1c+ziffz=00fz+cfFx=1fx
11 10 abssi x|fdom1c+ziffz=00fz+cfFx=1f
12 11 a1i φx|fdom1c+ziffz=00fz+cfFx=1f
13 i1f0 ×0dom1
14 3nn 3
15 nnrp 33+
16 ne0i 3++
17 14 15 16 mp2b +
18 2 ffvelcdmda φzFz0+∞
19 elrege0 Fz0+∞Fz0Fz
20 18 19 sylib φzFz0Fz
21 20 simprd φz0Fz
22 21 ralrimiva φz0Fz
23 reex V
24 23 a1i φV
25 c0ex 0V
26 25 a1i φz0V
27 eqidd φz0=z0
28 2 feqmptd φF=zFz
29 24 26 18 27 28 ofrfval2 φz0fFz0Fz
30 22 29 mpbird φz0fF
31 30 ralrimivw φc+z0fF
32 r19.2z +c+z0fFc+z0fF
33 17 31 32 sylancr φc+z0fF
34 fveq2 f=×01f=1×0
35 itg10 1×0=0
36 34 35 eqtr2di f=×00=1f
37 36 biantrud f=×0c+ziffz=00fz+cfFc+ziffz=00fz+cfF0=1f
38 fveq1 f=×0fz=×0z
39 25 fvconst2 z×0z=0
40 38 39 sylan9eq f=×0zfz=0
41 40 iftrued f=×0ziffz=00fz+c=0
42 41 mpteq2dva f=×0ziffz=00fz+c=z0
43 42 breq1d f=×0ziffz=00fz+cfFz0fF
44 43 rexbidv f=×0c+ziffz=00fz+cfFc+z0fF
45 37 44 bitr3d f=×0c+ziffz=00fz+cfF0=1fc+z0fF
46 45 rspcev ×0dom1c+z0fFfdom1c+ziffz=00fz+cfF0=1f
47 13 33 46 sylancr φfdom1c+ziffz=00fz+cfF0=1f
48 eqeq1 x=0x=1f0=1f
49 48 anbi2d x=0c+ziffz=00fz+cfFx=1fc+ziffz=00fz+cfF0=1f
50 49 rexbidv x=0fdom1c+ziffz=00fz+cfFx=1ffdom1c+ziffz=00fz+cfF0=1f
51 25 50 elab 0x|fdom1c+ziffz=00fz+cfFx=1ffdom1c+ziffz=00fz+cfF0=1f
52 47 51 sylibr φ0x|fdom1c+ziffz=00fz+cfFx=1f
53 52 ne0d φx|fdom1c+ziffz=00fz+cfFx=1f
54 icossicc 0+∞0+∞
55 fss F:0+∞0+∞0+∞F:0+∞
56 54 55 mpan2 F:0+∞F:0+∞
57 eqid x|fdom1c+ziffz=00fz+cfFx=1f=x|fdom1c+ziffz=00fz+cfFx=1f
58 57 itg2addnclem F:0+∞2F=supx|fdom1c+ziffz=00fz+cfFx=1f*<
59 2 56 58 3syl φ2F=supx|fdom1c+ziffz=00fz+cfFx=1f*<
60 59 3 eqeltrrd φsupx|fdom1c+ziffz=00fz+cfFx=1f*<
61 ressxr *
62 11 61 sstri x|fdom1c+ziffz=00fz+cfFx=1f*
63 supxrub x|fdom1c+ziffz=00fz+cfFx=1f*bx|fdom1c+ziffz=00fz+cfFx=1fbsupx|fdom1c+ziffz=00fz+cfFx=1f*<
64 62 63 mpan bx|fdom1c+ziffz=00fz+cfFx=1fbsupx|fdom1c+ziffz=00fz+cfFx=1f*<
65 64 rgen bx|fdom1c+ziffz=00fz+cfFx=1fbsupx|fdom1c+ziffz=00fz+cfFx=1f*<
66 brralrspcev supx|fdom1c+ziffz=00fz+cfFx=1f*<bx|fdom1c+ziffz=00fz+cfFx=1fbsupx|fdom1c+ziffz=00fz+cfFx=1f*<abx|fdom1c+ziffz=00fz+cfFx=1fba
67 60 65 66 sylancl φabx|fdom1c+ziffz=00fz+cfFx=1fba
68 simprr gdom1d+zifgz=00gz+dfGx=1gx=1g
69 itg1cl gdom11g
70 69 adantr gdom1d+zifgz=00gz+dfGx=1g1g
71 68 70 eqeltrd gdom1d+zifgz=00gz+dfGx=1gx
72 71 rexlimiva gdom1d+zifgz=00gz+dfGx=1gx
73 72 abssi x|gdom1d+zifgz=00gz+dfGx=1g
74 73 a1i φx|gdom1d+zifgz=00gz+dfGx=1g
75 4 ffvelcdmda φzGz0+∞
76 elrege0 Gz0+∞Gz0Gz
77 75 76 sylib φzGz0Gz
78 77 simprd φz0Gz
79 78 ralrimiva φz0Gz
80 4 feqmptd φG=zGz
81 24 26 75 27 80 ofrfval2 φz0fGz0Gz
82 79 81 mpbird φz0fG
83 82 ralrimivw φd+z0fG
84 r19.2z +d+z0fGd+z0fG
85 17 83 84 sylancr φd+z0fG
86 fveq2 g=×01g=1×0
87 86 35 eqtr2di g=×00=1g
88 87 biantrud g=×0d+zifgz=00gz+dfGd+zifgz=00gz+dfG0=1g
89 fveq1 g=×0gz=×0z
90 89 39 sylan9eq g=×0zgz=0
91 90 iftrued g=×0zifgz=00gz+d=0
92 91 mpteq2dva g=×0zifgz=00gz+d=z0
93 92 breq1d g=×0zifgz=00gz+dfGz0fG
94 93 rexbidv g=×0d+zifgz=00gz+dfGd+z0fG
95 88 94 bitr3d g=×0d+zifgz=00gz+dfG0=1gd+z0fG
96 95 rspcev ×0dom1d+z0fGgdom1d+zifgz=00gz+dfG0=1g
97 13 85 96 sylancr φgdom1d+zifgz=00gz+dfG0=1g
98 eqeq1 x=0x=1g0=1g
99 98 anbi2d x=0d+zifgz=00gz+dfGx=1gd+zifgz=00gz+dfG0=1g
100 99 rexbidv x=0gdom1d+zifgz=00gz+dfGx=1ggdom1d+zifgz=00gz+dfG0=1g
101 25 100 elab 0x|gdom1d+zifgz=00gz+dfGx=1ggdom1d+zifgz=00gz+dfG0=1g
102 97 101 sylibr φ0x|gdom1d+zifgz=00gz+dfGx=1g
103 102 ne0d φx|gdom1d+zifgz=00gz+dfGx=1g
104 fss G:0+∞0+∞0+∞G:0+∞
105 54 104 mpan2 G:0+∞G:0+∞
106 eqid x|gdom1d+zifgz=00gz+dfGx=1g=x|gdom1d+zifgz=00gz+dfGx=1g
107 106 itg2addnclem G:0+∞2G=supx|gdom1d+zifgz=00gz+dfGx=1g*<
108 4 105 107 3syl φ2G=supx|gdom1d+zifgz=00gz+dfGx=1g*<
109 108 5 eqeltrrd φsupx|gdom1d+zifgz=00gz+dfGx=1g*<
110 73 61 sstri x|gdom1d+zifgz=00gz+dfGx=1g*
111 supxrub x|gdom1d+zifgz=00gz+dfGx=1g*bx|gdom1d+zifgz=00gz+dfGx=1gbsupx|gdom1d+zifgz=00gz+dfGx=1g*<
112 110 111 mpan bx|gdom1d+zifgz=00gz+dfGx=1gbsupx|gdom1d+zifgz=00gz+dfGx=1g*<
113 112 rgen bx|gdom1d+zifgz=00gz+dfGx=1gbsupx|gdom1d+zifgz=00gz+dfGx=1g*<
114 brralrspcev supx|gdom1d+zifgz=00gz+dfGx=1g*<bx|gdom1d+zifgz=00gz+dfGx=1gbsupx|gdom1d+zifgz=00gz+dfGx=1g*<abx|gdom1d+zifgz=00gz+dfGx=1gba
115 109 113 114 sylancl φabx|gdom1d+zifgz=00gz+dfGx=1gba
116 eqid s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u=s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
117 12 53 67 74 103 115 116 supadd φsupx|fdom1c+ziffz=00fz+cfFx=1f<+supx|gdom1d+zifgz=00gz+dfGx=1g<=sups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u<
118 supxrre x|fdom1c+ziffz=00fz+cfFx=1fx|fdom1c+ziffz=00fz+cfFx=1fabx|fdom1c+ziffz=00fz+cfFx=1fbasupx|fdom1c+ziffz=00fz+cfFx=1f*<=supx|fdom1c+ziffz=00fz+cfFx=1f<
119 12 53 67 118 syl3anc φsupx|fdom1c+ziffz=00fz+cfFx=1f*<=supx|fdom1c+ziffz=00fz+cfFx=1f<
120 59 119 eqtrd φ2F=supx|fdom1c+ziffz=00fz+cfFx=1f<
121 supxrre x|gdom1d+zifgz=00gz+dfGx=1gx|gdom1d+zifgz=00gz+dfGx=1gabx|gdom1d+zifgz=00gz+dfGx=1gbasupx|gdom1d+zifgz=00gz+dfGx=1g*<=supx|gdom1d+zifgz=00gz+dfGx=1g<
122 74 103 115 121 syl3anc φsupx|gdom1d+zifgz=00gz+dfGx=1g*<=supx|gdom1d+zifgz=00gz+dfGx=1g<
123 108 122 eqtrd φ2G=supx|gdom1d+zifgz=00gz+dfGx=1g<
124 120 123 oveq12d φ2F+2G=supx|fdom1c+ziffz=00fz+cfFx=1f<+supx|gdom1d+zifgz=00gz+dfGx=1g<
125 ge0addcl x0+∞y0+∞x+y0+∞
126 54 125 sselid x0+∞y0+∞x+y0+∞
127 126 adantl φx0+∞y0+∞x+y0+∞
128 inidm =
129 127 2 4 24 24 128 off φF+fG:0+∞
130 eqid s|hdom1y+zifhz=00hz+yfF+fGs=1h=s|hdom1y+zifhz=00hz+yfF+fGs=1h
131 130 itg2addnclem F+fG:0+∞2F+fG=sups|hdom1y+zifhz=00hz+yfF+fGs=1h*<
132 129 131 syl φ2F+fG=sups|hdom1y+zifhz=00hz+yfF+fGs=1h*<
133 1 2 3 4 5 itg2addnclem3 φhdom1y+zifhz=00hz+yfF+fGs=1htufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
134 simpl fdom1gdom1fdom1
135 simpr fdom1gdom1gdom1
136 134 135 i1fadd fdom1gdom1f+fgdom1
137 136 ad3antlr φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uf+fgdom1
138 reeanv c+d+ziffz=00fz+cfFzifgz=00gz+dfGc+ziffz=00fz+cfFd+zifgz=00gz+dfG
139 138 biimpri c+ziffz=00fz+cfFd+zifgz=00gz+dfGc+d+ziffz=00fz+cfFzifgz=00gz+dfG
140 139 ad2ant2r c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gc+d+ziffz=00fz+cfFzifgz=00gz+dfG
141 ifcl c+d+ifcdcd+
142 141 ad2antlr φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGifcdcd+
143 breq1 0=iffz=00fz+c0Fziffz=00fz+cFz
144 143 anbi1d 0=iffz=00fz+c0Fzifgz=00gz+dGziffz=00fz+cFzifgz=00gz+dGz
145 144 imbi1d 0=iffz=00fz+c0Fzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gziffz=00fz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
146 breq1 fz+c=iffz=00fz+cfz+cFziffz=00fz+cFz
147 146 anbi1d fz+c=iffz=00fz+cfz+cFzifgz=00gz+dGziffz=00fz+cFzifgz=00gz+dGz
148 147 imbi1d fz+c=iffz=00fz+cfz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gziffz=00fz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
149 breq1 0=ifgz=00gz+d0Gzifgz=00gz+dGz
150 149 anbi2d 0=ifgz=00gz+d0Fz0Gz0Fzifgz=00gz+dGz
151 150 imbi1d 0=ifgz=00gz+d0Fz0Gziffz+gz=00fz+gz+ifcdcdFz+Gz0Fzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
152 breq1 gz+d=ifgz=00gz+dgz+dGzifgz=00gz+dGz
153 152 anbi2d gz+d=ifgz=00gz+d0Fzgz+dGz0Fzifgz=00gz+dGz
154 153 imbi1d gz+d=ifgz=00gz+d0Fzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz0Fzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
155 oveq12 fz=0gz=0fz+gz=0+0
156 00id 0+0=0
157 155 156 eqtrdi fz=0gz=0fz+gz=0
158 157 iftrued fz=0gz=0iffz+gz=00fz+gz+ifcdcd=0
159 158 adantll φfdom1gdom1c+d+zfz=0gz=0iffz+gz=00fz+gz+ifcdcd=0
160 simpll φfdom1gdom1c+d+φ
161 19 simplbi Fz0+∞Fz
162 18 161 syl φzFz
163 76 simplbi Gz0+∞Gz
164 75 163 syl φzGz
165 162 164 21 78 addge0d φz0Fz+Gz
166 160 165 sylan φfdom1gdom1c+d+z0Fz+Gz
167 166 ad2antrr φfdom1gdom1c+d+zfz=0gz=00Fz+Gz
168 159 167 eqbrtrd φfdom1gdom1c+d+zfz=0gz=0iffz+gz=00fz+gz+ifcdcdFz+Gz
169 168 a1d φfdom1gdom1c+d+zfz=0gz=00Fz0Gziffz+gz=00fz+gz+ifcdcdFz+Gz
170 166 ad2antrr φfdom1gdom1c+d+zfz=0gz+dGz0Fz+Gz
171 oveq1 fz=0fz+gz=0+gz
172 simplrr φfdom1gdom1c+d+gdom1
173 i1ff gdom1g:
174 173 ffvelcdmda gdom1zgz
175 172 174 sylan φfdom1gdom1c+d+zgz
176 175 recnd φfdom1gdom1c+d+zgz
177 176 addlidd φfdom1gdom1c+d+z0+gz=gz
178 171 177 sylan9eqr φfdom1gdom1c+d+zfz=0fz+gz=gz
179 178 oveq1d φfdom1gdom1c+d+zfz=0fz+gz+ifcdcd=gz+ifcdcd
180 179 adantr φfdom1gdom1c+d+zfz=0gz+dGzfz+gz+ifcdcd=gz+ifcdcd
181 141 rpred c+d+ifcdcd
182 181 ad2antlr φfdom1gdom1c+d+zifcdcd
183 175 182 readdcld φfdom1gdom1c+d+zgz+ifcdcd
184 183 adantr φfdom1gdom1c+d+zgz+dGzgz+ifcdcd
185 160 164 sylan φfdom1gdom1c+d+zGz
186 185 adantr φfdom1gdom1c+d+zgz+dGzGz
187 160 162 sylan φfdom1gdom1c+d+zFz
188 187 185 readdcld φfdom1gdom1c+d+zFz+Gz
189 188 adantr φfdom1gdom1c+d+zgz+dGzFz+Gz
190 simplrr φfdom1gdom1c+d+zd+
191 190 rpred φfdom1gdom1c+d+zd
192 rpre c+c
193 rpre d+d
194 min2 cdifcdcdd
195 192 193 194 syl2an c+d+ifcdcdd
196 195 ad2antlr φfdom1gdom1c+d+zifcdcdd
197 182 191 175 196 leadd2dd φfdom1gdom1c+d+zgz+ifcdcdgz+d
198 175 191 readdcld φfdom1gdom1c+d+zgz+d
199 letr gz+ifcdcdgz+dGzgz+ifcdcdgz+dgz+dGzgz+ifcdcdGz
200 183 198 185 199 syl3anc φfdom1gdom1c+d+zgz+ifcdcdgz+dgz+dGzgz+ifcdcdGz
201 197 200 mpand φfdom1gdom1c+d+zgz+dGzgz+ifcdcdGz
202 201 imp φfdom1gdom1c+d+zgz+dGzgz+ifcdcdGz
203 164 162 addge02d φz0FzGzFz+Gz
204 21 203 mpbid φzGzFz+Gz
205 160 204 sylan φfdom1gdom1c+d+zGzFz+Gz
206 205 adantr φfdom1gdom1c+d+zgz+dGzGzFz+Gz
207 184 186 189 202 206 letrd φfdom1gdom1c+d+zgz+dGzgz+ifcdcdFz+Gz
208 207 adantlr φfdom1gdom1c+d+zfz=0gz+dGzgz+ifcdcdFz+Gz
209 180 208 eqbrtrd φfdom1gdom1c+d+zfz=0gz+dGzfz+gz+ifcdcdFz+Gz
210 breq1 0=iffz+gz=00fz+gz+ifcdcd0Fz+Gziffz+gz=00fz+gz+ifcdcdFz+Gz
211 breq1 fz+gz+ifcdcd=iffz+gz=00fz+gz+ifcdcdfz+gz+ifcdcdFz+Gziffz+gz=00fz+gz+ifcdcdFz+Gz
212 210 211 ifboth 0Fz+Gzfz+gz+ifcdcdFz+Gziffz+gz=00fz+gz+ifcdcdFz+Gz
213 170 209 212 syl2anc φfdom1gdom1c+d+zfz=0gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
214 213 ex φfdom1gdom1c+d+zfz=0gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
215 214 adantld φfdom1gdom1c+d+zfz=00Fzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
216 215 adantr φfdom1gdom1c+d+zfz=0¬gz=00Fzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
217 151 154 169 216 ifbothda φfdom1gdom1c+d+zfz=00Fzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
218 149 anbi2d 0=ifgz=00gz+dfz+cFz0Gzfz+cFzifgz=00gz+dGz
219 218 imbi1d 0=ifgz=00gz+dfz+cFz0Gziffz+gz=00fz+gz+ifcdcdFz+Gzfz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
220 152 anbi2d gz+d=ifgz=00gz+dfz+cFzgz+dGzfz+cFzifgz=00gz+dGz
221 220 imbi1d gz+d=ifgz=00gz+dfz+cFzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gzfz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
222 166 ad2antrr φfdom1gdom1c+d+zgz=0fz+cFz0Fz+Gz
223 oveq2 gz=0fz+gz=fz+0
224 simplrl φfdom1gdom1c+d+fdom1
225 i1ff fdom1f:
226 225 ffvelcdmda fdom1zfz
227 224 226 sylan φfdom1gdom1c+d+zfz
228 227 recnd φfdom1gdom1c+d+zfz
229 228 addridd φfdom1gdom1c+d+zfz+0=fz
230 223 229 sylan9eqr φfdom1gdom1c+d+zgz=0fz+gz=fz
231 230 oveq1d φfdom1gdom1c+d+zgz=0fz+gz+ifcdcd=fz+ifcdcd
232 231 adantr φfdom1gdom1c+d+zgz=0fz+cFzfz+gz+ifcdcd=fz+ifcdcd
233 227 182 readdcld φfdom1gdom1c+d+zfz+ifcdcd
234 233 adantr φfdom1gdom1c+d+zfz+cFzfz+ifcdcd
235 187 adantr φfdom1gdom1c+d+zfz+cFzFz
236 188 adantr φfdom1gdom1c+d+zfz+cFzFz+Gz
237 simplrl φfdom1gdom1c+d+zc+
238 237 rpred φfdom1gdom1c+d+zc
239 min1 cdifcdcdc
240 192 193 239 syl2an c+d+ifcdcdc
241 240 ad2antlr φfdom1gdom1c+d+zifcdcdc
242 182 238 227 241 leadd2dd φfdom1gdom1c+d+zfz+ifcdcdfz+c
243 227 238 readdcld φfdom1gdom1c+d+zfz+c
244 letr fz+ifcdcdfz+cFzfz+ifcdcdfz+cfz+cFzfz+ifcdcdFz
245 233 243 187 244 syl3anc φfdom1gdom1c+d+zfz+ifcdcdfz+cfz+cFzfz+ifcdcdFz
246 242 245 mpand φfdom1gdom1c+d+zfz+cFzfz+ifcdcdFz
247 246 imp φfdom1gdom1c+d+zfz+cFzfz+ifcdcdFz
248 162 164 addge01d φz0GzFzFz+Gz
249 78 248 mpbid φzFzFz+Gz
250 160 249 sylan φfdom1gdom1c+d+zFzFz+Gz
251 250 adantr φfdom1gdom1c+d+zfz+cFzFzFz+Gz
252 234 235 236 247 251 letrd φfdom1gdom1c+d+zfz+cFzfz+ifcdcdFz+Gz
253 252 adantlr φfdom1gdom1c+d+zgz=0fz+cFzfz+ifcdcdFz+Gz
254 232 253 eqbrtrd φfdom1gdom1c+d+zgz=0fz+cFzfz+gz+ifcdcdFz+Gz
255 222 254 212 syl2anc φfdom1gdom1c+d+zgz=0fz+cFziffz+gz=00fz+gz+ifcdcdFz+Gz
256 255 ex φfdom1gdom1c+d+zgz=0fz+cFziffz+gz=00fz+gz+ifcdcdFz+Gz
257 256 adantlr φfdom1gdom1c+d+z¬fz=0gz=0fz+cFziffz+gz=00fz+gz+ifcdcdFz+Gz
258 257 adantrd φfdom1gdom1c+d+z¬fz=0gz=0fz+cFz0Gziffz+gz=00fz+gz+ifcdcdFz+Gz
259 166 adantr φfdom1gdom1c+d+zfz+cFzgz+dGz0Fz+Gz
260 182 recnd φfdom1gdom1c+d+zifcdcd
261 228 176 260 addassd φfdom1gdom1c+d+zfz+gz+ifcdcd=fz+gz+ifcdcd
262 261 adantr φfdom1gdom1c+d+zfz+cFzgz+dGzfz+gz+ifcdcd=fz+gz+ifcdcd
263 227 237 ltaddrpd φfdom1gdom1c+d+zfz<fz+c
264 227 243 263 ltled φfdom1gdom1c+d+zfzfz+c
265 letr fzfz+cFzfzfz+cfz+cFzfzFz
266 227 243 187 265 syl3anc φfdom1gdom1c+d+zfzfz+cfz+cFzfzFz
267 264 266 mpand φfdom1gdom1c+d+zfz+cFzfzFz
268 le2add fzgz+ifcdcdFzGzfzFzgz+ifcdcdGzfz+gz+ifcdcdFz+Gz
269 227 183 187 185 268 syl22anc φfdom1gdom1c+d+zfzFzgz+ifcdcdGzfz+gz+ifcdcdFz+Gz
270 267 201 269 syl2and φfdom1gdom1c+d+zfz+cFzgz+dGzfz+gz+ifcdcdFz+Gz
271 270 imp φfdom1gdom1c+d+zfz+cFzgz+dGzfz+gz+ifcdcdFz+Gz
272 262 271 eqbrtrd φfdom1gdom1c+d+zfz+cFzgz+dGzfz+gz+ifcdcdFz+Gz
273 259 272 212 syl2anc φfdom1gdom1c+d+zfz+cFzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
274 273 ex φfdom1gdom1c+d+zfz+cFzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
275 274 ad2antrr φfdom1gdom1c+d+z¬fz=0¬gz=0fz+cFzgz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
276 219 221 258 275 ifbothda φfdom1gdom1c+d+z¬fz=0fz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
277 145 148 217 276 ifbothda φfdom1gdom1c+d+ziffz=00fz+cFzifgz=00gz+dGziffz+gz=00fz+gz+ifcdcdFz+Gz
278 277 ralimdva φfdom1gdom1c+d+ziffz=00fz+cFzifgz=00gz+dGzziffz+gz=00fz+gz+ifcdcdFz+Gz
279 ovex fz+cV
280 25 279 ifex iffz=00fz+cV
281 280 a1i φziffz=00fz+cV
282 eqidd φziffz=00fz+c=ziffz=00fz+c
283 24 281 18 282 28 ofrfval2 φziffz=00fz+cfFziffz=00fz+cFz
284 ovex gz+dV
285 25 284 ifex ifgz=00gz+dV
286 285 a1i φzifgz=00gz+dV
287 eqidd φzifgz=00gz+d=zifgz=00gz+d
288 24 286 75 287 80 ofrfval2 φzifgz=00gz+dfGzifgz=00gz+dGz
289 283 288 anbi12d φziffz=00fz+cfFzifgz=00gz+dfGziffz=00fz+cFzzifgz=00gz+dGz
290 r19.26 ziffz=00fz+cFzifgz=00gz+dGzziffz=00fz+cFzzifgz=00gz+dGz
291 289 290 bitr4di φziffz=00fz+cfFzifgz=00gz+dfGziffz=00fz+cFzifgz=00gz+dGz
292 291 ad2antrr φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGziffz=00fz+cFzifgz=00gz+dGz
293 23 a1i φfdom1gdom1c+d+V
294 ovex fz+gz+ifcdcdV
295 25 294 ifex iffz+gz=00fz+gz+ifcdcdV
296 295 a1i φfdom1gdom1c+d+ziffz+gz=00fz+gz+ifcdcdV
297 ovexd φfdom1gdom1c+d+zFz+GzV
298 225 ffnd fdom1fFn
299 298 adantr fdom1gdom1fFn
300 299 ad2antlr φfdom1gdom1c+d+fFn
301 173 ffnd gdom1gFn
302 301 adantl fdom1gdom1gFn
303 302 ad2antlr φfdom1gdom1c+d+gFn
304 eqidd φfdom1gdom1c+d+zfz=fz
305 eqidd φfdom1gdom1c+d+zgz=gz
306 300 303 293 293 128 304 305 ofval φfdom1gdom1c+d+zf+fgz=fz+gz
307 306 eqeq1d φfdom1gdom1c+d+zf+fgz=0fz+gz=0
308 306 oveq1d φfdom1gdom1c+d+zf+fgz+ifcdcd=fz+gz+ifcdcd
309 307 308 ifbieq2d φfdom1gdom1c+d+ziff+fgz=00f+fgz+ifcdcd=iffz+gz=00fz+gz+ifcdcd
310 309 mpteq2dva φfdom1gdom1c+d+ziff+fgz=00f+fgz+ifcdcd=ziffz+gz=00fz+gz+ifcdcd
311 2 ffnd φFFn
312 4 ffnd φGFn
313 eqidd φzFz=Fz
314 eqidd φzGz=Gz
315 311 312 24 24 128 313 314 offval φF+fG=zFz+Gz
316 315 ad2antrr φfdom1gdom1c+d+F+fG=zFz+Gz
317 293 296 297 310 316 ofrfval2 φfdom1gdom1c+d+ziff+fgz=00f+fgz+ifcdcdfF+fGziffz+gz=00fz+gz+ifcdcdFz+Gz
318 278 292 317 3imtr4d φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGziff+fgz=00f+fgz+ifcdcdfF+fG
319 318 imp φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGziff+fgz=00f+fgz+ifcdcdfF+fG
320 oveq2 y=ifcdcdf+fgz+y=f+fgz+ifcdcd
321 320 ifeq2d y=ifcdcdiff+fgz=00f+fgz+y=iff+fgz=00f+fgz+ifcdcd
322 321 mpteq2dv y=ifcdcdziff+fgz=00f+fgz+y=ziff+fgz=00f+fgz+ifcdcd
323 322 breq1d y=ifcdcdziff+fgz=00f+fgz+yfF+fGziff+fgz=00f+fgz+ifcdcdfF+fG
324 323 rspcev ifcdcd+ziff+fgz=00f+fgz+ifcdcdfF+fGy+ziff+fgz=00f+fgz+yfF+fG
325 142 319 324 syl2anc φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGy+ziff+fgz=00f+fgz+yfF+fG
326 325 ex φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGy+ziff+fgz=00f+fgz+yfF+fG
327 326 rexlimdvva φfdom1gdom1c+d+ziffz=00fz+cfFzifgz=00gz+dfGy+ziff+fgz=00f+fgz+yfF+fG
328 140 327 syl5 φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gy+ziff+fgz=00f+fgz+yfF+fG
329 328 a1dd φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uy+ziff+fgz=00f+fgz+yfF+fG
330 329 imp31 φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uy+ziff+fgz=00f+fgz+yfF+fG
331 oveq12 t=1fu=1gt+u=1f+1g
332 331 ad2ant2l c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gt+u=1f+1g
333 134 135 itg1add fdom1gdom11f+fg=1f+1g
334 333 eqcomd fdom1gdom11f+1g=1f+fg
335 334 adantl φfdom1gdom11f+1g=1f+fg
336 332 335 sylan9eqr φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gt+u=1f+fg
337 eqtr s=t+ut+u=1f+fgs=1f+fg
338 337 ancoms t+u=1f+fgs=t+us=1f+fg
339 336 338 sylan φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+us=1f+fg
340 fveq1 h=f+fghz=f+fgz
341 340 eqeq1d h=f+fghz=0f+fgz=0
342 340 oveq1d h=f+fghz+y=f+fgz+y
343 341 342 ifbieq2d h=f+fgifhz=00hz+y=iff+fgz=00f+fgz+y
344 343 mpteq2dv h=f+fgzifhz=00hz+y=ziff+fgz=00f+fgz+y
345 344 breq1d h=f+fgzifhz=00hz+yfF+fGziff+fgz=00f+fgz+yfF+fG
346 345 rexbidv h=f+fgy+zifhz=00hz+yfF+fGy+ziff+fgz=00f+fgz+yfF+fG
347 fveq2 h=f+fg1h=1f+fg
348 347 eqeq2d h=f+fgs=1hs=1f+fg
349 346 348 anbi12d h=f+fgy+zifhz=00hz+yfF+fGs=1hy+ziff+fgz=00f+fgz+yfF+fGs=1f+fg
350 349 rspcev f+fgdom1y+ziff+fgz=00f+fgz+yfF+fGs=1f+fghdom1y+zifhz=00hz+yfF+fGs=1h
351 137 330 339 350 syl12anc φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uhdom1y+zifhz=00hz+yfF+fGs=1h
352 351 exp31 φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uhdom1y+zifhz=00hz+yfF+fGs=1h
353 352 rexlimdvva φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uhdom1y+zifhz=00hz+yfF+fGs=1h
354 353 impd φfdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uhdom1y+zifhz=00hz+yfF+fGs=1h
355 354 exlimdvv φtufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+uhdom1y+zifhz=00hz+yfF+fGs=1h
356 133 355 impbid φhdom1y+zifhz=00hz+yfF+fGs=1htufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
357 eqeq1 x=tx=1ft=1f
358 357 anbi2d x=tc+ziffz=00fz+cfFx=1fc+ziffz=00fz+cfFt=1f
359 358 rexbidv x=tfdom1c+ziffz=00fz+cfFx=1ffdom1c+ziffz=00fz+cfFt=1f
360 359 rexab tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+utfdom1c+ziffz=00fz+cfFt=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
361 eqeq1 x=ux=1gu=1g
362 361 anbi2d x=ud+zifgz=00gz+dfGx=1gd+zifgz=00gz+dfGu=1g
363 362 rexbidv x=ugdom1d+zifgz=00gz+dfGx=1ggdom1d+zifgz=00gz+dfGu=1g
364 363 rexab ux|gdom1d+zifgz=00gz+dfGx=1gs=t+uugdom1d+zifgz=00gz+dfGu=1gs=t+u
365 364 anbi2i fdom1c+ziffz=00fz+cfFt=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ufdom1c+ziffz=00fz+cfFt=1fugdom1d+zifgz=00gz+dfGu=1gs=t+u
366 19.42v ufdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+ufdom1c+ziffz=00fz+cfFt=1fugdom1d+zifgz=00gz+dfGu=1gs=t+u
367 reeanv fdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gfdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1g
368 367 anbi1i fdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+ufdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+u
369 anass fdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+ufdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+u
370 368 369 bitr2i fdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+ufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
371 370 exbii ufdom1c+ziffz=00fz+cfFt=1fgdom1d+zifgz=00gz+dfGu=1gs=t+uufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
372 365 366 371 3bitr2i fdom1c+ziffz=00fz+cfFt=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+uufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
373 372 exbii tfdom1c+ziffz=00fz+cfFt=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+utufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
374 360 373 bitri tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+utufdom1gdom1c+ziffz=00fz+cfFt=1fd+zifgz=00gz+dfGu=1gs=t+u
375 356 374 bitr4di φhdom1y+zifhz=00hz+yfF+fGs=1htx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
376 375 abbidv φs|hdom1y+zifhz=00hz+yfF+fGs=1h=s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
377 376 supeq1d φsups|hdom1y+zifhz=00hz+yfF+fGs=1h*<=sups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u*<
378 simpr tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+us=t+u
379 11 sseli tx|fdom1c+ziffz=00fz+cfFx=1ft
380 379 ad2antrr tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ut
381 73 sseli ux|gdom1d+zifgz=00gz+dfGx=1gu
382 381 ad2antlr tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+uu
383 380 382 readdcld tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ut+u
384 378 383 eqeltrd tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+us
385 384 ex tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+us
386 385 rexlimivv tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+us
387 386 abssi s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
388 387 a1i φs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
389 156 eqcomi 0=0+0
390 rspceov 0x|fdom1c+ziffz=00fz+cfFx=1f0x|gdom1d+zifgz=00gz+dfGx=1g0=0+0tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1g0=t+u
391 389 390 mp3an3 0x|fdom1c+ziffz=00fz+cfFx=1f0x|gdom1d+zifgz=00gz+dfGx=1gtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1g0=t+u
392 52 102 391 syl2anc φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1g0=t+u
393 eqeq1 s=0s=t+u0=t+u
394 393 2rexbidv s=0tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+utx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1g0=t+u
395 25 394 spcev tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1g0=t+ustx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
396 392 395 syl φstx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
397 abn0 s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ustx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
398 396 397 sylibr φs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u
399 60 109 readdcld φsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
400 simpr φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ub=t+u
401 379 ad2antrl φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gt
402 381 ad2antll φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gu
403 60 adantr φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gsupx|fdom1c+ziffz=00fz+cfFx=1f*<
404 109 adantr φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gsupx|gdom1d+zifgz=00gz+dfGx=1g*<
405 supxrub x|fdom1c+ziffz=00fz+cfFx=1f*tx|fdom1c+ziffz=00fz+cfFx=1ftsupx|fdom1c+ziffz=00fz+cfFx=1f*<
406 62 405 mpan tx|fdom1c+ziffz=00fz+cfFx=1ftsupx|fdom1c+ziffz=00fz+cfFx=1f*<
407 406 ad2antrl φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gtsupx|fdom1c+ziffz=00fz+cfFx=1f*<
408 supxrub x|gdom1d+zifgz=00gz+dfGx=1g*ux|gdom1d+zifgz=00gz+dfGx=1gusupx|gdom1d+zifgz=00gz+dfGx=1g*<
409 110 408 mpan ux|gdom1d+zifgz=00gz+dfGx=1gusupx|gdom1d+zifgz=00gz+dfGx=1g*<
410 409 ad2antll φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gusupx|gdom1d+zifgz=00gz+dfGx=1g*<
411 401 402 403 404 407 410 le2addd φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gt+usupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
412 411 adantr φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ut+usupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
413 400 412 eqbrtrd φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
414 413 ex φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
415 414 rexlimdvva φtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
416 415 alrimiv φbtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
417 breq2 a=supx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<babsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
418 417 ralbidv a=supx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<bs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ubabs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
419 eqeq1 s=bs=t+ub=t+u
420 419 2rexbidv s=btx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+utx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+u
421 420 ralab bs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<btx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
422 418 421 bitrdi a=supx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<bs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ubabtx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<
423 422 rspcev supx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<btx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gb=t+ubsupx|fdom1c+ziffz=00fz+cfFx=1f*<+supx|gdom1d+zifgz=00gz+dfGx=1g*<abs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+uba
424 399 416 423 syl2anc φabs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+uba
425 supxrre s|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+us|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+uabs|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+ubasups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u*<=sups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u<
426 388 398 424 425 syl3anc φsups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u*<=sups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u<
427 132 377 426 3eqtrd φ2F+fG=sups|tx|fdom1c+ziffz=00fz+cfFx=1fux|gdom1d+zifgz=00gz+dfGx=1gs=t+u<
428 117 124 427 3eqtr4rd φ2F+fG=2F+2G