Metamath Proof Explorer


Theorem ovolicc2lem4

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc2.4 S=seq1+absF
ovolicc2.5 φF:2
ovolicc2.6 φU𝒫ran.FFin
ovolicc2.7 φABU
ovolicc2.8 φG:U
ovolicc2.9 φtU.FGt=t
ovolicc2.10 T=uU|uAB
ovolicc2.11 φH:TT
ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
ovolicc2.13 φAC
ovolicc2.14 φCT
ovolicc2.15 K=seq1H1st×C
ovolicc2.16 W=n|BKn
ovolicc2.17 M=supW<
Assertion ovolicc2lem4 φBAsupranS*<

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc2.4 S=seq1+absF
5 ovolicc2.5 φF:2
6 ovolicc2.6 φU𝒫ran.FFin
7 ovolicc2.7 φABU
8 ovolicc2.8 φG:U
9 ovolicc2.9 φtU.FGt=t
10 ovolicc2.10 T=uU|uAB
11 ovolicc2.11 φH:TT
12 ovolicc2.12 φtTif2ndFGtB2ndFGtBHt
13 ovolicc2.13 φAC
14 ovolicc2.14 φCT
15 ovolicc2.15 K=seq1H1st×C
16 ovolicc2.16 W=n|BKn
17 ovolicc2.17 M=supW<
18 arch xzx<z
19 18 ad2antlr φxyGK1Myxzx<z
20 df-ima GK1M=ranGK1M
21 nnuz =1
22 1zzd φ1
23 21 15 22 14 11 algrf φK:T
24 10 ssrab3 TU
25 fss K:TTUK:U
26 23 24 25 sylancl φK:U
27 fco G:UK:UGK:
28 8 26 27 syl2anc φGK:
29 fz1ssnn 1M
30 fssres GK:1MGK1M:1M
31 28 29 30 sylancl φGK1M:1M
32 31 frnd φranGK1M
33 20 32 eqsstrid φGK1M
34 nnssre
35 33 34 sstrdi φGK1M
36 35 ad3antrrr φxzyGK1MGK1M
37 simpr φxzyGK1MyGK1M
38 36 37 sseldd φxzyGK1My
39 simpllr φxzyGK1Mx
40 nnre zz
41 40 ad2antlr φxzyGK1Mz
42 lelttr yxzyxx<zy<z
43 38 39 41 42 syl3anc φxzyGK1Myxx<zy<z
44 43 ancomsd φxzyGK1Mx<zyxy<z
45 44 expdimp φxzyGK1Mx<zyxy<z
46 45 an32s φxzx<zyGK1Myxy<z
47 46 ralimdva φxzx<zyGK1MyxyGK1My<z
48 47 impancom φxzyGK1Myxx<zyGK1My<z
49 48 an32s φxyGK1Myxzx<zyGK1My<z
50 49 reximdva φxyGK1Myxzx<zzyGK1My<z
51 19 50 mpd φxyGK1MyxzyGK1My<z
52 fzfid φ1MFin
53 fvres i1MGK1Mi=GKi
54 53 adantl φi1MGK1Mi=GKi
55 elfznn i1Mi
56 fvco3 K:TiGKi=GKi
57 23 55 56 syl2an φi1MGKi=GKi
58 54 57 eqtrd φi1MGK1Mi=GKi
59 58 adantrr φi1Mj1MGK1Mi=GKi
60 fvres j1MGK1Mj=GKj
61 60 ad2antll φi1Mj1MGK1Mj=GKj
62 elfznn j1Mj
63 62 adantl i1Mj1Mj
64 fvco3 K:TjGKj=GKj
65 23 63 64 syl2an φi1Mj1MGKj=GKj
66 61 65 eqtrd φi1Mj1MGK1Mj=GKj
67 59 66 eqeq12d φi1Mj1MGK1Mi=GK1MjGKi=GKj
68 2fveq3 GKi=GKj2ndFGKi=2ndFGKj
69 29 a1i φ1M
70 elfznn n1Mn
71 70 ad2antlr φn1MmWn
72 71 nnred φn1MmWn
73 16 ssrab3 W
74 73 34 sstri W
75 73 21 sseqtri W1
76 nnnfi ¬Fin
77 6 elin2d φUFin
78 ssfi UFinTUTFin
79 77 24 78 sylancl φTFin
80 79 adantr φW=TFin
81 23 adantr φW=K:T
82 2fveq3 Ki=KjFGKi=FGKj
83 82 fveq2d Ki=Kj2ndFGKi=2ndFGKj
84 simpll φW=ijφ
85 simprl φW=iji
86 ral0 mnm
87 simplr φW=ijW=
88 87 raleqdv φW=ijmWnmmnm
89 86 88 mpbiri φW=ijmWnm
90 89 ralrimivw φW=ijnmWnm
91 rabid2 =n|mWnmnmWnm
92 90 91 sylibr φW=ij=n|mWnm
93 85 92 eleqtrd φW=ijin|mWnm
94 simprr φW=ijj
95 94 92 eleqtrd φW=ijjn|mWnm
96 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ovolicc2lem3 φin|mWnmjn|mWnmi=j2ndFGKi=2ndFGKj
97 84 93 95 96 syl12anc φW=iji=j2ndFGKi=2ndFGKj
98 83 97 imbitrrid φW=ijKi=Kji=j
99 98 ralrimivva φW=ijKi=Kji=j
100 dff13 K:1-1TK:TijKi=Kji=j
101 81 99 100 sylanbrc φW=K:1-1T
102 f1domg TFinK:1-1TT
103 80 101 102 sylc φW=T
104 domfi TFinTFin
105 79 103 104 syl2an2r φW=Fin
106 105 ex φW=Fin
107 106 necon3bd φ¬FinW
108 76 107 mpi φW
109 infssuzcl W1WsupW<W
110 75 108 109 sylancr φsupW<W
111 17 110 eqeltrid φMW
112 74 111 sselid φM
113 112 ad2antrr φn1MmWM
114 74 sseli mWm
115 114 adantl φn1MmWm
116 elfzle2 n1MnM
117 116 ad2antlr φn1MmWnM
118 infssuzle W1mWsupW<m
119 75 118 mpan mWsupW<m
120 17 119 eqbrtrid mWMm
121 120 adantl φn1MmWMm
122 72 113 115 117 121 letrd φn1MmWnm
123 122 ralrimiva φn1MmWnm
124 69 123 ssrabdv φ1Mn|mWnm
125 124 adantr φi1Mj1M1Mn|mWnm
126 simprl φi1Mj1Mi1M
127 125 126 sseldd φi1Mj1Min|mWnm
128 simprr φi1Mj1Mj1M
129 125 128 sseldd φi1Mj1Mjn|mWnm
130 127 129 jca φi1Mj1Min|mWnmjn|mWnm
131 130 96 syldan φi1Mj1Mi=j2ndFGKi=2ndFGKj
132 68 131 imbitrrid φi1Mj1MGKi=GKji=j
133 67 132 sylbid φi1Mj1MGK1Mi=GK1Mji=j
134 133 ralrimivva φi1Mj1MGK1Mi=GK1Mji=j
135 dff13 GK1M:1M1-1GK1M:1Mi1Mj1MGK1Mi=GK1Mji=j
136 31 134 135 sylanbrc φGK1M:1M1-1
137 f1f1orn GK1M:1M1-1GK1M:1M1-1 ontoranGK1M
138 136 137 syl φGK1M:1M1-1 ontoranGK1M
139 f1oeq3 GK1M=ranGK1MGK1M:1M1-1 ontoGK1MGK1M:1M1-1 ontoranGK1M
140 20 139 ax-mp GK1M:1M1-1 ontoGK1MGK1M:1M1-1 ontoranGK1M
141 138 140 sylibr φGK1M:1M1-1 ontoGK1M
142 f1ofo GK1M:1M1-1 ontoGK1MGK1M:1MontoGK1M
143 141 142 syl φGK1M:1MontoGK1M
144 fofi 1MFinGK1M:1MontoGK1MGK1MFin
145 52 143 144 syl2anc φGK1MFin
146 fimaxre2 GK1MGK1MFinxyGK1Myx
147 35 145 146 syl2anc φxyGK1Myx
148 51 147 r19.29a φzyGK1My<z
149 2 1 resubcld φBA
150 149 rexrd φBA*
151 150 adantr φzyGK1My<zBA*
152 fzfid φ1zFin
153 elfznn j1zj
154 eqid absF=absF
155 154 ovolfsf F:2absF:0+∞
156 5 155 syl φabsF:0+∞
157 156 ffvelcdmda φjabsFj0+∞
158 153 157 sylan2 φj1zabsFj0+∞
159 elrege0 absFj0+∞absFj0absFj
160 158 159 sylib φj1zabsFj0absFj
161 160 simpld φj1zabsFj
162 152 161 fsumrecl φj=1zabsFj
163 162 adantr φzyGK1My<zj=1zabsFj
164 163 rexrd φzyGK1My<zj=1zabsFj*
165 154 4 ovolsf F:2S:0+∞
166 5 165 syl φS:0+∞
167 166 frnd φranS0+∞
168 rge0ssre 0+∞
169 167 168 sstrdi φranS
170 ressxr *
171 169 170 sstrdi φranS*
172 supxrcl ranS*supranS*<*
173 171 172 syl φsupranS*<*
174 173 adantr φzyGK1My<zsupranS*<*
175 149 adantr φzyGK1My<zBA
176 33 sselda φjGK1Mj
177 168 157 sselid φjabsFj
178 176 177 syldan φjGK1MabsFj
179 145 178 fsumrecl φjGK1MabsFj
180 179 adantr φzyGK1My<zjGK1MabsFj
181 inss2 22
182 fss F:222F:2
183 5 181 182 sylancl φF:2
184 73 111 sselid φM
185 26 184 ffvelcdmd φKMU
186 8 185 ffvelcdmd φGKM
187 183 186 ffvelcdmd φFGKM2
188 xp2nd FGKM22ndFGKM
189 187 188 syl φ2ndFGKM
190 24 14 sselid φCU
191 8 190 ffvelcdmd φGC
192 183 191 ffvelcdmd φFGC2
193 xp1st FGC21stFGC
194 192 193 syl φ1stFGC
195 189 194 resubcld φ2ndFGKM1stFGC
196 fveq2 j=GKiabsFj=absFGKi
197 177 recnd φjabsFj
198 176 197 syldan φjGK1MabsFj
199 196 52 141 58 198 fsumf1o φjGK1MabsFj=i=1MabsFGKi
200 8 adantr φi1MG:U
201 ffvelcdm K:UiKiU
202 26 55 201 syl2an φi1MKiU
203 200 202 ffvelcdmd φi1MGKi
204 154 ovolfsval F:2GKiabsFGKi=2ndFGKi1stFGKi
205 5 203 204 syl2an2r φi1MabsFGKi=2ndFGKi1stFGKi
206 205 sumeq2dv φi=1MabsFGKi=i=1M2ndFGKi1stFGKi
207 183 adantr φiF:2
208 8 adantr φiG:U
209 26 ffvelcdmda φiKiU
210 208 209 ffvelcdmd φiGKi
211 207 210 ffvelcdmd φiFGKi2
212 xp2nd FGKi22ndFGKi
213 211 212 syl φi2ndFGKi
214 55 213 sylan2 φi1M2ndFGKi
215 214 recnd φi1M2ndFGKi
216 183 adantr φi1MF:2
217 216 203 ffvelcdmd φi1MFGKi2
218 xp1st FGKi21stFGKi
219 217 218 syl φi1M1stFGKi
220 219 recnd φi1M1stFGKi
221 52 215 220 fsumsub φi=1M2ndFGKi1stFGKi=i=1M2ndFGKii=1M1stFGKi
222 fzfid φ1M1Fin
223 elfznn i1M1i
224 223 213 sylan2 φi1M12ndFGKi
225 222 224 fsumrecl φi=1M12ndFGKi
226 225 recnd φi=1M12ndFGKi
227 189 recnd φ2ndFGKM
228 75 111 sselid φM1
229 2fveq3 i=MGKi=GKM
230 229 fveq2d i=MFGKi=FGKM
231 230 fveq2d i=M2ndFGKi=2ndFGKM
232 228 215 231 fsumm1 φi=1M2ndFGKi=i=1M12ndFGKi+2ndFGKM
233 226 227 232 comraddd φi=1M2ndFGKi=2ndFGKM+i=1M12ndFGKi
234 2fveq3 i=1GKi=GK1
235 234 fveq2d i=1FGKi=FGK1
236 235 fveq2d i=11stFGKi=1stFGK1
237 228 220 236 fsum1p φi=1M1stFGKi=1stFGK1+i=1+1M1stFGKi
238 21 15 22 14 algr0 φK1=C
239 238 fveq2d φGK1=GC
240 239 fveq2d φFGK1=FGC
241 240 fveq2d φ1stFGK1=1stFGC
242 22 peano2zd φ1+1
243 184 nnzd φM
244 1z 1
245 fzp1ss 11+1M1M
246 244 245 mp1i φ1+1M1M
247 246 sselda φi1+1Mi1M
248 247 220 syldan φi1+1M1stFGKi
249 2fveq3 i=j+1GKi=GKj+1
250 249 fveq2d i=j+1FGKi=FGKj+1
251 250 fveq2d i=j+11stFGKi=1stFGKj+1
252 22 242 243 248 251 fsumshftm φi=1+1M1stFGKi=j=1+1-1M11stFGKj+1
253 ax-1cn 1
254 253 253 pncan3oi 1+1-1=1
255 254 oveq1i 1+1-1M1=1M1
256 255 sumeq1i j=1+1-1M11stFGKj+1=j=1M11stFGKj+1
257 fvoveq1 j=iKj+1=Ki+1
258 257 fveq2d j=iGKj+1=GKi+1
259 258 fveq2d j=iFGKj+1=FGKi+1
260 259 fveq2d j=i1stFGKj+1=1stFGKi+1
261 260 cbvsumv j=1M11stFGKj+1=i=1M11stFGKi+1
262 256 261 eqtri j=1+1-1M11stFGKj+1=i=1M11stFGKi+1
263 252 262 eqtrdi φi=1+1M1stFGKi=i=1M11stFGKi+1
264 241 263 oveq12d φ1stFGK1+i=1+1M1stFGKi=1stFGC+i=1M11stFGKi+1
265 237 264 eqtrd φi=1M1stFGKi=1stFGC+i=1M11stFGKi+1
266 233 265 oveq12d φi=1M2ndFGKii=1M1stFGKi=2ndFGKM+i=1M12ndFGKi-1stFGC+i=1M11stFGKi+1
267 194 recnd φ1stFGC
268 peano2nn ii+1
269 ffvelcdm K:Ui+1Ki+1U
270 26 268 269 syl2an φiKi+1U
271 208 270 ffvelcdmd φiGKi+1
272 207 271 ffvelcdmd φiFGKi+12
273 xp1st FGKi+121stFGKi+1
274 272 273 syl φi1stFGKi+1
275 223 274 sylan2 φi1M11stFGKi+1
276 222 275 fsumrecl φi=1M11stFGKi+1
277 276 recnd φi=1M11stFGKi+1
278 227 226 267 277 addsub4d φ2ndFGKM+i=1M12ndFGKi-1stFGC+i=1M11stFGKi+1=2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
279 221 266 278 3eqtrd φi=1M2ndFGKi1stFGKi=2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
280 199 206 279 3eqtrd φjGK1MabsFj=2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
281 280 179 eqeltrrd φ2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
282 fveq2 n=MKn=KM
283 282 eleq2d n=MBKnBKM
284 283 16 elrab2 MWMBKM
285 111 284 sylib φMBKM
286 285 simprd φBKM
287 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φKMUBKMB1stFGKM<BB<2ndFGKM
288 185 287 mpdan φBKMB1stFGKM<BB<2ndFGKM
289 286 288 mpbid φB1stFGKM<BB<2ndFGKM
290 289 simp3d φB<2ndFGKM
291 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φCUACA1stFGC<AA<2ndFGC
292 190 291 mpdan φACA1stFGC<AA<2ndFGC
293 13 292 mpbid φA1stFGC<AA<2ndFGC
294 293 simp2d φ1stFGC<A
295 2 194 189 1 290 294 lt2subd φBA<2ndFGKM1stFGC
296 149 195 295 ltled φBA2ndFGKM1stFGC
297 223 adantl φi1M1i
298 simpr φi1M1i1M1
299 243 adantr φi1M1M
300 elfzm11 1Mi1M1i1ii<M
301 244 299 300 sylancr φi1M1i1M1i1ii<M
302 298 301 mpbid φi1M1i1ii<M
303 302 simp3d φi1M1i<M
304 297 nnred φi1M1i
305 112 adantr φi1M1M
306 304 305 ltnled φi1M1i<M¬Mi
307 303 306 mpbid φi1M1¬Mi
308 infssuzle W1iWsupW<i
309 75 308 mpan iWsupW<i
310 17 309 eqbrtrid iWMi
311 307 310 nsyl φi1M1¬iW
312 297 311 jca φi1M1i¬iW
313 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ovolicc2lem2 φi¬iW2ndFGKiB
314 312 313 syldan φi1M12ndFGKiB
315 314 iftrued φi1M1if2ndFGKiB2ndFGKiB=2ndFGKi
316 2fveq3 t=KiFGt=FGKi
317 316 fveq2d t=Ki2ndFGt=2ndFGKi
318 317 breq1d t=Ki2ndFGtB2ndFGKiB
319 318 317 ifbieq1d t=Kiif2ndFGtB2ndFGtB=if2ndFGKiB2ndFGKiB
320 fveq2 t=KiHt=HKi
321 319 320 eleq12d t=Kiif2ndFGtB2ndFGtBHtif2ndFGKiB2ndFGKiBHKi
322 12 ralrimiva φtTif2ndFGtB2ndFGtBHt
323 322 adantr φi1M1tTif2ndFGtB2ndFGtBHt
324 ffvelcdm K:TiKiT
325 23 223 324 syl2an φi1M1KiT
326 321 323 325 rspcdva φi1M1if2ndFGKiB2ndFGKiBHKi
327 315 326 eqeltrrd φi1M12ndFGKiHKi
328 21 15 22 14 11 algrp1 φiKi+1=HKi
329 223 328 sylan2 φi1M1Ki+1=HKi
330 327 329 eleqtrrd φi1M12ndFGKiKi+1
331 223 270 sylan2 φi1M1Ki+1U
332 1 2 3 4 5 6 7 8 9 ovolicc2lem1 φKi+1U2ndFGKiKi+12ndFGKi1stFGKi+1<2ndFGKi2ndFGKi<2ndFGKi+1
333 331 332 syldan φi1M12ndFGKiKi+12ndFGKi1stFGKi+1<2ndFGKi2ndFGKi<2ndFGKi+1
334 330 333 mpbid φi1M12ndFGKi1stFGKi+1<2ndFGKi2ndFGKi<2ndFGKi+1
335 334 simp2d φi1M11stFGKi+1<2ndFGKi
336 275 224 335 ltled φi1M11stFGKi+12ndFGKi
337 222 275 224 336 fsumle φi=1M11stFGKi+1i=1M12ndFGKi
338 225 276 subge0d φ0i=1M12ndFGKii=1M11stFGKi+1i=1M11stFGKi+1i=1M12ndFGKi
339 337 338 mpbird φ0i=1M12ndFGKii=1M11stFGKi+1
340 225 276 resubcld φi=1M12ndFGKii=1M11stFGKi+1
341 195 340 addge01d φ0i=1M12ndFGKii=1M11stFGKi+12ndFGKM1stFGC2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
342 339 341 mpbid φ2ndFGKM1stFGC2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
343 149 195 281 296 342 letrd φBA2ndFGKM1stFGC+i=1M12ndFGKi-i=1M11stFGKi+1
344 343 280 breqtrrd φBAjGK1MabsFj
345 344 adantr φzyGK1My<zBAjGK1MabsFj
346 fzfid φzyGK1My<z1zFin
347 161 adantlr φzyGK1My<zj1zabsFj
348 160 simprd φj1z0absFj
349 348 adantlr φzyGK1My<zj1z0absFj
350 33 adantr φzGK1M
351 350 sselda φzyGK1My
352 351 nnred φzyGK1My
353 40 ad2antlr φzyGK1Mz
354 ltle yzy<zyz
355 352 353 354 syl2anc φzyGK1My<zyz
356 351 21 eleqtrdi φzyGK1My1
357 nnz zz
358 357 ad2antlr φzyGK1Mz
359 elfz5 y1zy1zyz
360 356 358 359 syl2anc φzyGK1My1zyz
361 355 360 sylibrd φzyGK1My<zy1z
362 361 ralimdva φzyGK1My<zyGK1My1z
363 362 impr φzyGK1My<zyGK1My1z
364 dfss3 GK1M1zyGK1My1z
365 363 364 sylibr φzyGK1My<zGK1M1z
366 346 347 349 365 fsumless φzyGK1My<zjGK1MabsFjj=1zabsFj
367 175 180 163 345 366 letrd φzyGK1My<zBAj=1zabsFj
368 eqidd φzyGK1My<zj1zabsFj=absFj
369 simprl φzyGK1My<zz
370 369 21 eleqtrdi φzyGK1My<zz1
371 347 recnd φzyGK1My<zj1zabsFj
372 368 370 371 fsumser φzyGK1My<zj=1zabsFj=seq1+absFz
373 4 fveq1i Sz=seq1+absFz
374 372 373 eqtr4di φzyGK1My<zj=1zabsFj=Sz
375 166 ffnd φSFn
376 fnfvelrn SFnzSzranS
377 375 369 376 syl2an2r φzyGK1My<zSzranS
378 supxrub ranS*SzranSSzsupranS*<
379 171 377 378 syl2an2r φzyGK1My<zSzsupranS*<
380 374 379 eqbrtrd φzyGK1My<zj=1zabsFjsupranS*<
381 151 164 174 367 380 xrletrd φzyGK1My<zBAsupranS*<
382 148 381 rexlimddv φBAsupranS*<