Metamath Proof Explorer


Theorem fourierdlem41

Description: Lemma used to prove that every real is a limit point for the domain of the derivative of the periodic function to be approximated. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem41.a φA
fourierdlem41.b φB
fourierdlem41.altb φA<B
fourierdlem41.t T=BA
fourierdlem41.dper φxDkx+kTD
fourierdlem41.x φX
fourierdlem41.z Z=xBxTT
fourierdlem41.e E=xx+Zx
fourierdlem41.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem41.m φM
fourierdlem41.q φQPM
fourierdlem41.qssd φi0..^MQiQi+1D
Assertion fourierdlem41 φyy<XyXDyX<yXyD

Proof

Step Hyp Ref Expression
1 fourierdlem41.a φA
2 fourierdlem41.b φB
3 fourierdlem41.altb φA<B
4 fourierdlem41.t T=BA
5 fourierdlem41.dper φxDkx+kTD
6 fourierdlem41.x φX
7 fourierdlem41.z Z=xBxTT
8 fourierdlem41.e E=xx+Zx
9 fourierdlem41.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
10 fourierdlem41.m φM
11 fourierdlem41.q φQPM
12 fourierdlem41.qssd φi0..^MQiQi+1D
13 simpr φEXranQEXranQ
14 9 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
15 10 14 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
16 11 15 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
17 16 simpld φQ0M
18 elmapi Q0MQ:0M
19 ffn Q:0MQFn0M
20 17 18 19 3syl φQFn0M
21 20 adantr φEXranQQFn0M
22 fvelrnb QFn0MEXranQj0MQj=EX
23 21 22 syl φEXranQEXranQj0MQj=EX
24 13 23 mpbid φEXranQj0MQj=EX
25 0zd φj0MQj=EX0
26 elfzelz j0Mj
27 26 3ad2ant2 φj0MQj=EXj
28 1zzd φj0MQj=EX1
29 27 28 zsubcld φj0MQj=EXj1
30 simpll φj0M¬0<jφ
31 elfzle1 j0M0j
32 31 anim1i j0M¬0<j0j¬0<j
33 0red j0M¬0<j0
34 26 zred j0Mj
35 34 adantr j0M¬0<jj
36 33 35 eqleltd j0M¬0<j0=j0j¬0<j
37 32 36 mpbird j0M¬0<j0=j
38 37 eqcomd j0M¬0<jj=0
39 38 adantll φj0M¬0<jj=0
40 fveq2 j=0Qj=Q0
41 16 simprld φQ0=AQM=B
42 41 simpld φQ0=A
43 40 42 sylan9eqr φj=0Qj=A
44 30 39 43 syl2anc φj0M¬0<jQj=A
45 44 3adantl3 φj0MQj=EX¬0<jQj=A
46 simpr φQj=EXQj=EX
47 1 rexrd φA*
48 2 rexrd φB*
49 eqid xx+BxTT=xx+BxTT
50 1 2 3 4 49 fourierdlem4 φxx+BxTT:AB
51 8 a1i φE=xx+Zx
52 simpr φxx
53 2 adantr φxB
54 53 52 resubcld φxBx
55 2 1 resubcld φBA
56 4 55 eqeltrid φT
57 56 adantr φxT
58 0red φ0
59 1 2 posdifd φA<B0<BA
60 3 59 mpbid φ0<BA
61 4 eqcomi BA=T
62 61 a1i φBA=T
63 60 62 breqtrd φ0<T
64 58 63 gtned φT0
65 64 adantr φxT0
66 54 57 65 redivcld φxBxT
67 66 flcld φxBxT
68 67 zred φxBxT
69 68 57 remulcld φxBxTT
70 7 fvmpt2 xBxTTZx=BxTT
71 52 69 70 syl2anc φxZx=BxTT
72 71 oveq2d φxx+Zx=x+BxTT
73 72 mpteq2dva φxx+Zx=xx+BxTT
74 51 73 eqtrd φE=xx+BxTT
75 74 feq1d φE:ABxx+BxTT:AB
76 50 75 mpbird φE:AB
77 76 6 ffvelcdmd φEXAB
78 iocgtlb A*B*EXABA<EX
79 47 48 77 78 syl3anc φA<EX
80 1 79 gtned φEXA
81 80 adantr φQj=EXEXA
82 46 81 eqnetrd φQj=EXQjA
83 82 adantr φQj=EX¬0<jQjA
84 83 3adantl2 φj0MQj=EX¬0<jQjA
85 84 neneqd φj0MQj=EX¬0<j¬Qj=A
86 45 85 condan φj0MQj=EX0<j
87 zltlem1 0j0<j0j1
88 25 27 87 syl2anc φj0MQj=EX0<j0j1
89 86 88 mpbid φj0MQj=EX0j1
90 eluz2 j100j10j1
91 25 29 89 90 syl3anbrc φj0MQj=EXj10
92 elfzel2 j0MM
93 92 3ad2ant2 φj0MQj=EXM
94 1red j0M1
95 34 94 resubcld j0Mj1
96 92 zred j0MM
97 34 ltm1d j0Mj1<j
98 elfzle2 j0MjM
99 95 34 96 97 98 ltletrd j0Mj1<M
100 99 3ad2ant2 φj0MQj=EXj1<M
101 elfzo2 j10..^Mj10Mj1<M
102 91 93 100 101 syl3anbrc φj0MQj=EXj10..^M
103 17 18 syl φQ:0M
104 103 3ad2ant1 φj0MQj=EXQ:0M
105 95 96 99 ltled j0Mj1M
106 105 3ad2ant2 φj0MQj=EXj1M
107 25 93 29 89 106 elfzd φj0MQj=EXj10M
108 104 107 ffvelcdmd φj0MQj=EXQj1
109 108 rexrd φj0MQj=EXQj1*
110 34 recnd j0Mj
111 1cnd j0M1
112 110 111 npcand j0Mj-1+1=j
113 112 fveq2d j0MQj-1+1=Qj
114 113 adantl φj0MQj-1+1=Qj
115 103 ffvelcdmda φj0MQj
116 115 rexrd φj0MQj*
117 114 116 eqeltrd φj0MQj-1+1*
118 117 3adant3 φj0MQj=EXQj-1+1*
119 id x=Xx=X
120 fveq2 x=XZx=ZX
121 119 120 oveq12d x=Xx+Zx=X+ZX
122 121 adantl φx=Xx+Zx=X+ZX
123 7 a1i φZ=xBxTT
124 oveq2 x=XBx=BX
125 124 oveq1d x=XBxT=BXT
126 125 fveq2d x=XBxT=BXT
127 126 oveq1d x=XBxTT=BXTT
128 127 adantl φx=XBxTT=BXTT
129 2 6 resubcld φBX
130 129 56 64 redivcld φBXT
131 130 flcld φBXT
132 131 zred φBXT
133 132 56 remulcld φBXTT
134 123 128 6 133 fvmptd φZX=BXTT
135 134 133 eqeltrd φZX
136 6 135 readdcld φX+ZX
137 51 122 6 136 fvmptd φEX=X+ZX
138 137 136 eqeltrd φEX
139 138 rexrd φEX*
140 139 3ad2ant1 φj0MQj=EXEX*
141 simp1 φj0MQj=EXφ
142 ovex j1V
143 eleq1 i=j1i0..^Mj10..^M
144 143 anbi2d i=j1φi0..^Mφj10..^M
145 fveq2 i=j1Qi=Qj1
146 oveq1 i=j1i+1=j-1+1
147 146 fveq2d i=j1Qi+1=Qj-1+1
148 145 147 breq12d i=j1Qi<Qi+1Qj1<Qj-1+1
149 144 148 imbi12d i=j1φi0..^MQi<Qi+1φj10..^MQj1<Qj-1+1
150 16 simprrd φi0..^MQi<Qi+1
151 150 r19.21bi φi0..^MQi<Qi+1
152 142 149 151 vtocl φj10..^MQj1<Qj-1+1
153 141 102 152 syl2anc φj0MQj=EXQj1<Qj-1+1
154 113 3ad2ant2 φj0MQj=EXQj-1+1=Qj
155 153 154 breqtrd φj0MQj=EXQj1<Qj
156 simp3 φj0MQj=EXQj=EX
157 155 156 breqtrd φj0MQj=EXQj1<EX
158 138 leidd φEXEX
159 158 adantr φQj=EXEXEX
160 46 eqcomd φQj=EXEX=Qj
161 159 160 breqtrd φQj=EXEXQj
162 161 3adant2 φj0MQj=EXEXQj
163 112 eqcomd j0Mj=j-1+1
164 163 fveq2d j0MQj=Qj-1+1
165 164 3ad2ant2 φj0MQj=EXQj=Qj-1+1
166 162 165 breqtrd φj0MQj=EXEXQj-1+1
167 109 118 140 157 166 eliocd φj0MQj=EXEXQj1Qj-1+1
168 145 147 oveq12d i=j1QiQi+1=Qj1Qj-1+1
169 168 eleq2d i=j1EXQiQi+1EXQj1Qj-1+1
170 169 rspcev j10..^MEXQj1Qj-1+1i0..^MEXQiQi+1
171 102 167 170 syl2anc φj0MQj=EXi0..^MEXQiQi+1
172 171 3exp φj0MQj=EXi0..^MEXQiQi+1
173 172 adantr φEXranQj0MQj=EXi0..^MEXQiQi+1
174 173 rexlimdv φEXranQj0MQj=EXi0..^MEXQiQi+1
175 24 174 mpd φEXranQi0..^MEXQiQi+1
176 10 adantr φ¬EXranQM
177 103 adantr φ¬EXranQQ:0M
178 iocssicc Q0QMQ0QM
179 41 simprd φQM=B
180 42 179 oveq12d φQ0QM=AB
181 77 180 eleqtrrd φEXQ0QM
182 178 181 sselid φEXQ0QM
183 182 adantr φ¬EXranQEXQ0QM
184 simpr φ¬EXranQ¬EXranQ
185 fveq2 k=jQk=Qj
186 185 breq1d k=jQk<EXQj<EX
187 186 cbvrabv k0..^M|Qk<EX=j0..^M|Qj<EX
188 187 supeq1i supk0..^M|Qk<EX<=supj0..^M|Qj<EX<
189 176 177 183 184 188 fourierdlem25 φ¬EXranQi0..^MEXQiQi+1
190 ioossioc QiQi+1QiQi+1
191 190 a1i φ¬EXranQi0..^MQiQi+1QiQi+1
192 191 sseld φ¬EXranQi0..^MEXQiQi+1EXQiQi+1
193 192 reximdva φ¬EXranQi0..^MEXQiQi+1i0..^MEXQiQi+1
194 189 193 mpd φ¬EXranQi0..^MEXQiQi+1
195 175 194 pm2.61dan φi0..^MEXQiQi+1
196 103 adantr φi0..^MQ:0M
197 elfzofz i0..^Mi0M
198 197 adantl φi0..^Mi0M
199 196 198 ffvelcdmd φi0..^MQi
200 199 3adant3 φi0..^MEXQiQi+1Qi
201 135 3ad2ant1 φi0..^MEXQiQi+1ZX
202 200 201 resubcld φi0..^MEXQiQi+1QiZX
203 138 3ad2ant1 φi0..^MEXQiQi+1EX
204 200 rexrd φi0..^MEXQiQi+1Qi*
205 fzofzp1 i0..^Mi+10M
206 205 adantl φi0..^Mi+10M
207 196 206 ffvelcdmd φi0..^MQi+1
208 207 rexrd φi0..^MQi+1*
209 208 3adant3 φi0..^MEXQiQi+1Qi+1*
210 simp3 φi0..^MEXQiQi+1EXQiQi+1
211 iocgtlb Qi*Qi+1*EXQiQi+1Qi<EX
212 204 209 210 211 syl3anc φi0..^MEXQiQi+1Qi<EX
213 200 203 201 212 ltsub1dd φi0..^MEXQiQi+1QiZX<EXZX
214 137 oveq1d φEXZX=X+ZX-ZX
215 6 recnd φX
216 135 recnd φZX
217 215 216 pncand φX+ZX-ZX=X
218 214 217 eqtrd φEXZX=X
219 218 3ad2ant1 φi0..^MEXQiQi+1EXZX=X
220 213 219 breqtrd φi0..^MEXQiQi+1QiZX<X
221 elioore yQiZXXy
222 134 oveq2d φy+ZX=y+BXTT
223 132 recnd φBXT
224 56 recnd φT
225 223 224 mulneg1d φBXTT=BXTT
226 222 225 oveq12d φy+ZX+BXTT=y+BXTT+BXTT
227 226 adantr φyy+ZX+BXTT=y+BXTT+BXTT
228 simpr φyy
229 133 adantr φyBXTT
230 228 229 readdcld φyy+BXTT
231 230 recnd φyy+BXTT
232 229 recnd φyBXTT
233 231 232 negsubd φyy+BXTT+BXTT=y+BXTT-BXTT
234 228 recnd φyy
235 234 232 pncand φyy+BXTT-BXTT=y
236 227 233 235 3eqtrrd φyy=y+ZX+BXTT
237 221 236 sylan2 φyQiZXXy=y+ZX+BXTT
238 237 3ad2antl1 φi0..^MEXQiQi+1yQiZXXy=y+ZX+BXTT
239 simpl1 φi0..^MEXQiQi+1yQiZXXφ
240 12 3adant3 φi0..^MEXQiQi+1QiQi+1D
241 240 adantr φi0..^MEXQiQi+1yQiZXXQiQi+1D
242 204 adantr φi0..^MEXQiQi+1yQiZXXQi*
243 209 adantr φi0..^MEXQiQi+1yQiZXXQi+1*
244 221 adantl φyQiZXXy
245 135 adantr φyQiZXXZX
246 244 245 readdcld φyQiZXXy+ZX
247 246 3ad2antl1 φi0..^MEXQiQi+1yQiZXXy+ZX
248 135 adantr φi0..^MZX
249 199 248 resubcld φi0..^MQiZX
250 249 rexrd φi0..^MQiZX*
251 250 adantr φi0..^MyQiZXXQiZX*
252 6 rexrd φX*
253 252 ad2antrr φi0..^MyQiZXXX*
254 simpr φi0..^MyQiZXXyQiZXX
255 ioogtlb QiZX*X*yQiZXXQiZX<y
256 251 253 254 255 syl3anc φi0..^MyQiZXXQiZX<y
257 199 adantr φi0..^MyQiZXXQi
258 135 ad2antrr φi0..^MyQiZXXZX
259 221 adantl φi0..^MyQiZXXy
260 257 258 259 ltsubaddd φi0..^MyQiZXXQiZX<yQi<y+ZX
261 256 260 mpbid φi0..^MyQiZXXQi<y+ZX
262 261 3adantl3 φi0..^MEXQiQi+1yQiZXXQi<y+ZX
263 239 138 syl φi0..^MEXQiQi+1yQiZXXEX
264 207 adantr φi0..^MyQiZXXQi+1
265 264 3adantl3 φi0..^MEXQiQi+1yQiZXXQi+1
266 6 ad2antrr φi0..^MyQiZXXX
267 iooltub QiZX*X*yQiZXXy<X
268 251 253 254 267 syl3anc φi0..^MyQiZXXy<X
269 259 266 258 268 ltadd1dd φi0..^MyQiZXXy+ZX<X+ZX
270 137 eqcomd φX+ZX=EX
271 270 ad2antrr φi0..^MyQiZXXX+ZX=EX
272 269 271 breqtrd φi0..^MyQiZXXy+ZX<EX
273 272 3adantl3 φi0..^MEXQiQi+1yQiZXXy+ZX<EX
274 iocleub Qi*Qi+1*EXQiQi+1EXQi+1
275 204 209 210 274 syl3anc φi0..^MEXQiQi+1EXQi+1
276 275 adantr φi0..^MEXQiQi+1yQiZXXEXQi+1
277 247 263 265 273 276 ltletrd φi0..^MEXQiQi+1yQiZXXy+ZX<Qi+1
278 242 243 247 262 277 eliood φi0..^MEXQiQi+1yQiZXXy+ZXQiQi+1
279 241 278 sseldd φi0..^MEXQiQi+1yQiZXXy+ZXD
280 239 130 syl φi0..^MEXQiQi+1yQiZXXBXT
281 280 flcld φi0..^MEXQiQi+1yQiZXXBXT
282 281 znegcld φi0..^MEXQiQi+1yQiZXXBXT
283 negex BXTV
284 eleq1 k=BXTkBXT
285 284 3anbi3d k=BXTφy+ZXDkφy+ZXDBXT
286 oveq1 k=BXTkT=BXTT
287 286 oveq2d k=BXTy+ZX+kT=y+ZX+BXTT
288 287 eleq1d k=BXTy+ZX+kTDy+ZX+BXTTD
289 285 288 imbi12d k=BXTφy+ZXDky+ZX+kTDφy+ZXDBXTy+ZX+BXTTD
290 ovex y+ZXV
291 eleq1 x=y+ZXxDy+ZXD
292 291 3anbi2d x=y+ZXφxDkφy+ZXDk
293 oveq1 x=y+ZXx+kT=y+ZX+kT
294 293 eleq1d x=y+ZXx+kTDy+ZX+kTD
295 292 294 imbi12d x=y+ZXφxDkx+kTDφy+ZXDky+ZX+kTD
296 290 295 5 vtocl φy+ZXDky+ZX+kTD
297 283 289 296 vtocl φy+ZXDBXTy+ZX+BXTTD
298 239 279 282 297 syl3anc φi0..^MEXQiQi+1yQiZXXy+ZX+BXTTD
299 238 298 eqeltrd φi0..^MEXQiQi+1yQiZXXyD
300 299 ralrimiva φi0..^MEXQiQi+1yQiZXXyD
301 dfss3 QiZXXDyQiZXXyD
302 300 301 sylibr φi0..^MEXQiQi+1QiZXXD
303 breq1 y=QiZXy<XQiZX<X
304 oveq1 y=QiZXyX=QiZXX
305 304 sseq1d y=QiZXyXDQiZXXD
306 303 305 anbi12d y=QiZXy<XyXDQiZX<XQiZXXD
307 306 rspcev QiZXQiZX<XQiZXXDyy<XyXD
308 202 220 302 307 syl12anc φi0..^MEXQiQi+1yy<XyXD
309 308 3exp φi0..^MEXQiQi+1yy<XyXD
310 309 rexlimdv φi0..^MEXQiQi+1yy<XyXD
311 195 310 mpd φyy<XyXD
312 0zd φ0
313 10 nnzd φM
314 1zzd φ1
315 0le1 01
316 315 a1i φ01
317 10 nnge1d φ1M
318 312 313 314 316 317 elfzd φ10M
319 103 318 ffvelcdmd φQ1
320 135 56 resubcld φZXT
321 319 320 resubcld φQ1ZXT
322 321 adantr φEX=BQ1ZXT
323 1 recnd φA
324 323 224 pncand φA+T-T=A
325 324 adantr φEX=BA+T-T=A
326 4 oveq2i A+T=A+B-A
327 326 a1i φEX=BA+T=A+B-A
328 2 recnd φB
329 323 328 pncan3d φA+B-A=B
330 329 adantr φEX=BA+B-A=B
331 id EX=BEX=B
332 331 eqcomd EX=BB=EX
333 332 adantl φEX=BB=EX
334 327 330 333 3eqtrrd φEX=BEX=A+T
335 334 oveq1d φEX=BEXT=A+T-T
336 42 adantr φEX=BQ0=A
337 325 335 336 3eqtr4rd φEX=BQ0=EXT
338 337 oveq1d φEX=BQ0ZXT=EX-T-ZXT
339 138 recnd φEX
340 339 216 224 nnncan2d φEX-T-ZXT=EXZX
341 340 adantr φEX=BEX-T-ZXT=EXZX
342 218 adantr φEX=BEXZX=X
343 338 341 342 3eqtrrd φEX=BX=Q0ZXT
344 42 1 eqeltrd φQ0
345 10 nngt0d φ0<M
346 fzolb 00..^M0M0<M
347 312 313 345 346 syl3anbrc φ00..^M
348 0re 0
349 eleq1 i=0i0..^M00..^M
350 349 anbi2d i=0φi0..^Mφ00..^M
351 fveq2 i=0Qi=Q0
352 oveq1 i=0i+1=0+1
353 352 fveq2d i=0Qi+1=Q0+1
354 351 353 breq12d i=0Qi<Qi+1Q0<Q0+1
355 350 354 imbi12d i=0φi0..^MQi<Qi+1φ00..^MQ0<Q0+1
356 355 151 vtoclg 0φ00..^MQ0<Q0+1
357 348 356 ax-mp φ00..^MQ0<Q0+1
358 347 357 mpdan φQ0<Q0+1
359 0p1e1 0+1=1
360 359 fveq2i Q0+1=Q1
361 360 a1i φQ0+1=Q1
362 358 361 breqtrd φQ0<Q1
363 344 319 320 362 ltsub1dd φQ0ZXT<Q1ZXT
364 363 adantr φEX=BQ0ZXT<Q1ZXT
365 343 364 eqbrtrd φEX=BX<Q1ZXT
366 elioore yXQ1ZXTy
367 134 eqcomd φBXTT=ZX
368 367 negeqd φBXTT=ZX
369 225 368 eqtrd φBXTT=ZX
370 224 mullidd φ1T=T
371 369 370 oveq12d φBXTT+1T=-ZX+T
372 223 negcld φBXT
373 1cnd φ1
374 372 373 224 adddird φ-BXT+1T=BXTT+1T
375 216 224 negsubdid φZXT=-ZX+T
376 371 374 375 3eqtr4d φ-BXT+1T=ZXT
377 376 oveq2d φy+ZXT+-BXT+1T=y+ZXT+ZXT
378 377 adantr φyy+ZXT+-BXT+1T=y+ZXT+ZXT
379 320 adantr φyZXT
380 228 379 readdcld φyy+ZX-T
381 380 recnd φyy+ZX-T
382 379 recnd φyZXT
383 381 382 negsubd φyy+ZXT+ZXT=y+ZXT-ZXT
384 234 382 pncand φyy+ZXT-ZXT=y
385 378 383 384 3eqtrrd φyy=y+ZXT+-BXT+1T
386 366 385 sylan2 φyXQ1ZXTy=y+ZXT+-BXT+1T
387 386 adantlr φEX=ByXQ1ZXTy=y+ZXT+-BXT+1T
388 simpll φEX=ByXQ1ZXTφ
389 361 eqcomd φQ1=Q0+1
390 389 oveq2d φQ0Q1=Q0Q0+1
391 351 353 oveq12d i=0QiQi+1=Q0Q0+1
392 391 sseq1d i=0QiQi+1DQ0Q0+1D
393 350 392 imbi12d i=0φi0..^MQiQi+1Dφ00..^MQ0Q0+1D
394 393 12 vtoclg 0φ00..^MQ0Q0+1D
395 348 394 ax-mp φ00..^MQ0Q0+1D
396 347 395 mpdan φQ0Q0+1D
397 390 396 eqsstrd φQ0Q1D
398 397 ad2antrr φEX=ByXQ1ZXTQ0Q1D
399 42 47 eqeltrd φQ0*
400 399 ad2antrr φEX=ByXQ1ZXTQ0*
401 319 rexrd φQ1*
402 401 ad2antrr φEX=ByXQ1ZXTQ1*
403 366 380 sylan2 φyXQ1ZXTy+ZX-T
404 403 adantlr φEX=ByXQ1ZXTy+ZX-T
405 339 215 216 subaddd φEXX=ZXX+ZX=EX
406 270 405 mpbird φEXX=ZX
407 oveq1 EX=BEXX=BX
408 406 407 sylan9req φEX=BZX=BX
409 408 oveq1d φEX=BZXT=B-X-T
410 409 oveq2d φEX=BX+ZX-T=X+BX-T
411 129 recnd φBX
412 215 411 224 addsubassd φX+BX-T=X+BX-T
413 412 eqcomd φX+BX-T=X+BX-T
414 413 adantr φEX=BX+BX-T=X+BX-T
415 328 224 323 subsub23d φBT=ABA=T
416 62 415 mpbird φBT=A
417 215 328 pncan3d φX+B-X=B
418 417 oveq1d φX+BX-T=BT
419 416 418 42 3eqtr4d φX+BX-T=Q0
420 419 adantr φEX=BX+BX-T=Q0
421 410 414 420 3eqtrrd φEX=BQ0=X+ZX-T
422 421 adantr φEX=ByXQ1ZXTQ0=X+ZX-T
423 6 adantr φyXQ1ZXTX
424 366 adantl φyXQ1ZXTy
425 320 adantr φyXQ1ZXTZXT
426 252 adantr φyXQ1ZXTX*
427 321 rexrd φQ1ZXT*
428 427 adantr φyXQ1ZXTQ1ZXT*
429 simpr φyXQ1ZXTyXQ1ZXT
430 ioogtlb X*Q1ZXT*yXQ1ZXTX<y
431 426 428 429 430 syl3anc φyXQ1ZXTX<y
432 423 424 425 431 ltadd1dd φyXQ1ZXTX+ZX-T<y+ZX-T
433 432 adantlr φEX=ByXQ1ZXTX+ZX-T<y+ZX-T
434 422 433 eqbrtrd φEX=ByXQ1ZXTQ0<y+ZX-T
435 iooltub X*Q1ZXT*yXQ1ZXTy<Q1ZXT
436 426 428 429 435 syl3anc φyXQ1ZXTy<Q1ZXT
437 319 adantr φyXQ1ZXTQ1
438 424 425 437 ltaddsubd φyXQ1ZXTy+ZX-T<Q1y<Q1ZXT
439 436 438 mpbird φyXQ1ZXTy+ZX-T<Q1
440 439 adantlr φEX=ByXQ1ZXTy+ZX-T<Q1
441 400 402 404 434 440 eliood φEX=ByXQ1ZXTy+ZX-TQ0Q1
442 398 441 sseldd φEX=ByXQ1ZXTy+ZX-TD
443 131 znegcld φBXT
444 443 peano2zd φ-BXT+1
445 444 ad2antrr φEX=ByXQ1ZXT-BXT+1
446 ovex -BXT+1V
447 eleq1 k=-BXT+1k-BXT+1
448 447 3anbi3d k=-BXT+1φy+ZX-TDkφy+ZX-TD-BXT+1
449 oveq1 k=-BXT+1kT=-BXT+1T
450 449 oveq2d k=-BXT+1y+ZXT+kT=y+ZXT+-BXT+1T
451 450 eleq1d k=-BXT+1y+ZXT+kTDy+ZXT+-BXT+1TD
452 448 451 imbi12d k=-BXT+1φy+ZX-TDky+ZXT+kTDφy+ZX-TD-BXT+1y+ZXT+-BXT+1TD
453 ovex y+ZX-TV
454 eleq1 x=y+ZX-TxDy+ZX-TD
455 454 3anbi2d x=y+ZX-TφxDkφy+ZX-TDk
456 oveq1 x=y+ZX-Tx+kT=y+ZXT+kT
457 456 eleq1d x=y+ZX-Tx+kTDy+ZXT+kTD
458 455 457 imbi12d x=y+ZX-TφxDkx+kTDφy+ZX-TDky+ZXT+kTD
459 453 458 5 vtocl φy+ZX-TDky+ZXT+kTD
460 446 452 459 vtocl φy+ZX-TD-BXT+1y+ZXT+-BXT+1TD
461 388 442 445 460 syl3anc φEX=ByXQ1ZXTy+ZXT+-BXT+1TD
462 387 461 eqeltrd φEX=ByXQ1ZXTyD
463 462 ralrimiva φEX=ByXQ1ZXTyD
464 dfss3 XQ1ZXTDyXQ1ZXTyD
465 463 464 sylibr φEX=BXQ1ZXTD
466 breq2 y=Q1ZXTX<yX<Q1ZXT
467 oveq2 y=Q1ZXTXy=XQ1ZXT
468 467 sseq1d y=Q1ZXTXyDXQ1ZXTD
469 466 468 anbi12d y=Q1ZXTX<yXyDX<Q1ZXTXQ1ZXTD
470 469 rspcev Q1ZXTX<Q1ZXTXQ1ZXTDyX<yXyD
471 322 365 465 470 syl12anc φEX=ByX<yXyD
472 24 adantlr φEXBEXranQj0MQj=EX
473 simp2 φEXBj0MQj=EXj0M
474 34 3ad2ant2 φEXBj0MQj=EXj
475 96 3ad2ant2 φEXBj0MQj=EXM
476 98 3ad2ant2 φEXBj0MQj=EXjM
477 id Qj=EXQj=EX
478 477 eqcomd Qj=EXEX=Qj
479 478 adantr Qj=EXM=jEX=Qj
480 479 3ad2antl3 φEXBj0MQj=EXM=jEX=Qj
481 fveq2 M=jQM=Qj
482 481 eqcomd M=jQj=QM
483 482 adantl φEXBj0MQj=EXM=jQj=QM
484 179 ad2antrr φEXBM=jQM=B
485 484 3ad2antl1 φEXBj0MQj=EXM=jQM=B
486 480 483 485 3eqtrd φEXBj0MQj=EXM=jEX=B
487 neneq EXB¬EX=B
488 487 ad2antlr φEXBM=j¬EX=B
489 488 3ad2antl1 φEXBj0MQj=EXM=j¬EX=B
490 486 489 pm2.65da φEXBj0MQj=EX¬M=j
491 490 neqned φEXBj0MQj=EXMj
492 474 475 476 491 leneltd φEXBj0MQj=EXj<M
493 elfzfzo j0..^Mj0Mj<M
494 473 492 493 sylanbrc φEXBj0MQj=EXj0..^M
495 116 adantlr φEXBj0MQj*
496 495 3adant3 φEXBj0MQj=EXQj*
497 simp1l φEXBj0MQj=EXφ
498 103 adantr φj0..^MQ:0M
499 fzofzp1 j0..^Mj+10M
500 499 adantl φj0..^Mj+10M
501 498 500 ffvelcdmd φj0..^MQj+1
502 501 rexrd φj0..^MQj+1*
503 497 494 502 syl2anc φEXBj0MQj=EXQj+1*
504 140 3adant1r φEXBj0MQj=EXEX*
505 46 159 eqbrtrd φQj=EXQjEX
506 505 adantlr φEXBQj=EXQjEX
507 506 3adant2 φEXBj0MQj=EXQjEX
508 478 3ad2ant3 φEXBj0MQj=EXEX=Qj
509 eleq1 i=ji0..^Mj0..^M
510 509 anbi2d i=jφi0..^Mφj0..^M
511 fveq2 i=jQi=Qj
512 oveq1 i=ji+1=j+1
513 512 fveq2d i=jQi+1=Qj+1
514 511 513 breq12d i=jQi<Qi+1Qj<Qj+1
515 510 514 imbi12d i=jφi0..^MQi<Qi+1φj0..^MQj<Qj+1
516 515 151 chvarvv φj0..^MQj<Qj+1
517 497 494 516 syl2anc φEXBj0MQj=EXQj<Qj+1
518 508 517 eqbrtrd φEXBj0MQj=EXEX<Qj+1
519 496 503 504 507 518 elicod φEXBj0MQj=EXEXQjQj+1
520 511 513 oveq12d i=jQiQi+1=QjQj+1
521 520 eleq2d i=jEXQiQi+1EXQjQj+1
522 521 rspcev j0..^MEXQjQj+1i0..^MEXQiQi+1
523 494 519 522 syl2anc φEXBj0MQj=EXi0..^MEXQiQi+1
524 523 3exp φEXBj0MQj=EXi0..^MEXQiQi+1
525 524 adantr φEXBEXranQj0MQj=EXi0..^MEXQiQi+1
526 525 rexlimdv φEXBEXranQj0MQj=EXi0..^MEXQiQi+1
527 472 526 mpd φEXBEXranQi0..^MEXQiQi+1
528 ioossico QiQi+1QiQi+1
529 simpr φi0..^MEXQiQi+1EXQiQi+1
530 528 529 sselid φi0..^MEXQiQi+1EXQiQi+1
531 530 ex φi0..^MEXQiQi+1EXQiQi+1
532 531 adantlr φ¬EXranQi0..^MEXQiQi+1EXQiQi+1
533 532 reximdva φ¬EXranQi0..^MEXQiQi+1i0..^MEXQiQi+1
534 189 533 mpd φ¬EXranQi0..^MEXQiQi+1
535 534 adantlr φEXB¬EXranQi0..^MEXQiQi+1
536 527 535 pm2.61dan φEXBi0..^MEXQiQi+1
537 207 248 resubcld φi0..^MQi+1ZX
538 537 3adant3 φi0..^MEXQiQi+1Qi+1ZX
539 218 eqcomd φX=EXZX
540 539 3ad2ant1 φi0..^MEXQiQi+1X=EXZX
541 138 3ad2ant1 φi0..^MEXQiQi+1EX
542 207 3adant3 φi0..^MEXQiQi+1Qi+1
543 135 3ad2ant1 φi0..^MEXQiQi+1ZX
544 199 rexrd φi0..^MQi*
545 544 3adant3 φi0..^MEXQiQi+1Qi*
546 208 3adant3 φi0..^MEXQiQi+1Qi+1*
547 simp3 φi0..^MEXQiQi+1EXQiQi+1
548 icoltub Qi*Qi+1*EXQiQi+1EX<Qi+1
549 545 546 547 548 syl3anc φi0..^MEXQiQi+1EX<Qi+1
550 541 542 543 549 ltsub1dd φi0..^MEXQiQi+1EXZX<Qi+1ZX
551 540 550 eqbrtrd φi0..^MEXQiQi+1X<Qi+1ZX
552 elioore yXQi+1ZXy
553 552 236 sylan2 φyXQi+1ZXy=y+ZX+BXTT
554 553 3ad2antl1 φi0..^MEXQiQi+1yXQi+1ZXy=y+ZX+BXTT
555 simpl1 φi0..^MEXQiQi+1yXQi+1ZXφ
556 12 3adant3 φi0..^MEXQiQi+1QiQi+1D
557 556 adantr φi0..^MEXQiQi+1yXQi+1ZXQiQi+1D
558 545 adantr φi0..^MEXQiQi+1yXQi+1ZXQi*
559 546 adantr φi0..^MEXQiQi+1yXQi+1ZXQi+1*
560 552 adantl φyXQi+1ZXy
561 135 adantr φyXQi+1ZXZX
562 560 561 readdcld φyXQi+1ZXy+ZX
563 562 3ad2antl1 φi0..^MEXQiQi+1yXQi+1ZXy+ZX
564 199 3adant3 φi0..^MEXQiQi+1Qi
565 564 adantr φi0..^MEXQiQi+1yXQi+1ZXQi
566 555 138 syl φi0..^MEXQiQi+1yXQi+1ZXEX
567 icogelb Qi*Qi+1*EXQiQi+1QiEX
568 545 546 547 567 syl3anc φi0..^MEXQiQi+1QiEX
569 568 adantr φi0..^MEXQiQi+1yXQi+1ZXQiEX
570 137 ad2antrr φi0..^MyXQi+1ZXEX=X+ZX
571 6 ad2antrr φi0..^MyXQi+1ZXX
572 552 adantl φi0..^MyXQi+1ZXy
573 135 ad2antrr φi0..^MyXQi+1ZXZX
574 252 ad2antrr φi0..^MyXQi+1ZXX*
575 537 rexrd φi0..^MQi+1ZX*
576 575 adantr φi0..^MyXQi+1ZXQi+1ZX*
577 simpr φi0..^MyXQi+1ZXyXQi+1ZX
578 ioogtlb X*Qi+1ZX*yXQi+1ZXX<y
579 574 576 577 578 syl3anc φi0..^MyXQi+1ZXX<y
580 571 572 573 579 ltadd1dd φi0..^MyXQi+1ZXX+ZX<y+ZX
581 570 580 eqbrtrd φi0..^MyXQi+1ZXEX<y+ZX
582 581 3adantl3 φi0..^MEXQiQi+1yXQi+1ZXEX<y+ZX
583 565 566 563 569 582 lelttrd φi0..^MEXQiQi+1yXQi+1ZXQi<y+ZX
584 537 adantr φi0..^MyXQi+1ZXQi+1ZX
585 iooltub X*Qi+1ZX*yXQi+1ZXy<Qi+1ZX
586 574 576 577 585 syl3anc φi0..^MyXQi+1ZXy<Qi+1ZX
587 572 584 573 586 ltadd1dd φi0..^MyXQi+1ZXy+ZX<Qi+1-ZX+ZX
588 207 recnd φi0..^MQi+1
589 216 adantr φi0..^MZX
590 588 589 npcand φi0..^MQi+1-ZX+ZX=Qi+1
591 590 adantr φi0..^MyXQi+1ZXQi+1-ZX+ZX=Qi+1
592 587 591 breqtrd φi0..^MyXQi+1ZXy+ZX<Qi+1
593 592 3adantl3 φi0..^MEXQiQi+1yXQi+1ZXy+ZX<Qi+1
594 558 559 563 583 593 eliood φi0..^MEXQiQi+1yXQi+1ZXy+ZXQiQi+1
595 557 594 sseldd φi0..^MEXQiQi+1yXQi+1ZXy+ZXD
596 555 443 syl φi0..^MEXQiQi+1yXQi+1ZXBXT
597 555 595 596 297 syl3anc φi0..^MEXQiQi+1yXQi+1ZXy+ZX+BXTTD
598 554 597 eqeltrd φi0..^MEXQiQi+1yXQi+1ZXyD
599 598 ralrimiva φi0..^MEXQiQi+1yXQi+1ZXyD
600 dfss3 XQi+1ZXDyXQi+1ZXyD
601 599 600 sylibr φi0..^MEXQiQi+1XQi+1ZXD
602 breq2 y=Qi+1ZXX<yX<Qi+1ZX
603 oveq2 y=Qi+1ZXXy=XQi+1ZX
604 603 sseq1d y=Qi+1ZXXyDXQi+1ZXD
605 602 604 anbi12d y=Qi+1ZXX<yXyDX<Qi+1ZXXQi+1ZXD
606 605 rspcev Qi+1ZXX<Qi+1ZXXQi+1ZXDyX<yXyD
607 538 551 601 606 syl12anc φi0..^MEXQiQi+1yX<yXyD
608 607 3exp φi0..^MEXQiQi+1yX<yXyD
609 608 adantr φEXBi0..^MEXQiQi+1yX<yXyD
610 609 rexlimdv φEXBi0..^MEXQiQi+1yX<yXyD
611 536 610 mpd φEXByX<yXyD
612 471 611 pm2.61dane φyX<yXyD
613 311 612 jca φyy<XyXDyX<yXyD