Metamath Proof Explorer


Theorem fourierdlem83

Description: The fourier partial sum for F rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem83.f φF:
fourierdlem83.c C=ππ
fourierdlem83.fl1 φFC𝐿1
fourierdlem83.a A=n0CFxcosnxdxπ
fourierdlem83.b B=nCFxsinnxdxπ
fourierdlem83.x φX
fourierdlem83.s S=mA02+n=1mAncosnX+BnsinnX
fourierdlem83.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
fourierdlem83.n φN
Assertion fourierdlem83 φSN=CFxDNxXdx

Proof

Step Hyp Ref Expression
1 fourierdlem83.f φF:
2 fourierdlem83.c C=ππ
3 fourierdlem83.fl1 φFC𝐿1
4 fourierdlem83.a A=n0CFxcosnxdxπ
5 fourierdlem83.b B=nCFxsinnxdxπ
6 fourierdlem83.x φX
7 fourierdlem83.s S=mA02+n=1mAncosnX+BnsinnX
8 fourierdlem83.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
9 fourierdlem83.n φN
10 7 a1i φS=mA02+n=1mAncosnX+BnsinnX
11 oveq2 m=N1m=1N
12 11 sumeq1d m=Nn=1mAncosnX+BnsinnX=n=1NAncosnX+BnsinnX
13 12 oveq2d m=NA02+n=1mAncosnX+BnsinnX=A02+n=1NAncosnX+BnsinnX
14 13 adantl φm=NA02+n=1mAncosnX+BnsinnX=A02+n=1NAncosnX+BnsinnX
15 id φφ
16 0nn0 00
17 16 a1i φ00
18 16 elexi 0V
19 eleq1 n=0n000
20 19 anbi2d n=0φn0φ00
21 fveq2 n=0An=A0
22 21 eleq1d n=0AnA0
23 20 22 imbi12d n=0φn0Anφ00A0
24 1 2 3 4 5 fourierdlem22 φn0AnnBn
25 24 simpld φn0An
26 25 imp φn0An
27 18 23 26 vtocl φ00A0
28 15 17 27 syl2anc φA0
29 28 rehalfcld φA02
30 fzfid φ1NFin
31 eleq1 k=nk0n0
32 31 anbi2d k=nφk0φn0
33 simpl k=nxCk=n
34 33 oveq1d k=nxCkx=nx
35 34 fveq2d k=nxCcoskx=cosnx
36 35 oveq2d k=nxCFxcoskx=Fxcosnx
37 36 itgeq2dv k=nCFxcoskxdx=CFxcosnxdx
38 37 eleq1d k=nCFxcoskxdxCFxcosnxdx
39 32 38 imbi12d k=nφk0CFxcoskxdxφn0CFxcosnxdx
40 1 adantr φk0F:
41 3 adantr φk0FC𝐿1
42 simpr φk0k0
43 40 2 41 4 42 fourierdlem16 φk0AkxCFx𝐿1CFxcoskxdx
44 43 simprd φk0CFxcoskxdx
45 39 44 chvarvv φn0CFxcosnxdx
46 pire π
47 46 a1i φn0π
48 0re 0
49 pipos 0<π
50 48 49 gtneii π0
51 50 a1i φn0π0
52 45 47 51 redivcld φn0CFxcosnxdxπ
53 52 4 fmptd φA:0
54 53 adantr φn1NA:0
55 elfznn n1Nn
56 55 nnnn0d n1Nn0
57 56 adantl φn1Nn0
58 54 57 ffvelcdmd φn1NAn
59 57 nn0red φn1Nn
60 6 adantr φn1NX
61 59 60 remulcld φn1NnX
62 61 recoscld φn1NcosnX
63 58 62 remulcld φn1NAncosnX
64 eleq1 k=nkn
65 64 anbi2d k=nφkφn
66 oveq1 k=nkx=nx
67 66 fveq2d k=nsinkx=sinnx
68 67 oveq2d k=nFxsinkx=Fxsinnx
69 68 adantr k=nxCFxsinkx=Fxsinnx
70 69 itgeq2dv k=nCFxsinkxdx=CFxsinnxdx
71 70 eleq1d k=nCFxsinkxdxCFxsinnxdx
72 65 71 imbi12d k=nφkCFxsinkxdxφnCFxsinnxdx
73 1 adantr φkF:
74 3 adantr φkFC𝐿1
75 simpr φkk
76 73 2 74 5 75 fourierdlem21 φkBkxCFxsinkx𝐿1CFxsinkxdx
77 76 simprd φkCFxsinkxdx
78 72 77 chvarvv φnCFxsinnxdx
79 46 a1i φnπ
80 50 a1i φnπ0
81 78 79 80 redivcld φnCFxsinnxdxπ
82 81 5 fmptd φB:
83 82 adantr φn1NB:
84 55 adantl φn1Nn
85 83 84 ffvelcdmd φn1NBn
86 61 resincld φn1NsinnX
87 85 86 remulcld φn1NBnsinnX
88 63 87 readdcld φn1NAncosnX+BnsinnX
89 30 88 fsumrecl φn=1NAncosnX+BnsinnX
90 29 89 readdcld φA02+n=1NAncosnX+BnsinnX
91 10 14 9 90 fvmptd φSN=A02+n=1NAncosnX+BnsinnX
92 4 a1i φA=n0CFxcosnxdxπ
93 oveq1 n=0nx=0x
94 93 fveq2d n=0cosnx=cos0x
95 94 oveq2d n=0Fxcosnx=Fxcos0x
96 95 adantr n=0xCFxcosnx=Fxcos0x
97 96 itgeq2dv n=0CFxcosnxdx=CFxcos0xdx
98 97 adantl φn=0CFxcosnxdx=CFxcos0xdx
99 98 oveq1d φn=0CFxcosnxdxπ=CFxcos0xdxπ
100 1 2 3 4 17 fourierdlem16 φA0xCFx𝐿1CFxcos0xdx
101 100 simprd φCFxcos0xdx
102 46 a1i φπ
103 50 a1i φπ0
104 101 102 103 redivcld φCFxcos0xdxπ
105 92 99 17 104 fvmptd φA0=CFxcos0xdxπ
106 ioosscn ππ
107 id xCxC
108 107 2 eleqtrdi xCxππ
109 106 108 sselid xCx
110 109 mul02d xC0x=0
111 110 fveq2d xCcos0x=cos0
112 cos0 cos0=1
113 111 112 eqtrdi xCcos0x=1
114 113 oveq2d xCFxcos0x=Fx1
115 114 adantl φxCFxcos0x=Fx1
116 1 adantr φxCF:
117 ioossre ππ
118 117 108 sselid xCx
119 118 adantl φxCx
120 116 119 ffvelcdmd φxCFx
121 120 recnd φxCFx
122 121 mulridd φxCFx1=Fx
123 115 122 eqtrd φxCFxcos0x=Fx
124 123 itgeq2dv φCFxcos0xdx=CFxdx
125 124 oveq1d φCFxcos0xdxπ=CFxdxπ
126 105 125 eqtrd φA0=CFxdxπ
127 126 oveq1d φA02=CFxdxπ2
128 1 feqmptd φF=xFx
129 128 reseq1d φFC=xFxC
130 46 a1i xCπ
131 130 renegcld xCπ
132 ioossicc ππππ
133 2 132 eqsstri Cππ
134 133 sseli xCxππ
135 eliccre ππxππx
136 131 130 134 135 syl3anc xCx
137 136 ssriv C
138 resmpt CxFxC=xCFx
139 137 138 mp1i φxFxC=xCFx
140 129 139 eqtr2d φxCFx=FC
141 140 3 eqeltrd φxCFx𝐿1
142 120 141 itgcl φCFxdx
143 102 recnd φπ
144 2cnd φ2
145 2ne0 20
146 145 a1i φ20
147 142 143 144 103 146 divdiv32d φCFxdxπ2=CFxdx2π
148 142 144 146 divrecd φCFxdx2=CFxdx12
149 144 146 reccld φ12
150 142 149 mulcomd φCFxdx12=12CFxdx
151 149 120 141 itgmulc2 φ12CFxdx=C12Fxdx
152 148 150 151 3eqtrd φCFxdx2=C12Fxdx
153 152 oveq1d φCFxdx2π=C12Fxdxπ
154 127 147 153 3eqtrd φA02=C12Fxdxπ
155 57 52 syldan φn1NCFxcosnxdxπ
156 4 fvmpt2 n0CFxcosnxdxπAn=CFxcosnxdxπ
157 57 155 156 syl2anc φn1NAn=CFxcosnxdxπ
158 157 oveq1d φn1NAncosnX=CFxcosnxdxπcosnX
159 155 recnd φn1NCFxcosnxdxπ
160 62 recnd φn1NcosnX
161 159 160 mulcomd φn1NCFxcosnxdxπcosnX=cosnXCFxcosnxdxπ
162 57 45 syldan φn1NCFxcosnxdx
163 162 recnd φn1NCFxcosnxdx
164 143 adantr φn1Nπ
165 50 a1i φn1Nπ0
166 160 163 164 165 divassd φn1NcosnXCFxcosnxdxπ=cosnXCFxcosnxdxπ
167 1 ad2antrr φn0xCF:
168 118 adantl φn0xCx
169 167 168 ffvelcdmd φn0xCFx
170 nn0re n0n
171 170 ad2antlr φn0xCn
172 171 168 remulcld φn0xCnx
173 172 recoscld φn0xCcosnx
174 169 173 remulcld φn0xCFxcosnx
175 56 174 sylanl2 φn1NxCFxcosnx
176 ioombl ππdomvol
177 2 176 eqeltri Cdomvol
178 177 elexi CV
179 178 a1i φn0CV
180 eqidd φn0xCcosnx=xCcosnx
181 eqidd φn0xCFx=xCFx
182 179 173 169 180 181 offval2 φn0xCcosnx×fxCFx=xCcosnxFx
183 173 recnd φn0xCcosnx
184 121 adantlr φn0xCFx
185 183 184 mulcomd φn0xCcosnxFx=Fxcosnx
186 185 mpteq2dva φn0xCcosnxFx=xCFxcosnx
187 182 186 eqtr2d φn0xCFxcosnx=xCcosnx×fxCFx
188 coscn cos:cn
189 188 a1i φn0cos:cn
190 ax-resscn
191 137 190 sstri C
192 191 a1i φn0C
193 170 recnd n0n
194 193 adantl φn0n
195 ssid
196 195 a1i φn0
197 192 194 196 constcncfg φn0xCn:Ccn
198 192 196 idcncfg φn0xCx:Ccn
199 197 198 mulcncf φn0xCnx:Ccn
200 189 199 cncfmpt1f φn0xCcosnx:Ccn
201 cnmbf CdomvolxCcosnx:CcnxCcosnxMblFn
202 177 200 201 sylancr φn0xCcosnxMblFn
203 141 adantr φn0xCFx𝐿1
204 1re 1
205 simpr n0ydomxCcosnxydomxCcosnx
206 170 adantr n0xCn
207 118 adantl n0xCx
208 206 207 remulcld n0xCnx
209 208 recoscld n0xCcosnx
210 209 ralrimiva n0xCcosnx
211 210 adantr n0ydomxCcosnxxCcosnx
212 dmmptg xCcosnxdomxCcosnx=C
213 211 212 syl n0ydomxCcosnxdomxCcosnx=C
214 205 213 eleqtrd n0ydomxCcosnxyC
215 eqidd n0yCxCcosnx=xCcosnx
216 oveq2 x=ynx=ny
217 216 fveq2d x=ycosnx=cosny
218 217 adantl n0yCx=ycosnx=cosny
219 simpr n0yCyC
220 170 adantr n0yCn
221 137 219 sselid n0yCy
222 220 221 remulcld n0yCny
223 222 recoscld n0yCcosny
224 215 218 219 223 fvmptd n0yCxCcosnxy=cosny
225 224 fveq2d n0yCxCcosnxy=cosny
226 abscosbd nycosny1
227 222 226 syl n0yCcosny1
228 225 227 eqbrtrd n0yCxCcosnxy1
229 214 228 syldan n0ydomxCcosnxxCcosnxy1
230 229 ralrimiva n0ydomxCcosnxxCcosnxy1
231 breq2 b=1xCcosnxybxCcosnxy1
232 231 ralbidv b=1ydomxCcosnxxCcosnxybydomxCcosnxxCcosnxy1
233 232 rspcev 1ydomxCcosnxxCcosnxy1bydomxCcosnxxCcosnxyb
234 204 230 233 sylancr n0bydomxCcosnxxCcosnxyb
235 234 adantl φn0bydomxCcosnxxCcosnxyb
236 bddmulibl xCcosnxMblFnxCFx𝐿1bydomxCcosnxxCcosnxybxCcosnx×fxCFx𝐿1
237 202 203 235 236 syl3anc φn0xCcosnx×fxCFx𝐿1
238 187 237 eqeltrd φn0xCFxcosnx𝐿1
239 57 238 syldan φn1NxCFxcosnx𝐿1
240 160 175 239 itgmulc2 φn1NcosnXCFxcosnxdx=CcosnXFxcosnxdx
241 160 adantr φn1NxCcosnX
242 121 adantlr φn1NxCFx
243 56 183 sylanl2 φn1NxCcosnx
244 241 242 243 mul12d φn1NxCcosnXFxcosnx=FxcosnXcosnx
245 241 243 mulcomd φn1NxCcosnXcosnx=cosnxcosnX
246 245 oveq2d φn1NxCFxcosnXcosnx=FxcosnxcosnX
247 244 246 eqtrd φn1NxCcosnXFxcosnx=FxcosnxcosnX
248 247 itgeq2dv φn1NCcosnXFxcosnxdx=CFxcosnxcosnXdx
249 240 248 eqtrd φn1NcosnXCFxcosnxdx=CFxcosnxcosnXdx
250 249 oveq1d φn1NcosnXCFxcosnxdxπ=CFxcosnxcosnXdxπ
251 166 250 eqtr3d φn1NcosnXCFxcosnxdxπ=CFxcosnxcosnXdxπ
252 158 161 251 3eqtrd φn1NAncosnX=CFxcosnxcosnXdxπ
253 84 81 syldan φn1NCFxsinnxdxπ
254 5 fvmpt2 nCFxsinnxdxπBn=CFxsinnxdxπ
255 84 253 254 syl2anc φn1NBn=CFxsinnxdxπ
256 255 oveq1d φn1NBnsinnX=CFxsinnxdxπsinnX
257 253 recnd φn1NCFxsinnxdxπ
258 86 recnd φn1NsinnX
259 257 258 mulcomd φn1NCFxsinnxdxπsinnX=sinnXCFxsinnxdxπ
260 84 78 syldan φn1NCFxsinnxdx
261 260 recnd φn1NCFxsinnxdx
262 258 261 164 165 divassd φn1NsinnXCFxsinnxdxπ=sinnXCFxsinnxdxπ
263 120 adantlr φnxCFx
264 nnre nn
265 264 adantr nxCn
266 118 adantl nxCx
267 265 266 remulcld nxCnx
268 267 resincld nxCsinnx
269 268 adantll φnxCsinnx
270 263 269 remulcld φnxCFxsinnx
271 55 270 sylanl2 φn1NxCFxsinnx
272 178 a1i φnCV
273 eqidd φnxCsinnx=xCsinnx
274 eqidd φnxCFx=xCFx
275 272 269 263 273 274 offval2 φnxCsinnx×fxCFx=xCsinnxFx
276 269 recnd φnxCsinnx
277 121 adantlr φnxCFx
278 276 277 mulcomd φnxCsinnxFx=Fxsinnx
279 278 mpteq2dva φnxCsinnxFx=xCFxsinnx
280 275 279 eqtr2d φnxCFxsinnx=xCsinnx×fxCFx
281 sincn sin:cn
282 281 a1i φnsin:cn
283 191 a1i nC
284 264 recnd nn
285 195 a1i n
286 283 284 285 constcncfg nxCn:Ccn
287 283 285 idcncfg nxCx:Ccn
288 286 287 mulcncf nxCnx:Ccn
289 288 adantl φnxCnx:Ccn
290 282 289 cncfmpt1f φnxCsinnx:Ccn
291 cnmbf CdomvolxCsinnx:CcnxCsinnxMblFn
292 177 290 291 sylancr φnxCsinnxMblFn
293 141 adantr φnxCFx𝐿1
294 simpr nydomxCsinnxydomxCsinnx
295 268 ralrimiva nxCsinnx
296 dmmptg xCsinnxdomxCsinnx=C
297 295 296 syl ndomxCsinnx=C
298 297 adantr nydomxCsinnxdomxCsinnx=C
299 294 298 eleqtrd nydomxCsinnxyC
300 eqidd nyCxCsinnx=xCsinnx
301 216 fveq2d x=ysinnx=sinny
302 301 adantl nyCx=ysinnx=sinny
303 simpr nyCyC
304 264 adantr nyCn
305 137 303 sselid nyCy
306 304 305 remulcld nyCny
307 306 resincld nyCsinny
308 300 302 303 307 fvmptd nyCxCsinnxy=sinny
309 308 fveq2d nyCxCsinnxy=sinny
310 abssinbd nysinny1
311 306 310 syl nyCsinny1
312 309 311 eqbrtrd nyCxCsinnxy1
313 299 312 syldan nydomxCsinnxxCsinnxy1
314 313 ralrimiva nydomxCsinnxxCsinnxy1
315 breq2 b=1xCsinnxybxCsinnxy1
316 315 ralbidv b=1ydomxCsinnxxCsinnxybydomxCsinnxxCsinnxy1
317 316 rspcev 1ydomxCsinnxxCsinnxy1bydomxCsinnxxCsinnxyb
318 204 314 317 sylancr nbydomxCsinnxxCsinnxyb
319 318 adantl φnbydomxCsinnxxCsinnxyb
320 bddmulibl xCsinnxMblFnxCFx𝐿1bydomxCsinnxxCsinnxybxCsinnx×fxCFx𝐿1
321 292 293 319 320 syl3anc φnxCsinnx×fxCFx𝐿1
322 280 321 eqeltrd φnxCFxsinnx𝐿1
323 84 322 syldan φn1NxCFxsinnx𝐿1
324 258 271 323 itgmulc2 φn1NsinnXCFxsinnxdx=CsinnXFxsinnxdx
325 258 adantr φn1NxCsinnX
326 55 276 sylanl2 φn1NxCsinnx
327 325 242 326 mul12d φn1NxCsinnXFxsinnx=FxsinnXsinnx
328 325 326 mulcomd φn1NxCsinnXsinnx=sinnxsinnX
329 328 oveq2d φn1NxCFxsinnXsinnx=FxsinnxsinnX
330 327 329 eqtrd φn1NxCsinnXFxsinnx=FxsinnxsinnX
331 330 itgeq2dv φn1NCsinnXFxsinnxdx=CFxsinnxsinnXdx
332 324 331 eqtrd φn1NsinnXCFxsinnxdx=CFxsinnxsinnXdx
333 332 oveq1d φn1NsinnXCFxsinnxdxπ=CFxsinnxsinnXdxπ
334 262 333 eqtr3d φn1NsinnXCFxsinnxdxπ=CFxsinnxsinnXdxπ
335 256 259 334 3eqtrd φn1NBnsinnX=CFxsinnxsinnXdxπ
336 252 335 oveq12d φn1NAncosnX+BnsinnX=CFxcosnxcosnXdxπ+CFxsinnxsinnXdxπ
337 56 169 sylanl2 φn1NxCFx
338 57 209 sylan φn1NxCcosnx
339 62 adantr φn1NxCcosnX
340 338 339 remulcld φn1NxCcosnxcosnX
341 337 340 remulcld φn1NxCFxcosnxcosnX
342 242 243 241 mul13d φn1NxCFxcosnxcosnX=cosnXcosnxFx
343 243 242 mulcomd φn1NxCcosnxFx=Fxcosnx
344 343 oveq2d φn1NxCcosnXcosnxFx=cosnXFxcosnx
345 342 344 eqtrd φn1NxCFxcosnxcosnX=cosnXFxcosnx
346 345 mpteq2dva φn1NxCFxcosnxcosnX=xCcosnXFxcosnx
347 160 175 239 iblmulc2 φn1NxCcosnXFxcosnx𝐿1
348 346 347 eqeltrd φn1NxCFxcosnxcosnX𝐿1
349 341 348 itgcl φn1NCFxcosnxcosnXdx
350 84 268 sylan φn1NxCsinnx
351 86 adantr φn1NxCsinnX
352 350 351 remulcld φn1NxCsinnxsinnX
353 337 352 remulcld φn1NxCFxsinnxsinnX
354 242 326 325 mul13d φn1NxCFxsinnxsinnX=sinnXsinnxFx
355 326 242 mulcomd φn1NxCsinnxFx=Fxsinnx
356 355 oveq2d φn1NxCsinnXsinnxFx=sinnXFxsinnx
357 354 356 eqtrd φn1NxCFxsinnxsinnX=sinnXFxsinnx
358 357 mpteq2dva φn1NxCFxsinnxsinnX=xCsinnXFxsinnx
359 258 271 323 iblmulc2 φn1NxCsinnXFxsinnx𝐿1
360 358 359 eqeltrd φn1NxCFxsinnxsinnX𝐿1
361 353 360 itgcl φn1NCFxsinnxsinnXdx
362 349 361 164 165 divdird φn1NCFxcosnxcosnXdx+CFxsinnxsinnXdxπ=CFxcosnxcosnXdxπ+CFxsinnxsinnXdxπ
363 55 nncnd n1Nn
364 363 ad2antlr φn1NxCn
365 109 adantl φn1NxCx
366 6 recnd φX
367 366 ad2antrr φn1NxCX
368 364 365 367 subdid φn1NxCnxX=nxnX
369 368 fveq2d φn1NxCcosnxX=cosnxnX
370 364 365 mulcld φn1NxCnx
371 364 367 mulcld φn1NxCnX
372 cossub nxnXcosnxnX=cosnxcosnX+sinnxsinnX
373 370 371 372 syl2anc φn1NxCcosnxnX=cosnxcosnX+sinnxsinnX
374 369 373 eqtrd φn1NxCcosnxX=cosnxcosnX+sinnxsinnX
375 374 oveq2d φn1NxCFxcosnxX=FxcosnxcosnX+sinnxsinnX
376 340 recnd φn1NxCcosnxcosnX
377 352 recnd φn1NxCsinnxsinnX
378 242 376 377 adddid φn1NxCFxcosnxcosnX+sinnxsinnX=FxcosnxcosnX+FxsinnxsinnX
379 375 378 eqtrd φn1NxCFxcosnxX=FxcosnxcosnX+FxsinnxsinnX
380 379 itgeq2dv φn1NCFxcosnxXdx=CFxcosnxcosnX+FxsinnxsinnXdx
381 341 348 353 360 itgadd φn1NCFxcosnxcosnX+FxsinnxsinnXdx=CFxcosnxcosnXdx+CFxsinnxsinnXdx
382 380 381 eqtr2d φn1NCFxcosnxcosnXdx+CFxsinnxsinnXdx=CFxcosnxXdx
383 382 oveq1d φn1NCFxcosnxcosnXdx+CFxsinnxsinnXdxπ=CFxcosnxXdxπ
384 336 362 383 3eqtr2d φn1NAncosnX+BnsinnX=CFxcosnxXdxπ
385 384 sumeq2dv φn=1NAncosnX+BnsinnX=n=1NCFxcosnxXdxπ
386 59 adantr φn1NxCn
387 118 adantl φn1NxCx
388 6 ad2antrr φn1NxCX
389 387 388 resubcld φn1NxCxX
390 386 389 remulcld φn1NxCnxX
391 390 recoscld φn1NxCcosnxX
392 337 391 remulcld φn1NxCFxcosnxX
393 178 a1i φn1NCV
394 eqidd φn1NxCcosnxX=xCcosnxX
395 eqidd φn1NxCFx=xCFx
396 393 391 337 394 395 offval2 φn1NxCcosnxX×fxCFx=xCcosnxXFx
397 391 recnd φn1NxCcosnxX
398 397 242 mulcomd φn1NxCcosnxXFx=FxcosnxX
399 398 mpteq2dva φn1NxCcosnxXFx=xCFxcosnxX
400 396 399 eqtr2d φn1NxCFxcosnxX=xCcosnxX×fxCFx
401 188 a1i φn1Ncos:cn
402 84 286 syl φn1NxCn:Ccn
403 84 287 syl φn1NxCx:Ccn
404 191 a1i φn1NC
405 366 adantr φn1NX
406 195 a1i φn1N
407 404 405 406 constcncfg φn1NxCX:Ccn
408 403 407 subcncf φn1NxCxX:Ccn
409 402 408 mulcncf φn1NxCnxX:Ccn
410 401 409 cncfmpt1f φn1NxCcosnxX:Ccn
411 cnmbf CdomvolxCcosnxX:CcnxCcosnxXMblFn
412 177 410 411 sylancr φn1NxCcosnxXMblFn
413 141 adantr φn1NxCFx𝐿1
414 simpr φn1NydomxCcosnxXydomxCcosnxX
415 391 ralrimiva φn1NxCcosnxX
416 dmmptg xCcosnxXdomxCcosnxX=C
417 415 416 syl φn1NdomxCcosnxX=C
418 417 adantr φn1NydomxCcosnxXdomxCcosnxX=C
419 414 418 eleqtrd φn1NydomxCcosnxXyC
420 eqidd φn1NyCxCcosnxX=xCcosnxX
421 oveq1 x=yxX=yX
422 421 oveq2d x=ynxX=nyX
423 422 fveq2d x=ycosnxX=cosnyX
424 423 adantl φn1NyCx=ycosnxX=cosnyX
425 simpr φn1NyCyC
426 59 adantr φn1NyCn
427 57 221 sylan φn1NyCy
428 6 ad2antrr φn1NyCX
429 427 428 resubcld φn1NyCyX
430 426 429 remulcld φn1NyCnyX
431 430 recoscld φn1NyCcosnyX
432 420 424 425 431 fvmptd φn1NyCxCcosnxXy=cosnyX
433 432 fveq2d φn1NyCxCcosnxXy=cosnyX
434 abscosbd nyXcosnyX1
435 430 434 syl φn1NyCcosnyX1
436 433 435 eqbrtrd φn1NyCxCcosnxXy1
437 419 436 syldan φn1NydomxCcosnxXxCcosnxXy1
438 437 ralrimiva φn1NydomxCcosnxXxCcosnxXy1
439 breq2 b=1xCcosnxXybxCcosnxXy1
440 439 ralbidv b=1ydomxCcosnxXxCcosnxXybydomxCcosnxXxCcosnxXy1
441 440 rspcev 1ydomxCcosnxXxCcosnxXy1bydomxCcosnxXxCcosnxXyb
442 204 438 441 sylancr φn1NbydomxCcosnxXxCcosnxXyb
443 bddmulibl xCcosnxXMblFnxCFx𝐿1bydomxCcosnxXxCcosnxXybxCcosnxX×fxCFx𝐿1
444 412 413 442 443 syl3anc φn1NxCcosnxX×fxCFx𝐿1
445 400 444 eqeltrd φn1NxCFxcosnxX𝐿1
446 392 445 itgcl φn1NCFxcosnxXdx
447 30 143 446 103 fsumdivc φn=1NCFxcosnxXdxπ=n=1NCFxcosnxXdxπ
448 177 a1i φCdomvol
449 anass φn1NxCφn1NxC
450 ancom n1NxCxCn1N
451 450 anbi2i φn1NxCφxCn1N
452 449 451 bitri φn1NxCφxCn1N
453 452 392 sylbir φxCn1NFxcosnxX
454 448 30 453 445 itgfsum φxCn=1NFxcosnxX𝐿1Cn=1NFxcosnxXdx=n=1NCFxcosnxXdx
455 454 simprd φCn=1NFxcosnxXdx=n=1NCFxcosnxXdx
456 455 eqcomd φn=1NCFxcosnxXdx=Cn=1NFxcosnxXdx
457 456 oveq1d φn=1NCFxcosnxXdxπ=Cn=1NFxcosnxXdxπ
458 385 447 457 3eqtr2d φn=1NAncosnX+BnsinnX=Cn=1NFxcosnxXdxπ
459 154 458 oveq12d φA02+n=1NAncosnX+BnsinnX=C12Fxdxπ+Cn=1NFxcosnxXdxπ
460 9 adantr φxCN
461 eqid DN=DN
462 eqid s12+n=1Ncosnsπ=s12+n=1Ncosnsπ
463 8 460 461 462 dirkertrigeq φxCDN=s12+n=1Ncosnsπ
464 oveq2 s=xXns=nxX
465 464 fveq2d s=xXcosns=cosnxX
466 465 sumeq2sdv s=xXn=1Ncosns=n=1NcosnxX
467 466 oveq2d s=xX12+n=1Ncosns=12+n=1NcosnxX
468 467 oveq1d s=xX12+n=1Ncosnsπ=12+n=1NcosnxXπ
469 468 adantl φxCs=xX12+n=1Ncosnsπ=12+n=1NcosnxXπ
470 6 adantr φxCX
471 119 470 resubcld φxCxX
472 halfre 12
473 472 a1i φxC12
474 fzfid φxC1NFin
475 391 an32s φxCn1NcosnxX
476 474 475 fsumrecl φxCn=1NcosnxX
477 473 476 readdcld φxC12+n=1NcosnxX
478 46 a1i φxCπ
479 50 a1i φxCπ0
480 477 478 479 redivcld φxC12+n=1NcosnxXπ
481 463 469 471 480 fvmptd φxCDNxX=12+n=1NcosnxXπ
482 481 480 eqeltrd φxCDNxX
483 120 482 remulcld φxCFxDNxX
484 178 a1i φCV
485 eqidd φxCDNxX=xCDNxX
486 eqidd φxCFx=xCFx
487 484 482 120 485 486 offval2 φxCDNxX×fxCFx=xCDNxXFx
488 482 recnd φxCDNxX
489 488 121 mulcomd φxCDNxXFx=FxDNxX
490 489 mpteq2dva φxCDNxXFx=xCFxDNxX
491 487 490 eqtr2d φxCFxDNxX=xCDNxX×fxCFx
492 eqid xππDNxX=xππDNxX
493 eqid xDNxX=xDNxX
494 195 a1i φ
495 cncfss cncn
496 190 494 495 sylancr φcncn
497 simpr φxx
498 6 adantr φxX
499 497 498 resubcld φxxX
500 eqid xxX=xxX
501 499 500 fmptd φxxX:
502 190 a1i φ
503 502 494 idcncfg φxx:cn
504 502 366 494 constcncfg φxX:cn
505 503 504 subcncf φxxX:cn
506 cncfcdm xxX:cnxxX:cnxxX:
507 190 505 506 sylancr φxxX:cnxxX:
508 501 507 mpbird φxxX:cn
509 8 dirkercncf NDN:cn
510 9 509 syl φDN:cn
511 508 510 cncfcompt φxDNxX:cn
512 496 511 sseldd φxDNxX:cn
513 46 renegcli π
514 iccssre ππππ
515 513 46 514 mp2an ππ
516 515 a1i φππ
517 8 dirkerf NDN:
518 9 517 syl φDN:
519 518 adantr φxππDN:
520 516 sselda φxππx
521 6 adantr φxππX
522 520 521 resubcld φxππxX
523 519 522 ffvelcdmd φxππDNxX
524 523 recnd φxππDNxX
525 493 512 516 494 524 cncfmptssg φxππDNxX:ππcn
526 133 a1i φCππ
527 492 525 526 494 488 cncfmptssg φxCDNxX:Ccn
528 cnmbf CdomvolxCDNxX:CcnxCDNxXMblFn
529 177 527 528 sylancr φxCDNxXMblFn
530 513 a1i φπ
531 0red φ0
532 negpilt0 π<0
533 532 a1i φπ<0
534 49 a1i φ0<π
535 530 531 102 533 534 lttrd φπ<π
536 530 102 535 ltled φππ
537 493 512 516 502 523 cncfmptssg φxππDNxX:ππcn
538 530 102 536 537 evthiccabs φcππyππxππDNxXyxππDNxXczππwππxππDNxXzxππDNxXw
539 538 simpld φcππyππxππDNxXyxππDNxXc
540 eqidd φyππxππDNxX=xππDNxX
541 421 fveq2d x=yDNxX=DNyX
542 541 adantl φyππx=yDNxX=DNyX
543 simpr φyππyππ
544 518 adantr φyππDN:
545 515 543 sselid φyππy
546 6 adantr φyππX
547 545 546 resubcld φyππyX
548 544 547 ffvelcdmd φyππDNyX
549 540 542 543 548 fvmptd φyππxππDNxXy=DNyX
550 549 fveq2d φyππxππDNxXy=DNyX
551 550 adantlr φcππyππxππDNxXy=DNyX
552 eqidd φcππxππDNxX=xππDNxX
553 oveq1 x=cxX=cX
554 553 fveq2d x=cDNxX=DNcX
555 554 adantl φcππx=cDNxX=DNcX
556 simpr φcππcππ
557 518 adantr φcππDN:
558 515 556 sselid φcππc
559 6 adantr φcππX
560 558 559 resubcld φcππcX
561 557 560 ffvelcdmd φcππDNcX
562 552 555 556 561 fvmptd φcππxππDNxXc=DNcX
563 562 fveq2d φcππxππDNxXc=DNcX
564 563 adantr φcππyππxππDNxXc=DNcX
565 551 564 breq12d φcππyππxππDNxXyxππDNxXcDNyXDNcX
566 565 ralbidva φcππyππxππDNxXyxππDNxXcyππDNyXDNcX
567 566 rexbidva φcππyππxππDNxXyxππDNxXccππyππDNyXDNcX
568 539 567 mpbid φcππyππDNyXDNcX
569 561 recnd φcππDNcX
570 569 abscld φcππDNcX
571 570 3adant3 φcππyππDNyXDNcXDNcX
572 nfv yφ
573 nfv ycππ
574 nfra1 yyππDNyXDNcX
575 572 573 574 nf3an yφcππyππDNyXDNcX
576 simpr φydomxCDNxXydomxCDNxX
577 482 ralrimiva φxCDNxX
578 dmmptg xCDNxXdomxCDNxX=C
579 577 578 syl φdomxCDNxX=C
580 579 adantr φydomxCDNxXdomxCDNxX=C
581 576 580 eleqtrd φydomxCDNxXyC
582 581 3ad2antl1 φcππyππDNyXDNcXydomxCDNxXyC
583 eqidd φyCxCDNxX=xCDNxX
584 541 adantl φyCx=yDNxX=DNyX
585 simpr φyCyC
586 518 adantr φyCDN:
587 137 585 sselid φyCy
588 6 adantr φyCX
589 587 588 resubcld φyCyX
590 586 589 ffvelcdmd φyCDNyX
591 583 584 585 590 fvmptd φyCxCDNxXy=DNyX
592 591 fveq2d φyCxCDNxXy=DNyX
593 592 adantlr φyππDNyXDNcXyCxCDNxXy=DNyX
594 simplr φyππDNyXDNcXyCyππDNyXDNcX
595 133 sseli yCyππ
596 595 adantl φyππDNyXDNcXyCyππ
597 rspa yππDNyXDNcXyππDNyXDNcX
598 594 596 597 syl2anc φyππDNyXDNcXyCDNyXDNcX
599 593 598 eqbrtrd φyππDNyXDNcXyCxCDNxXyDNcX
600 599 3adantl2 φcππyππDNyXDNcXyCxCDNxXyDNcX
601 582 600 syldan φcππyππDNyXDNcXydomxCDNxXxCDNxXyDNcX
602 601 ex φcππyππDNyXDNcXydomxCDNxXxCDNxXyDNcX
603 575 602 ralrimi φcππyππDNyXDNcXydomxCDNxXxCDNxXyDNcX
604 breq2 b=DNcXxCDNxXybxCDNxXyDNcX
605 604 ralbidv b=DNcXydomxCDNxXxCDNxXybydomxCDNxXxCDNxXyDNcX
606 605 rspcev DNcXydomxCDNxXxCDNxXyDNcXbydomxCDNxXxCDNxXyb
607 571 603 606 syl2anc φcππyππDNyXDNcXbydomxCDNxXxCDNxXyb
608 607 rexlimdv3a φcππyππDNyXDNcXbydomxCDNxXxCDNxXyb
609 568 608 mpd φbydomxCDNxXxCDNxXyb
610 bddmulibl xCDNxXMblFnxCFx𝐿1bydomxCDNxXxCDNxXybxCDNxX×fxCFx𝐿1
611 529 141 609 610 syl3anc φxCDNxX×fxCFx𝐿1
612 491 611 eqeltrd φxCFxDNxX𝐿1
613 143 483 612 itgmulc2 φπCFxDNxXdx=CπFxDNxXdx
614 143 adantr φxCπ
615 121 488 614 mul13d φxCFxDNxXπ=πDNxXFx
616 489 oveq2d φxCπDNxXFx=πFxDNxX
617 615 616 eqtrd φxCFxDNxXπ=πFxDNxX
618 617 itgeq2dv φCFxDNxXπdx=CπFxDNxXdx
619 613 618 eqtr4d φπCFxDNxXdx=CFxDNxXπdx
620 149 adantr φxC12
621 620 121 mulcomd φxC12Fx=Fx12
622 397 an32s φxCn1NcosnxX
623 474 121 622 fsummulc2 φxCFxn=1NcosnxX=n=1NFxcosnxX
624 623 eqcomd φxCn=1NFxcosnxX=Fxn=1NcosnxX
625 621 624 oveq12d φxC12Fx+n=1NFxcosnxX=Fx12+Fxn=1NcosnxX
626 474 622 fsumcl φxCn=1NcosnxX
627 121 620 626 adddid φxCFx12+n=1NcosnxX=Fx12+Fxn=1NcosnxX
628 481 oveq1d φxCDNxXπ=12+n=1NcosnxXππ
629 620 626 addcld φxC12+n=1NcosnxX
630 629 614 479 divcan1d φxC12+n=1NcosnxXππ=12+n=1NcosnxX
631 628 630 eqtr2d φxC12+n=1NcosnxX=DNxXπ
632 631 oveq2d φxCFx12+n=1NcosnxX=FxDNxXπ
633 625 627 632 3eqtr2rd φxCFxDNxXπ=12Fx+n=1NFxcosnxX
634 633 itgeq2dv φCFxDNxXπdx=C12Fx+n=1NFxcosnxXdx
635 remulcl 12Fx12Fx
636 472 120 635 sylancr φxC12Fx
637 149 120 141 iblmulc2 φxC12Fx𝐿1
638 392 an32s φxCn1NFxcosnxX
639 474 638 fsumrecl φxCn=1NFxcosnxX
640 454 simpld φxCn=1NFxcosnxX𝐿1
641 636 637 639 640 itgadd φC12Fx+n=1NFxcosnxXdx=C12Fxdx+Cn=1NFxcosnxXdx
642 619 634 641 3eqtrrd φC12Fxdx+Cn=1NFxcosnxXdx=πCFxDNxXdx
643 642 oveq1d φC12Fxdx+Cn=1NFxcosnxXdxπ=πCFxDNxXdxπ
644 636 637 itgcl φC12Fxdx
645 639 640 itgcl φCn=1NFxcosnxXdx
646 644 645 143 103 divdird φC12Fxdx+Cn=1NFxcosnxXdxπ=C12Fxdxπ+Cn=1NFxcosnxXdxπ
647 483 612 itgcl φCFxDNxXdx
648 647 143 103 divcan3d φπCFxDNxXdxπ=CFxDNxXdx
649 643 646 648 3eqtr3d φC12Fxdxπ+Cn=1NFxcosnxXdxπ=CFxDNxXdx
650 91 459 649 3eqtrd φSN=CFxDNxXdx