Metamath Proof Explorer


Theorem poimirlem30

Description: Lemma for poimir combining poimirlem29 with bwth . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimir.i I=011N
poimir.r R=𝑡1N×topGenran.
poimir.1 φFR𝑡ICnR
poimirlem30.x X=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kn
poimirlem30.2 φG:01N×f|f:1N1-1 onto1N
poimirlem30.3 φkran1stGk0..^k
poimirlem30.4 φkn1Nr-1j0N0rX
Assertion poimirlem30 φcIn1NvR𝑡Icvr-1zv0rFzn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimir.i I=011N
3 poimir.r R=𝑡1N×topGenran.
4 poimir.1 φFR𝑡ICnR
5 poimirlem30.x X=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kn
6 poimirlem30.2 φG:01N×f|f:1N1-1 onto1N
7 poimirlem30.3 φkran1stGk0..^k
8 poimirlem30.4 φkn1Nr-1j0N0rX
9 elfzonn0 i0..^ki0
10 9 nn0red i0..^ki
11 nndivre ikik
12 10 11 sylan i0..^kkik
13 elfzole1 i0..^k0i
14 10 13 jca i0..^ki0i
15 nnrp kk+
16 15 rpregt0d kk0<k
17 divge0 i0ik0<k0ik
18 14 16 17 syl2an i0..^kk0ik
19 elfzo0le i0..^kik
20 19 adantr i0..^kkik
21 10 adantr i0..^kki
22 1red i0..^kk1
23 15 adantl i0..^kkk+
24 21 22 23 ledivmuld i0..^kkik1ik1
25 nncn kk
26 25 mulridd kk1=k
27 26 breq2d kik1ik
28 27 adantl i0..^kkik1ik
29 24 28 bitrd i0..^kkik1ik
30 20 29 mpbird i0..^kkik1
31 elicc01 ik01ik0ikik1
32 12 18 30 31 syl3anbrc i0..^kkik01
33 32 ancoms ki0..^kik01
34 elsni jkj=k
35 34 oveq2d jkij=ik
36 35 eleq1d jkij01ik01
37 33 36 syl5ibrcom ki0..^kjkij01
38 37 impr ki0..^kjkij01
39 38 adantll φki0..^kjkij01
40 6 ffvelcdmda φkGk01N×f|f:1N1-1 onto1N
41 xp1st Gk01N×f|f:1N1-1 onto1N1stGk01N
42 elmapfn 1stGk01N1stGkFn1N
43 40 41 42 3syl φk1stGkFn1N
44 df-f 1stGk:1N0..^k1stGkFn1Nran1stGk0..^k
45 43 7 44 sylanbrc φk1stGk:1N0..^k
46 vex kV
47 46 fconst 1N×k:1Nk
48 47 a1i φk1N×k:1Nk
49 fzfid φk1NFin
50 inidm 1N1N=1N
51 39 45 48 49 49 50 off φk1stGk÷f1N×k:1N01
52 2 eleq2i 1stGk÷f1N×kI1stGk÷f1N×k011N
53 ovex 01V
54 ovex 1NV
55 53 54 elmap 1stGk÷f1N×k011N1stGk÷f1N×k:1N01
56 52 55 bitri 1stGk÷f1N×kI1stGk÷f1N×k:1N01
57 51 56 sylibr φk1stGk÷f1N×kI
58 57 fmpttd φk1stGk÷f1N×k:I
59 58 frnd φrank1stGk÷f1N×kI
60 ominf ¬ωFin
61 nnenom ω
62 enfi ωFinωFin
63 61 62 ax-mp FinωFin
64 iunid crank1stGk÷f1N×kc=rank1stGk÷f1N×k
65 64 imaeq2i k1stGk÷f1N×k-1crank1stGk÷f1N×kc=k1stGk÷f1N×k-1rank1stGk÷f1N×k
66 imaiun k1stGk÷f1N×k-1crank1stGk÷f1N×kc=crank1stGk÷f1N×kk1stGk÷f1N×k-1c
67 ovex 1stGk÷f1N×kV
68 eqid k1stGk÷f1N×k=k1stGk÷f1N×k
69 67 68 fnmpti k1stGk÷f1N×kFn
70 dffn3 k1stGk÷f1N×kFnk1stGk÷f1N×k:rank1stGk÷f1N×k
71 69 70 mpbi k1stGk÷f1N×k:rank1stGk÷f1N×k
72 fimacnv k1stGk÷f1N×k:rank1stGk÷f1N×kk1stGk÷f1N×k-1rank1stGk÷f1N×k=
73 71 72 ax-mp k1stGk÷f1N×k-1rank1stGk÷f1N×k=
74 65 66 73 3eqtr3ri =crank1stGk÷f1N×kk1stGk÷f1N×k-1c
75 74 eleq1i Fincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
76 63 75 bitr3i ωFincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
77 60 76 mtbi ¬crank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
78 ralnex ki¬1stGk÷f1N×k=c¬ki1stGk÷f1N×k=c
79 78 rexbii iki¬1stGk÷f1N×k=ci¬ki1stGk÷f1N×k=c
80 rexnal i¬ki1stGk÷f1N×k=c¬iki1stGk÷f1N×k=c
81 79 80 bitri iki¬1stGk÷f1N×k=c¬iki1stGk÷f1N×k=c
82 81 ralbii crank1stGk÷f1N×kiki¬1stGk÷f1N×k=ccrank1stGk÷f1N×k¬iki1stGk÷f1N×k=c
83 ralnex crank1stGk÷f1N×k¬iki1stGk÷f1N×k=c¬crank1stGk÷f1N×kiki1stGk÷f1N×k=c
84 82 83 bitri crank1stGk÷f1N×kiki¬1stGk÷f1N×k=c¬crank1stGk÷f1N×kiki1stGk÷f1N×k=c
85 nnuz =1
86 elnnuz ii1
87 fzouzsplit i11=1..^ii
88 86 87 sylbi i1=1..^ii
89 85 88 eqtrid i=1..^ii
90 89 difeq1d i1..^i=1..^ii1..^i
91 uncom 1..^ii=i1..^i
92 91 difeq1i 1..^ii1..^i=i1..^i1..^i
93 difun2 i1..^i1..^i=i1..^i
94 92 93 eqtri 1..^ii1..^i=i1..^i
95 90 94 eqtrdi i1..^i=i1..^i
96 difss i1..^ii
97 95 96 eqsstrdi i1..^ii
98 ssralv 1..^iiki¬1stGk÷f1N×k=ck1..^i¬1stGk÷f1N×k=c
99 97 98 syl iki¬1stGk÷f1N×k=ck1..^i¬1stGk÷f1N×k=c
100 impexp k¬k1..^i¬1stGk÷f1N×k=ck¬k1..^i¬1stGk÷f1N×k=c
101 eldif k1..^ik¬k1..^i
102 101 imbi1i k1..^i¬1stGk÷f1N×k=ck¬k1..^i¬1stGk÷f1N×k=c
103 con34b 1stGk÷f1N×k=ck1..^i¬k1..^i¬1stGk÷f1N×k=c
104 103 imbi2i k1stGk÷f1N×k=ck1..^ik¬k1..^i¬1stGk÷f1N×k=c
105 100 102 104 3bitr4i k1..^i¬1stGk÷f1N×k=ck1stGk÷f1N×k=ck1..^i
106 105 albii kk1..^i¬1stGk÷f1N×k=ckk1stGk÷f1N×k=ck1..^i
107 df-ral k1..^i¬1stGk÷f1N×k=ckk1..^i¬1stGk÷f1N×k=c
108 vex cV
109 68 mptiniseg cVk1stGk÷f1N×k-1c=k|1stGk÷f1N×k=c
110 108 109 ax-mp k1stGk÷f1N×k-1c=k|1stGk÷f1N×k=c
111 110 sseq1i k1stGk÷f1N×k-1c1..^ik|1stGk÷f1N×k=c1..^i
112 rabss k|1stGk÷f1N×k=c1..^ik1stGk÷f1N×k=ck1..^i
113 df-ral k1stGk÷f1N×k=ck1..^ikk1stGk÷f1N×k=ck1..^i
114 111 112 113 3bitri k1stGk÷f1N×k-1c1..^ikk1stGk÷f1N×k=ck1..^i
115 106 107 114 3bitr4i k1..^i¬1stGk÷f1N×k=ck1stGk÷f1N×k-1c1..^i
116 fzofi 1..^iFin
117 ssfi 1..^iFink1stGk÷f1N×k-1c1..^ik1stGk÷f1N×k-1cFin
118 116 117 mpan k1stGk÷f1N×k-1c1..^ik1stGk÷f1N×k-1cFin
119 115 118 sylbi k1..^i¬1stGk÷f1N×k=ck1stGk÷f1N×k-1cFin
120 99 119 syl6 iki¬1stGk÷f1N×k=ck1stGk÷f1N×k-1cFin
121 120 rexlimiv iki¬1stGk÷f1N×k=ck1stGk÷f1N×k-1cFin
122 121 ralimi crank1stGk÷f1N×kiki¬1stGk÷f1N×k=ccrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
123 84 122 sylbir ¬crank1stGk÷f1N×kiki1stGk÷f1N×k=ccrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
124 iunfi rank1stGk÷f1N×kFincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
125 124 ex rank1stGk÷f1N×kFincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFincrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
126 123 125 syl5 rank1stGk÷f1N×kFin¬crank1stGk÷f1N×kiki1stGk÷f1N×k=ccrank1stGk÷f1N×kk1stGk÷f1N×k-1cFin
127 77 126 mt3i rank1stGk÷f1N×kFincrank1stGk÷f1N×kiki1stGk÷f1N×k=c
128 ssrexv rank1stGk÷f1N×kIcrank1stGk÷f1N×kiki1stGk÷f1N×k=ccIiki1stGk÷f1N×k=c
129 59 127 128 syl2im φrank1stGk÷f1N×kFincIiki1stGk÷f1N×k=c
130 unitssre 01
131 elmapi c011Nc:1N01
132 131 2 eleq2s cIc:1N01
133 132 ffvelcdmda cIm1Ncm01
134 130 133 sselid cIm1Ncm
135 nnrp ii+
136 135 rpreccld i1i+
137 eqid abs2=abs2
138 137 rexmet abs2∞Met
139 blcntr abs2∞Metcm1i+cmcmballabs21i
140 138 139 mp3an1 cm1i+cmcmballabs21i
141 134 136 140 syl2an cIm1Nicmcmballabs21i
142 141 an32s cIim1Ncmcmballabs21i
143 fveq1 1stGk÷f1N×k=c1stGk÷f1N×km=cm
144 143 eleq1d 1stGk÷f1N×k=c1stGk÷f1N×kmcmballabs21icmcmballabs21i
145 142 144 syl5ibrcom cIim1N1stGk÷f1N×k=c1stGk÷f1N×kmcmballabs21i
146 145 ralrimdva cIi1stGk÷f1N×k=cm1N1stGk÷f1N×kmcmballabs21i
147 146 reximdv cIiki1stGk÷f1N×k=ckim1N1stGk÷f1N×kmcmballabs21i
148 147 ralimdva cIiki1stGk÷f1N×k=cikim1N1stGk÷f1N×kmcmballabs21i
149 148 reximia cIiki1stGk÷f1N×k=ccIikim1N1stGk÷f1N×kmcmballabs21i
150 129 149 syl6 φrank1stGk÷f1N×kFincIikim1N1stGk÷f1N×kmcmballabs21i
151 54 53 ixpconst n=1N01=011N
152 2 151 eqtr4i I=n=1N01
153 3 152 oveq12i R𝑡I=𝑡1N×topGenran.𝑡n=1N01
154 fzfid 1NFin
155 retop topGenran.Top
156 155 fconst6 1N×topGenran.:1NTop
157 156 a1i 1N×topGenran.:1NTop
158 53 a1i n1N01V
159 154 157 158 ptrest 𝑡1N×topGenran.𝑡n=1N01=𝑡n1N1N×topGenran.n𝑡01
160 159 mptru 𝑡1N×topGenran.𝑡n=1N01=𝑡n1N1N×topGenran.n𝑡01
161 fvex topGenran.V
162 161 fvconst2 n1N1N×topGenran.n=topGenran.
163 162 oveq1d n1N1N×topGenran.n𝑡01=topGenran.𝑡01
164 163 mpteq2ia n1N1N×topGenran.n𝑡01=n1NtopGenran.𝑡01
165 fconstmpt 1N×topGenran.𝑡01=n1NtopGenran.𝑡01
166 164 165 eqtr4i n1N1N×topGenran.n𝑡01=1N×topGenran.𝑡01
167 166 fveq2i 𝑡n1N1N×topGenran.n𝑡01=𝑡1N×topGenran.𝑡01
168 153 160 167 3eqtri R𝑡I=𝑡1N×topGenran.𝑡01
169 fzfi 1NFin
170 dfii2 II=topGenran.𝑡01
171 iicmp IIComp
172 170 171 eqeltrri topGenran.𝑡01Comp
173 172 fconst6 1N×topGenran.𝑡01:1NComp
174 ptcmpfi 1NFin1N×topGenran.𝑡01:1NComp𝑡1N×topGenran.𝑡01Comp
175 169 173 174 mp2an 𝑡1N×topGenran.𝑡01Comp
176 168 175 eqeltri R𝑡IComp
177 rehaus topGenran.Haus
178 177 fconst6 1N×topGenran.:1NHaus
179 pthaus 1NFin1N×topGenran.:1NHaus𝑡1N×topGenran.Haus
180 169 178 179 mp2an 𝑡1N×topGenran.Haus
181 3 180 eqeltri RHaus
182 haustop RHausRTop
183 181 182 ax-mp RTop
184 reex V
185 mapss V01011N1N
186 184 130 185 mp2an 011N1N
187 2 186 eqsstri I1N
188 uniretop =topGenran.
189 3 188 ptuniconst 1NFintopGenran.Top1N=R
190 169 155 189 mp2an 1N=R
191 190 restuni RTopI1NI=R𝑡I
192 183 187 191 mp2an I=R𝑡I
193 192 bwth R𝑡IComprank1stGk÷f1N×kI¬rank1stGk÷f1N×kFincIclimPtR𝑡Irank1stGk÷f1N×k
194 193 3expia R𝑡IComprank1stGk÷f1N×kI¬rank1stGk÷f1N×kFincIclimPtR𝑡Irank1stGk÷f1N×k
195 176 59 194 sylancr φ¬rank1stGk÷f1N×kFincIclimPtR𝑡Irank1stGk÷f1N×k
196 cmptop R𝑡ICompR𝑡ITop
197 176 196 ax-mp R𝑡ITop
198 192 islp3 R𝑡IToprank1stGk÷f1N×kIcIclimPtR𝑡Irank1stGk÷f1N×kvR𝑡Icvvrank1stGk÷f1N×kc
199 197 198 mp3an1 rank1stGk÷f1N×kIcIclimPtR𝑡Irank1stGk÷f1N×kvR𝑡Icvvrank1stGk÷f1N×kc
200 59 199 sylan φcIclimPtR𝑡Irank1stGk÷f1N×kvR𝑡Icvvrank1stGk÷f1N×kc
201 fzfid cIi1NFin
202 156 a1i cIi1N×topGenran.:1NTop
203 nnrecre i1i
204 203 rexrd i1i*
205 eqid MetOpenabs2=MetOpenabs2
206 137 205 tgioo topGenran.=MetOpenabs2
207 206 blopn abs2∞Metcm1i*cmballabs21itopGenran.
208 138 207 mp3an1 cm1i*cmballabs21itopGenran.
209 134 204 208 syl2an cIm1Nicmballabs21itopGenran.
210 209 an32s cIim1Ncmballabs21itopGenran.
211 161 fvconst2 m1N1N×topGenran.m=topGenran.
212 211 adantl cIim1N1N×topGenran.m=topGenran.
213 210 212 eleqtrrd cIim1Ncmballabs21i1N×topGenran.m
214 noel ¬m
215 difid 1N1N=
216 215 eleq2i m1N1Nm
217 214 216 mtbir ¬m1N1N
218 217 pm2.21i m1N1Ncmballabs21i=1N×topGenran.m
219 218 adantl cIim1N1Ncmballabs21i=1N×topGenran.m
220 201 202 201 213 219 ptopn cIim=1Ncmballabs21i𝑡1N×topGenran.
221 220 3 eleqtrrdi cIim=1Ncmballabs21iR
222 ovex 011NV
223 2 222 eqeltri IV
224 elrestr RHausIVm=1Ncmballabs21iRm=1Ncmballabs21iIR𝑡I
225 181 223 224 mp3an12 m=1Ncmballabs21iRm=1Ncmballabs21iIR𝑡I
226 221 225 syl cIim=1Ncmballabs21iIR𝑡I
227 difss k1stGk÷f1N×k1..^ick1stGk÷f1N×k1..^i
228 imassrn k1stGk÷f1N×k1..^irank1stGk÷f1N×k
229 227 228 sstri k1stGk÷f1N×k1..^icrank1stGk÷f1N×k
230 229 59 sstrid φk1stGk÷f1N×k1..^icI
231 haust1 RHausRFre
232 181 231 ax-mp RFre
233 restt1 RFreIVR𝑡IFre
234 232 223 233 mp2an R𝑡IFre
235 funmpt Funk1stGk÷f1N×k
236 imafi Funk1stGk÷f1N×k1..^iFink1stGk÷f1N×k1..^iFin
237 235 116 236 mp2an k1stGk÷f1N×k1..^iFin
238 diffi k1stGk÷f1N×k1..^iFink1stGk÷f1N×k1..^icFin
239 237 238 ax-mp k1stGk÷f1N×k1..^icFin
240 192 t1ficld R𝑡IFrek1stGk÷f1N×k1..^icIk1stGk÷f1N×k1..^icFink1stGk÷f1N×k1..^icClsdR𝑡I
241 234 239 240 mp3an13 k1stGk÷f1N×k1..^icIk1stGk÷f1N×k1..^icClsdR𝑡I
242 230 241 syl φk1stGk÷f1N×k1..^icClsdR𝑡I
243 192 difopn m=1Ncmballabs21iIR𝑡Ik1stGk÷f1N×k1..^icClsdR𝑡Im=1Ncmballabs21iIk1stGk÷f1N×k1..^icR𝑡I
244 226 242 243 syl2anr φcIim=1Ncmballabs21iIk1stGk÷f1N×k1..^icR𝑡I
245 244 anassrs φcIim=1Ncmballabs21iIk1stGk÷f1N×k1..^icR𝑡I
246 eleq2 v=m=1Ncmballabs21iIk1stGk÷f1N×k1..^iccvcm=1Ncmballabs21iIk1stGk÷f1N×k1..^ic
247 ineq1 v=m=1Ncmballabs21iIk1stGk÷f1N×k1..^icvrank1stGk÷f1N×kc=m=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc
248 247 neeq1d v=m=1Ncmballabs21iIk1stGk÷f1N×k1..^icvrank1stGk÷f1N×kcm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc
249 246 248 imbi12d v=m=1Ncmballabs21iIk1stGk÷f1N×k1..^iccvvrank1stGk÷f1N×kccm=1Ncmballabs21iIk1stGk÷f1N×k1..^icm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc
250 249 rspcva m=1Ncmballabs21iIk1stGk÷f1N×k1..^icR𝑡IvR𝑡Icvvrank1stGk÷f1N×kccm=1Ncmballabs21iIk1stGk÷f1N×k1..^icm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc
251 132 ffnd cIcFn1N
252 251 adantr cIicFn1N
253 142 ralrimiva cIim1Ncmcmballabs21i
254 108 elixp cm=1Ncmballabs21icFn1Nm1Ncmcmballabs21i
255 252 253 254 sylanbrc cIicm=1Ncmballabs21i
256 simpl cIicI
257 255 256 elind cIicm=1Ncmballabs21iI
258 neldifsnd cIi¬ck1stGk÷f1N×k1..^ic
259 257 258 eldifd cIicm=1Ncmballabs21iIk1stGk÷f1N×k1..^ic
260 259 adantll φcIicm=1Ncmballabs21iIk1stGk÷f1N×k1..^ic
261 simplr jFn1Nm1Njmcmballabs21ijIm1Njmcmballabs21i
262 261 anim1i jFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^im1Njmcmballabs21i¬jk1stGk÷f1N×k1..^i
263 simpl jrank1stGk÷f1N×k¬jcjrank1stGk÷f1N×k
264 262 263 anim12i jFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jcm1Njmcmballabs21i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k
265 elin jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kcjm=1Ncmballabs21iIk1stGk÷f1N×k1..^icjrank1stGk÷f1N×kc
266 andir jFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jcjFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jc
267 eldif jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icjm=1Ncmballabs21iI¬jk1stGk÷f1N×k1..^ic
268 elin jm=1Ncmballabs21iIjm=1Ncmballabs21ijI
269 vex jV
270 269 elixp jm=1Ncmballabs21ijFn1Nm1Njmcmballabs21i
271 270 anbi1i jm=1Ncmballabs21ijIjFn1Nm1Njmcmballabs21ijI
272 268 271 bitri jm=1Ncmballabs21iIjFn1Nm1Njmcmballabs21ijI
273 ianor ¬jk1stGk÷f1N×k1..^i¬jc¬jk1stGk÷f1N×k1..^i¬¬jc
274 eldif jk1stGk÷f1N×k1..^icjk1stGk÷f1N×k1..^i¬jc
275 273 274 xchnxbir ¬jk1stGk÷f1N×k1..^ic¬jk1stGk÷f1N×k1..^i¬¬jc
276 272 275 anbi12i jm=1Ncmballabs21iI¬jk1stGk÷f1N×k1..^icjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^i¬¬jc
277 andi jFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^i¬¬jcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijFn1Nm1Njmcmballabs21ijI¬¬jc
278 267 276 277 3bitri jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijFn1Nm1Njmcmballabs21ijI¬¬jc
279 eldif jrank1stGk÷f1N×kcjrank1stGk÷f1N×k¬jc
280 278 279 anbi12i jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icjrank1stGk÷f1N×kcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jc
281 pm3.24 ¬¬jc¬¬jc
282 simpr jFn1Nm1Njmcmballabs21ijI¬¬jc¬¬jc
283 simpr jrank1stGk÷f1N×k¬jc¬jc
284 282 283 anim12ci jFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jc¬jc¬¬jc
285 281 284 mto ¬jFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jc
286 285 biorfi jFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jcjFn1Nm1Njmcmballabs21ijI¬¬jcjrank1stGk÷f1N×k¬jc
287 266 280 286 3bitr4i jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icjrank1stGk÷f1N×kcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jc
288 265 287 bitri jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kcjFn1Nm1Njmcmballabs21ijI¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jc
289 ancom ¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×km1Njmcmballabs21im1Njmcmballabs21i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k
290 anass m1Njmcmballabs21i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×km1Njmcmballabs21i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k
291 289 290 bitr4i ¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×km1Njmcmballabs21im1Njmcmballabs21i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k
292 264 288 291 3imtr4i jm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×km1Njmcmballabs21i
293 ancom ¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×kjrank1stGk÷f1N×k¬jk1stGk÷f1N×k1..^i
294 eldif jrank1stGk÷f1N×kk1stGk÷f1N×k1..^ijrank1stGk÷f1N×k¬jk1stGk÷f1N×k1..^i
295 293 294 bitr4i ¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×kjrank1stGk÷f1N×kk1stGk÷f1N×k1..^i
296 imadmrn k1stGk÷f1N×kdomk1stGk÷f1N×k=rank1stGk÷f1N×k
297 67 68 dmmpti domk1stGk÷f1N×k=
298 297 imaeq2i k1stGk÷f1N×kdomk1stGk÷f1N×k=k1stGk÷f1N×k
299 296 298 eqtr3i rank1stGk÷f1N×k=k1stGk÷f1N×k
300 299 difeq1i rank1stGk÷f1N×kk1stGk÷f1N×k1..^i=k1stGk÷f1N×kk1stGk÷f1N×k1..^i
301 imadifss k1stGk÷f1N×kk1stGk÷f1N×k1..^ik1stGk÷f1N×k1..^i
302 300 301 eqsstri rank1stGk÷f1N×kk1stGk÷f1N×k1..^ik1stGk÷f1N×k1..^i
303 imass2 1..^iik1stGk÷f1N×k1..^ik1stGk÷f1N×ki
304 97 303 syl ik1stGk÷f1N×k1..^ik1stGk÷f1N×ki
305 df-ima k1stGk÷f1N×ki=rank1stGk÷f1N×ki
306 uznnssnn ii
307 306 resmptd ik1stGk÷f1N×ki=ki1stGk÷f1N×k
308 307 rneqd irank1stGk÷f1N×ki=ranki1stGk÷f1N×k
309 305 308 eqtrid ik1stGk÷f1N×ki=ranki1stGk÷f1N×k
310 304 309 sseqtrd ik1stGk÷f1N×k1..^iranki1stGk÷f1N×k
311 302 310 sstrid irank1stGk÷f1N×kk1stGk÷f1N×k1..^iranki1stGk÷f1N×k
312 311 sseld ijrank1stGk÷f1N×kk1stGk÷f1N×k1..^ijranki1stGk÷f1N×k
313 295 312 biimtrid i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×kjranki1stGk÷f1N×k
314 313 anim1d i¬jk1stGk÷f1N×k1..^ijrank1stGk÷f1N×km1Njmcmballabs21ijranki1stGk÷f1N×km1Njmcmballabs21i
315 292 314 syl5 ijm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kcjranki1stGk÷f1N×km1Njmcmballabs21i
316 315 eximdv ijjm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kcjjranki1stGk÷f1N×km1Njmcmballabs21i
317 n0 m=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kcjjm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kc
318 67 rgenw ki1stGk÷f1N×kV
319 eqid ki1stGk÷f1N×k=ki1stGk÷f1N×k
320 fveq1 j=1stGk÷f1N×kjm=1stGk÷f1N×km
321 320 eleq1d j=1stGk÷f1N×kjmcmballabs21i1stGk÷f1N×kmcmballabs21i
322 321 ralbidv j=1stGk÷f1N×km1Njmcmballabs21im1N1stGk÷f1N×kmcmballabs21i
323 319 322 rexrnmptw ki1stGk÷f1N×kVjranki1stGk÷f1N×km1Njmcmballabs21ikim1N1stGk÷f1N×kmcmballabs21i
324 318 323 ax-mp jranki1stGk÷f1N×km1Njmcmballabs21ikim1N1stGk÷f1N×kmcmballabs21i
325 df-rex jranki1stGk÷f1N×km1Njmcmballabs21ijjranki1stGk÷f1N×km1Njmcmballabs21i
326 324 325 bitr3i kim1N1stGk÷f1N×kmcmballabs21ijjranki1stGk÷f1N×km1Njmcmballabs21i
327 316 317 326 3imtr4g im=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kckim1N1stGk÷f1N×kmcmballabs21i
328 327 adantl φcIim=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kckim1N1stGk÷f1N×kmcmballabs21i
329 260 328 embantd φcIicm=1Ncmballabs21iIk1stGk÷f1N×k1..^icm=1Ncmballabs21iIk1stGk÷f1N×k1..^icrank1stGk÷f1N×kckim1N1stGk÷f1N×kmcmballabs21i
330 250 329 syl5 φcIim=1Ncmballabs21iIk1stGk÷f1N×k1..^icR𝑡IvR𝑡Icvvrank1stGk÷f1N×kckim1N1stGk÷f1N×kmcmballabs21i
331 245 330 mpand φcIivR𝑡Icvvrank1stGk÷f1N×kckim1N1stGk÷f1N×kmcmballabs21i
332 331 ralrimdva φcIvR𝑡Icvvrank1stGk÷f1N×kcikim1N1stGk÷f1N×kmcmballabs21i
333 200 332 sylbid φcIclimPtR𝑡Irank1stGk÷f1N×kikim1N1stGk÷f1N×kmcmballabs21i
334 333 reximdva φcIclimPtR𝑡Irank1stGk÷f1N×kcIikim1N1stGk÷f1N×kmcmballabs21i
335 195 334 syld φ¬rank1stGk÷f1N×kFincIikim1N1stGk÷f1N×kmcmballabs21i
336 150 335 pm2.61d φcIikim1N1stGk÷f1N×kmcmballabs21i
337 1 2 3 4 5 6 7 8 poimirlem29 φikim1N1stGk÷f1N×kmcmballabs21in1NvR𝑡Icvr-1zv0rFzn
338 337 reximdv φcIikim1N1stGk÷f1N×kmcmballabs21icIn1NvR𝑡Icvr-1zv0rFzn
339 336 338 mpd φcIn1NvR𝑡Icvr-1zv0rFzn