Metamath Proof Explorer


Theorem vieta1lem2

Description: Lemma for vieta1 : inductive step. Let z be a root of F . Then F = ( Xp - z ) x. Q for some Q by the factor theorem, and Q is a degree- D polynomial, so by the induction hypothesis sum_ x e. (`' Q " 0 ) x = -u ( coeff `Q )( D - 1 ) / ( coeffQ )D , so sum_ x e. R x = z - ( coeffQ )` ` ( D - 1 ) / ( coeffQ )D . Now the coefficients of F are A( D + 1 ) = ( coeffQ )D and AD = sum_ k e. ( 0 ... D ) ( coeffXp - z )k x. ( coeffQ ) ` `( D - k ) , which works out to -u z x. ( coeffQ )D + ( coeffQ )( D - 1 ) , so putting it all together we have sum_ x e. R x = -u AD / A( D + 1 ) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses vieta1.1 A = coeff F
vieta1.2 N = deg F
vieta1.3 R = F -1 0
vieta1.4 φ F Poly S
vieta1.5 φ R = N
vieta1lem.6 φ D
vieta1lem.7 φ D + 1 = N
vieta1lem.8 φ f Poly D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f
vieta1lem.9 Q = F quot X p f × z
Assertion vieta1lem2 φ x R x = A N 1 A N

Proof

Step Hyp Ref Expression
1 vieta1.1 A = coeff F
2 vieta1.2 N = deg F
3 vieta1.3 R = F -1 0
4 vieta1.4 φ F Poly S
5 vieta1.5 φ R = N
6 vieta1lem.6 φ D
7 vieta1lem.7 φ D + 1 = N
8 vieta1lem.8 φ f Poly D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f
9 vieta1lem.9 Q = F quot X p f × z
10 6 peano2nnd φ D + 1
11 7 10 eqeltrrd φ N
12 11 nnne0d φ N 0
13 5 12 eqnetrd φ R 0
14 2 12 eqnetrrid φ deg F 0
15 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
16 dgr0 deg 0 𝑝 = 0
17 15 16 eqtrdi F = 0 𝑝 deg F = 0
18 17 necon3i deg F 0 F 0 𝑝
19 14 18 syl φ F 0 𝑝
20 3 fta1 F Poly S F 0 𝑝 R Fin R deg F
21 4 19 20 syl2anc φ R Fin R deg F
22 21 simpld φ R Fin
23 hasheq0 R Fin R = 0 R =
24 22 23 syl φ R = 0 R =
25 24 necon3bid φ R 0 R
26 13 25 mpbid φ R
27 n0 R z z R
28 26 27 sylib φ z z R
29 incom z Q -1 0 = Q -1 0 z
30 1 2 3 4 5 6 7 8 9 vieta1lem1 φ z R Q Poly D = deg Q
31 30 simprd φ z R D = deg Q
32 30 simpld φ z R Q Poly
33 dgrcl Q Poly deg Q 0
34 32 33 syl φ z R deg Q 0
35 34 nn0red φ z R deg Q
36 31 35 eqeltrd φ z R D
37 36 ltp1d φ z R D < D + 1
38 36 37 gtned φ z R D + 1 D
39 snssi z Q -1 0 z Q -1 0
40 ssequn1 z Q -1 0 z Q -1 0 = Q -1 0
41 39 40 sylib z Q -1 0 z Q -1 0 = Q -1 0
42 41 fveq2d z Q -1 0 z Q -1 0 = Q -1 0
43 4 adantr φ z R F Poly S
44 cnvimass F -1 0 dom F
45 3 44 eqsstri R dom F
46 plyf F Poly S F :
47 fdm F : dom F =
48 4 46 47 3syl φ dom F =
49 45 48 sseqtrid φ R
50 49 sselda φ z R z
51 3 eleq2i z R z F -1 0
52 ffn F : F Fn
53 fniniseg F Fn z F -1 0 z F z = 0
54 4 46 52 53 4syl φ z F -1 0 z F z = 0
55 51 54 syl5bb φ z R z F z = 0
56 55 simplbda φ z R F z = 0
57 eqid X p f × z = X p f × z
58 57 facth F Poly S z F z = 0 F = X p f × z × f F quot X p f × z
59 43 50 56 58 syl3anc φ z R F = X p f × z × f F quot X p f × z
60 9 oveq2i X p f × z × f Q = X p f × z × f F quot X p f × z
61 59 60 eqtr4di φ z R F = X p f × z × f Q
62 61 cnveqd φ z R F -1 = X p f × z × f Q -1
63 62 imaeq1d φ z R F -1 0 = X p f × z × f Q -1 0
64 3 63 eqtrid φ z R R = X p f × z × f Q -1 0
65 cnex V
66 57 plyremlem z X p f × z Poly deg X p f × z = 1 X p f × z -1 0 = z
67 50 66 syl φ z R X p f × z Poly deg X p f × z = 1 X p f × z -1 0 = z
68 67 simp1d φ z R X p f × z Poly
69 plyf X p f × z Poly X p f × z :
70 68 69 syl φ z R X p f × z :
71 plyf Q Poly Q :
72 32 71 syl φ z R Q :
73 ofmulrt V X p f × z : Q : X p f × z × f Q -1 0 = X p f × z -1 0 Q -1 0
74 65 70 72 73 mp3an2i φ z R X p f × z × f Q -1 0 = X p f × z -1 0 Q -1 0
75 67 simp3d φ z R X p f × z -1 0 = z
76 75 uneq1d φ z R X p f × z -1 0 Q -1 0 = z Q -1 0
77 64 74 76 3eqtrd φ z R R = z Q -1 0
78 77 fveq2d φ z R R = z Q -1 0
79 5 7 eqtr4d φ R = D + 1
80 79 adantr φ z R R = D + 1
81 78 80 eqtr3d φ z R z Q -1 0 = D + 1
82 19 adantr φ z R F 0 𝑝
83 61 82 eqnetrrd φ z R X p f × z × f Q 0 𝑝
84 plymul0or X p f × z Poly Q Poly X p f × z × f Q = 0 𝑝 X p f × z = 0 𝑝 Q = 0 𝑝
85 68 32 84 syl2anc φ z R X p f × z × f Q = 0 𝑝 X p f × z = 0 𝑝 Q = 0 𝑝
86 85 necon3abid φ z R X p f × z × f Q 0 𝑝 ¬ X p f × z = 0 𝑝 Q = 0 𝑝
87 83 86 mpbid φ z R ¬ X p f × z = 0 𝑝 Q = 0 𝑝
88 neanior X p f × z 0 𝑝 Q 0 𝑝 ¬ X p f × z = 0 𝑝 Q = 0 𝑝
89 87 88 sylibr φ z R X p f × z 0 𝑝 Q 0 𝑝
90 89 simprd φ z R Q 0 𝑝
91 eqid Q -1 0 = Q -1 0
92 91 fta1 Q Poly Q 0 𝑝 Q -1 0 Fin Q -1 0 deg Q
93 32 90 92 syl2anc φ z R Q -1 0 Fin Q -1 0 deg Q
94 93 simprd φ z R Q -1 0 deg Q
95 94 31 breqtrrd φ z R Q -1 0 D
96 snfi z Fin
97 93 simpld φ z R Q -1 0 Fin
98 hashun2 z Fin Q -1 0 Fin z Q -1 0 z + Q -1 0
99 96 97 98 sylancr φ z R z Q -1 0 z + Q -1 0
100 ax-1cn 1
101 6 nncnd φ D
102 101 adantr φ z R D
103 addcom 1 D 1 + D = D + 1
104 100 102 103 sylancr φ z R 1 + D = D + 1
105 81 104 eqtr4d φ z R z Q -1 0 = 1 + D
106 hashsng z R z = 1
107 106 adantl φ z R z = 1
108 107 oveq1d φ z R z + Q -1 0 = 1 + Q -1 0
109 99 105 108 3brtr3d φ z R 1 + D 1 + Q -1 0
110 hashcl Q -1 0 Fin Q -1 0 0
111 97 110 syl φ z R Q -1 0 0
112 111 nn0red φ z R Q -1 0
113 1red φ z R 1
114 36 112 113 leadd2d φ z R D Q -1 0 1 + D 1 + Q -1 0
115 109 114 mpbird φ z R D Q -1 0
116 112 36 letri3d φ z R Q -1 0 = D Q -1 0 D D Q -1 0
117 95 115 116 mpbir2and φ z R Q -1 0 = D
118 81 117 eqeq12d φ z R z Q -1 0 = Q -1 0 D + 1 = D
119 42 118 syl5ib φ z R z Q -1 0 D + 1 = D
120 119 necon3ad φ z R D + 1 D ¬ z Q -1 0
121 38 120 mpd φ z R ¬ z Q -1 0
122 disjsn Q -1 0 z = ¬ z Q -1 0
123 121 122 sylibr φ z R Q -1 0 z =
124 29 123 eqtrid φ z R z Q -1 0 =
125 22 adantr φ z R R Fin
126 49 adantr φ z R R
127 126 sselda φ z R x R x
128 124 77 125 127 fsumsplit φ z R x R x = x z x + x Q -1 0 x
129 id x = z x = z
130 129 sumsn z z x z x = z
131 50 50 130 syl2anc φ z R x z x = z
132 50 negnegd φ z R z = z
133 131 132 eqtr4d φ z R x z x = z
134 117 31 eqtrd φ z R Q -1 0 = deg Q
135 fveq2 f = Q deg f = deg Q
136 135 eqeq2d f = Q D = deg f D = deg Q
137 cnveq f = Q f -1 = Q -1
138 137 imaeq1d f = Q f -1 0 = Q -1 0
139 138 fveq2d f = Q f -1 0 = Q -1 0
140 139 135 eqeq12d f = Q f -1 0 = deg f Q -1 0 = deg Q
141 136 140 anbi12d f = Q D = deg f f -1 0 = deg f D = deg Q Q -1 0 = deg Q
142 138 sumeq1d f = Q x f -1 0 x = x Q -1 0 x
143 fveq2 f = Q coeff f = coeff Q
144 135 oveq1d f = Q deg f 1 = deg Q 1
145 143 144 fveq12d f = Q coeff f deg f 1 = coeff Q deg Q 1
146 143 135 fveq12d f = Q coeff f deg f = coeff Q deg Q
147 145 146 oveq12d f = Q coeff f deg f 1 coeff f deg f = coeff Q deg Q 1 coeff Q deg Q
148 147 negeqd f = Q coeff f deg f 1 coeff f deg f = coeff Q deg Q 1 coeff Q deg Q
149 142 148 eqeq12d f = Q x f -1 0 x = coeff f deg f 1 coeff f deg f x Q -1 0 x = coeff Q deg Q 1 coeff Q deg Q
150 141 149 imbi12d f = Q D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f D = deg Q Q -1 0 = deg Q x Q -1 0 x = coeff Q deg Q 1 coeff Q deg Q
151 8 adantr φ z R f Poly D = deg f f -1 0 = deg f x f -1 0 x = coeff f deg f 1 coeff f deg f
152 150 151 32 rspcdva φ z R D = deg Q Q -1 0 = deg Q x Q -1 0 x = coeff Q deg Q 1 coeff Q deg Q
153 31 134 152 mp2and φ z R x Q -1 0 x = coeff Q deg Q 1 coeff Q deg Q
154 31 fvoveq1d φ z R coeff Q D 1 = coeff Q deg Q 1
155 61 fveq2d φ z R coeff F = coeff X p f × z × f Q
156 1 155 eqtrid φ z R A = coeff X p f × z × f Q
157 61 fveq2d φ z R deg F = deg X p f × z × f Q
158 67 simp2d φ z R deg X p f × z = 1
159 ax-1ne0 1 0
160 159 a1i φ z R 1 0
161 158 160 eqnetrd φ z R deg X p f × z 0
162 fveq2 X p f × z = 0 𝑝 deg X p f × z = deg 0 𝑝
163 162 16 eqtrdi X p f × z = 0 𝑝 deg X p f × z = 0
164 163 necon3i deg X p f × z 0 X p f × z 0 𝑝
165 161 164 syl φ z R X p f × z 0 𝑝
166 eqid deg X p f × z = deg X p f × z
167 eqid deg Q = deg Q
168 166 167 dgrmul X p f × z Poly X p f × z 0 𝑝 Q Poly Q 0 𝑝 deg X p f × z × f Q = deg X p f × z + deg Q
169 68 165 32 90 168 syl22anc φ z R deg X p f × z × f Q = deg X p f × z + deg Q
170 157 169 eqtrd φ z R deg F = deg X p f × z + deg Q
171 2 170 eqtrid φ z R N = deg X p f × z + deg Q
172 156 171 fveq12d φ z R A N = coeff X p f × z × f Q deg X p f × z + deg Q
173 eqid coeff X p f × z = coeff X p f × z
174 eqid coeff Q = coeff Q
175 173 174 166 167 coemulhi X p f × z Poly Q Poly coeff X p f × z × f Q deg X p f × z + deg Q = coeff X p f × z deg X p f × z coeff Q deg Q
176 68 32 175 syl2anc φ z R coeff X p f × z × f Q deg X p f × z + deg Q = coeff X p f × z deg X p f × z coeff Q deg Q
177 158 fveq2d φ z R coeff X p f × z deg X p f × z = coeff X p f × z 1
178 ssid
179 plyid 1 X p Poly
180 178 100 179 mp2an X p Poly
181 plyconst z × z Poly
182 178 50 181 sylancr φ z R × z Poly
183 eqid coeff X p = coeff X p
184 eqid coeff × z = coeff × z
185 183 184 coesub X p Poly × z Poly coeff X p f × z = coeff X p f coeff × z
186 180 182 185 sylancr φ z R coeff X p f × z = coeff X p f coeff × z
187 186 fveq1d φ z R coeff X p f × z 1 = coeff X p f coeff × z 1
188 1nn0 1 0
189 183 coef3 X p Poly coeff X p : 0
190 ffn coeff X p : 0 coeff X p Fn 0
191 180 189 190 mp2b coeff X p Fn 0
192 191 a1i φ z R coeff X p Fn 0
193 184 coef3 × z Poly coeff × z : 0
194 ffn coeff × z : 0 coeff × z Fn 0
195 182 193 194 3syl φ z R coeff × z Fn 0
196 nn0ex 0 V
197 196 a1i φ z R 0 V
198 inidm 0 0 = 0
199 coeidp 1 0 coeff X p 1 = if 1 = 1 1 0
200 199 adantl φ z R 1 0 coeff X p 1 = if 1 = 1 1 0
201 eqid 1 = 1
202 201 iftruei if 1 = 1 1 0 = 1
203 200 202 eqtrdi φ z R 1 0 coeff X p 1 = 1
204 0lt1 0 < 1
205 0re 0
206 1re 1
207 205 206 ltnlei 0 < 1 ¬ 1 0
208 204 207 mpbi ¬ 1 0
209 50 adantr φ z R 1 0 z
210 0dgr z deg × z = 0
211 209 210 syl φ z R 1 0 deg × z = 0
212 211 breq2d φ z R 1 0 1 deg × z 1 0
213 208 212 mtbiri φ z R 1 0 ¬ 1 deg × z
214 eqid deg × z = deg × z
215 184 214 dgrub × z Poly 1 0 coeff × z 1 0 1 deg × z
216 215 3expia × z Poly 1 0 coeff × z 1 0 1 deg × z
217 182 216 sylan φ z R 1 0 coeff × z 1 0 1 deg × z
218 217 necon1bd φ z R 1 0 ¬ 1 deg × z coeff × z 1 = 0
219 213 218 mpd φ z R 1 0 coeff × z 1 = 0
220 192 195 197 197 198 203 219 ofval φ z R 1 0 coeff X p f coeff × z 1 = 1 0
221 188 220 mpan2 φ z R coeff X p f coeff × z 1 = 1 0
222 1m0e1 1 0 = 1
223 221 222 eqtrdi φ z R coeff X p f coeff × z 1 = 1
224 187 223 eqtrd φ z R coeff X p f × z 1 = 1
225 177 224 eqtrd φ z R coeff X p f × z deg X p f × z = 1
226 225 oveq1d φ z R coeff X p f × z deg X p f × z coeff Q deg Q = 1 coeff Q deg Q
227 174 coef3 Q Poly coeff Q : 0
228 32 227 syl φ z R coeff Q : 0
229 228 34 ffvelrnd φ z R coeff Q deg Q
230 229 mulid2d φ z R 1 coeff Q deg Q = coeff Q deg Q
231 226 230 eqtrd φ z R coeff X p f × z deg X p f × z coeff Q deg Q = coeff Q deg Q
232 172 176 231 3eqtrd φ z R A N = coeff Q deg Q
233 154 232 oveq12d φ z R coeff Q D 1 A N = coeff Q deg Q 1 coeff Q deg Q
234 233 negeqd φ z R coeff Q D 1 A N = coeff Q deg Q 1 coeff Q deg Q
235 153 234 eqtr4d φ z R x Q -1 0 x = coeff Q D 1 A N
236 133 235 oveq12d φ z R x z x + x Q -1 0 x = - z + coeff Q D 1 A N
237 50 negcld φ z R z
238 nnm1nn0 D D 1 0
239 6 238 syl φ D 1 0
240 239 adantr φ z R D 1 0
241 228 240 ffvelrnd φ z R coeff Q D 1
242 232 229 eqeltrd φ z R A N
243 2 1 dgreq0 F Poly S F = 0 𝑝 A N = 0
244 43 243 syl φ z R F = 0 𝑝 A N = 0
245 244 necon3bid φ z R F 0 𝑝 A N 0
246 82 245 mpbid φ z R A N 0
247 241 242 246 divcld φ z R coeff Q D 1 A N
248 237 247 negdid φ z R - z + coeff Q D 1 A N = - z + coeff Q D 1 A N
249 237 242 mulcld φ z R z A N
250 249 241 242 246 divdird φ z R z A N + coeff Q D 1 A N = z A N A N + coeff Q D 1 A N
251 nnm1nn0 N N 1 0
252 11 251 syl φ N 1 0
253 252 adantr φ z R N 1 0
254 173 174 coemul X p f × z Poly Q Poly N 1 0 coeff X p f × z × f Q N 1 = k = 0 N 1 coeff X p f × z k coeff Q N - 1 - k
255 68 32 253 254 syl3anc φ z R coeff X p f × z × f Q N 1 = k = 0 N 1 coeff X p f × z k coeff Q N - 1 - k
256 156 fveq1d φ z R A N 1 = coeff X p f × z × f Q N 1
257 1e0p1 1 = 0 + 1
258 257 oveq2i 0 1 = 0 0 + 1
259 258 sumeq1i k = 0 1 coeff X p f × z k coeff Q N - 1 - k = k = 0 0 + 1 coeff X p f × z k coeff Q N - 1 - k
260 0nn0 0 0
261 nn0uz 0 = 0
262 260 261 eleqtri 0 0
263 262 a1i φ z R 0 0
264 258 eleq2i k 0 1 k 0 0 + 1
265 173 coef3 X p f × z Poly coeff X p f × z : 0
266 68 265 syl φ z R coeff X p f × z : 0
267 elfznn0 k 0 1 k 0
268 ffvelrn coeff X p f × z : 0 k 0 coeff X p f × z k
269 266 267 268 syl2an φ z R k 0 1 coeff X p f × z k
270 7 oveq1d φ D + 1 - 1 = N 1
271 pncan D 1 D + 1 - 1 = D
272 101 100 271 sylancl φ D + 1 - 1 = D
273 270 272 eqtr3d φ N 1 = D
274 273 adantr φ z R N 1 = D
275 6 adantr φ z R D
276 274 275 eqeltrd φ z R N 1
277 nnuz = 1
278 276 277 eleqtrdi φ z R N 1 1
279 fzss2 N 1 1 0 1 0 N 1
280 278 279 syl φ z R 0 1 0 N 1
281 280 sselda φ z R k 0 1 k 0 N 1
282 fznn0sub k 0 N 1 N - 1 - k 0
283 ffvelrn coeff Q : 0 N - 1 - k 0 coeff Q N - 1 - k
284 228 282 283 syl2an φ z R k 0 N 1 coeff Q N - 1 - k
285 281 284 syldan φ z R k 0 1 coeff Q N - 1 - k
286 269 285 mulcld φ z R k 0 1 coeff X p f × z k coeff Q N - 1 - k
287 264 286 sylan2br φ z R k 0 0 + 1 coeff X p f × z k coeff Q N - 1 - k
288 id k = 0 + 1 k = 0 + 1
289 288 257 eqtr4di k = 0 + 1 k = 1
290 289 fveq2d k = 0 + 1 coeff X p f × z k = coeff X p f × z 1
291 289 oveq2d k = 0 + 1 N - 1 - k = N - 1 - 1
292 291 fveq2d k = 0 + 1 coeff Q N - 1 - k = coeff Q N - 1 - 1
293 290 292 oveq12d k = 0 + 1 coeff X p f × z k coeff Q N - 1 - k = coeff X p f × z 1 coeff Q N - 1 - 1
294 263 287 293 fsump1 φ z R k = 0 0 + 1 coeff X p f × z k coeff Q N - 1 - k = k = 0 0 coeff X p f × z k coeff Q N - 1 - k + coeff X p f × z 1 coeff Q N - 1 - 1
295 259 294 eqtrid φ z R k = 0 1 coeff X p f × z k coeff Q N - 1 - k = k = 0 0 coeff X p f × z k coeff Q N - 1 - k + coeff X p f × z 1 coeff Q N - 1 - 1
296 eldifn k 0 N 1 0 1 ¬ k 0 1
297 296 adantl φ z R k 0 N 1 0 1 ¬ k 0 1
298 eldifi k 0 N 1 0 1 k 0 N 1
299 elfznn0 k 0 N 1 k 0
300 298 299 syl k 0 N 1 0 1 k 0
301 173 166 dgrub X p f × z Poly k 0 coeff X p f × z k 0 k deg X p f × z
302 301 3expia X p f × z Poly k 0 coeff X p f × z k 0 k deg X p f × z
303 68 300 302 syl2an φ z R k 0 N 1 0 1 coeff X p f × z k 0 k deg X p f × z
304 elfzuz k 0 N 1 k 0
305 298 304 syl k 0 N 1 0 1 k 0
306 305 adantl φ z R k 0 N 1 0 1 k 0
307 1z 1
308 elfz5 k 0 1 k 0 1 k 1
309 306 307 308 sylancl φ z R k 0 N 1 0 1 k 0 1 k 1
310 158 breq2d φ z R k deg X p f × z k 1
311 310 adantr φ z R k 0 N 1 0 1 k deg X p f × z k 1
312 309 311 bitr4d φ z R k 0 N 1 0 1 k 0 1 k deg X p f × z
313 303 312 sylibrd φ z R k 0 N 1 0 1 coeff X p f × z k 0 k 0 1
314 313 necon1bd φ z R k 0 N 1 0 1 ¬ k 0 1 coeff X p f × z k = 0
315 297 314 mpd φ z R k 0 N 1 0 1 coeff X p f × z k = 0
316 315 oveq1d φ z R k 0 N 1 0 1 coeff X p f × z k coeff Q N - 1 - k = 0 coeff Q N - 1 - k
317 298 284 sylan2 φ z R k 0 N 1 0 1 coeff Q N - 1 - k
318 317 mul02d φ z R k 0 N 1 0 1 0 coeff Q N - 1 - k = 0
319 316 318 eqtrd φ z R k 0 N 1 0 1 coeff X p f × z k coeff Q N - 1 - k = 0
320 fzfid φ z R 0 N 1 Fin
321 280 286 319 320 fsumss φ z R k = 0 1 coeff X p f × z k coeff Q N - 1 - k = k = 0 N 1 coeff X p f × z k coeff Q N - 1 - k
322 0z 0
323 186 fveq1d φ z R coeff X p f × z 0 = coeff X p f coeff × z 0
324 coeidp 0 0 coeff X p 0 = if 0 = 1 1 0
325 159 nesymi ¬ 0 = 1
326 325 iffalsei if 0 = 1 1 0 = 0
327 324 326 eqtrdi 0 0 coeff X p 0 = 0
328 327 adantl φ z R 0 0 coeff X p 0 = 0
329 184 coefv0 × z Poly × z 0 = coeff × z 0
330 182 329 syl φ z R × z 0 = coeff × z 0
331 0cn 0
332 vex z V
333 332 fvconst2 0 × z 0 = z
334 331 333 ax-mp × z 0 = z
335 330 334 eqtr3di φ z R coeff × z 0 = z
336 335 adantr φ z R 0 0 coeff × z 0 = z
337 192 195 197 197 198 328 336 ofval φ z R 0 0 coeff X p f coeff × z 0 = 0 z
338 260 337 mpan2 φ z R coeff X p f coeff × z 0 = 0 z
339 df-neg z = 0 z
340 338 339 eqtr4di φ z R coeff X p f coeff × z 0 = z
341 323 340 eqtrd φ z R coeff X p f × z 0 = z
342 274 oveq1d φ z R N - 1 - 0 = D 0
343 102 subid1d φ z R D 0 = D
344 342 343 31 3eqtrd φ z R N - 1 - 0 = deg Q
345 344 fveq2d φ z R coeff Q N - 1 - 0 = coeff Q deg Q
346 345 232 eqtr4d φ z R coeff Q N - 1 - 0 = A N
347 341 346 oveq12d φ z R coeff X p f × z 0 coeff Q N - 1 - 0 = z A N
348 347 249 eqeltrd φ z R coeff X p f × z 0 coeff Q N - 1 - 0
349 fveq2 k = 0 coeff X p f × z k = coeff X p f × z 0
350 oveq2 k = 0 N - 1 - k = N - 1 - 0
351 350 fveq2d k = 0 coeff Q N - 1 - k = coeff Q N - 1 - 0
352 349 351 oveq12d k = 0 coeff X p f × z k coeff Q N - 1 - k = coeff X p f × z 0 coeff Q N - 1 - 0
353 352 fsum1 0 coeff X p f × z 0 coeff Q N - 1 - 0 k = 0 0 coeff X p f × z k coeff Q N - 1 - k = coeff X p f × z 0 coeff Q N - 1 - 0
354 322 348 353 sylancr φ z R k = 0 0 coeff X p f × z k coeff Q N - 1 - k = coeff X p f × z 0 coeff Q N - 1 - 0
355 354 347 eqtrd φ z R k = 0 0 coeff X p f × z k coeff Q N - 1 - k = z A N
356 274 fvoveq1d φ z R coeff Q N - 1 - 1 = coeff Q D 1
357 224 356 oveq12d φ z R coeff X p f × z 1 coeff Q N - 1 - 1 = 1 coeff Q D 1
358 241 mulid2d φ z R 1 coeff Q D 1 = coeff Q D 1
359 357 358 eqtrd φ z R coeff X p f × z 1 coeff Q N - 1 - 1 = coeff Q D 1
360 355 359 oveq12d φ z R k = 0 0 coeff X p f × z k coeff Q N - 1 - k + coeff X p f × z 1 coeff Q N - 1 - 1 = z A N + coeff Q D 1
361 295 321 360 3eqtr3rd φ z R z A N + coeff Q D 1 = k = 0 N 1 coeff X p f × z k coeff Q N - 1 - k
362 255 256 361 3eqtr4rd φ z R z A N + coeff Q D 1 = A N 1
363 362 oveq1d φ z R z A N + coeff Q D 1 A N = A N 1 A N
364 237 242 246 divcan4d φ z R z A N A N = z
365 364 oveq1d φ z R z A N A N + coeff Q D 1 A N = - z + coeff Q D 1 A N
366 250 363 365 3eqtr3rd φ z R - z + coeff Q D 1 A N = A N 1 A N
367 366 negeqd φ z R - z + coeff Q D 1 A N = A N 1 A N
368 248 367 eqtr3d φ z R - z + coeff Q D 1 A N = A N 1 A N
369 128 236 368 3eqtrd φ z R x R x = A N 1 A N
370 28 369 exlimddv φ x R x = A N 1 A N