Metamath Proof Explorer


Theorem vieta1lem2

Description: Lemma for vieta1 : inductive step. Let z be a root of F . Then F = ( Xp - z ) x. Q for some Q by the factor theorem, and Q is a degree- D polynomial, so by the induction hypothesis sum_ x e. (`' Q " 0 ) x = -u ( coeff `Q )( D - 1 ) / ( coeffQ )D , so sum_ x e. R x = z - ( coeffQ )` ` ( D - 1 ) / ( coeffQ )D . Now the coefficients of F are A( D + 1 ) = ( coeffQ )D and AD = sum_ k e. ( 0 ... D ) ( coeffXp - z )k x. ( coeffQ ) ` `( D - k ) , which works out to -u z x. ( coeffQ )D + ( coeffQ )( D - 1 ) , so putting it all together we have sum_ x e. R x = -u AD / A( D + 1 ) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses vieta1.1 A=coeffF
vieta1.2 N=degF
vieta1.3 R=F-10
vieta1.4 φFPolyS
vieta1.5 φR=N
vieta1lem.6 φD
vieta1lem.7 φD+1=N
vieta1lem.8 φfPolyD=degff-10=degfxf-10x=coefffdegf1coefffdegf
vieta1lem.9 Q=FquotXpf×z
Assertion vieta1lem2 φxRx=AN1AN

Proof

Step Hyp Ref Expression
1 vieta1.1 A=coeffF
2 vieta1.2 N=degF
3 vieta1.3 R=F-10
4 vieta1.4 φFPolyS
5 vieta1.5 φR=N
6 vieta1lem.6 φD
7 vieta1lem.7 φD+1=N
8 vieta1lem.8 φfPolyD=degff-10=degfxf-10x=coefffdegf1coefffdegf
9 vieta1lem.9 Q=FquotXpf×z
10 6 peano2nnd φD+1
11 7 10 eqeltrrd φN
12 11 nnne0d φN0
13 5 12 eqnetrd φR0
14 2 12 eqnetrrid φdegF0
15 fveq2 F=0𝑝degF=deg0𝑝
16 dgr0 deg0𝑝=0
17 15 16 eqtrdi F=0𝑝degF=0
18 17 necon3i degF0F0𝑝
19 14 18 syl φF0𝑝
20 3 fta1 FPolySF0𝑝RFinRdegF
21 4 19 20 syl2anc φRFinRdegF
22 21 simpld φRFin
23 hasheq0 RFinR=0R=
24 22 23 syl φR=0R=
25 24 necon3bid φR0R
26 13 25 mpbid φR
27 n0 RzzR
28 26 27 sylib φzzR
29 incom zQ-10=Q-10z
30 1 2 3 4 5 6 7 8 9 vieta1lem1 φzRQPolyD=degQ
31 30 simprd φzRD=degQ
32 30 simpld φzRQPoly
33 dgrcl QPolydegQ0
34 32 33 syl φzRdegQ0
35 34 nn0red φzRdegQ
36 31 35 eqeltrd φzRD
37 36 ltp1d φzRD<D+1
38 36 37 gtned φzRD+1D
39 snssi zQ-10zQ-10
40 ssequn1 zQ-10zQ-10=Q-10
41 39 40 sylib zQ-10zQ-10=Q-10
42 41 fveq2d zQ-10zQ-10=Q-10
43 4 adantr φzRFPolyS
44 cnvimass F-10domF
45 3 44 eqsstri RdomF
46 plyf FPolySF:
47 fdm F:domF=
48 4 46 47 3syl φdomF=
49 45 48 sseqtrid φR
50 49 sselda φzRz
51 3 eleq2i zRzF-10
52 ffn F:FFn
53 fniniseg FFnzF-10zFz=0
54 4 46 52 53 4syl φzF-10zFz=0
55 51 54 bitrid φzRzFz=0
56 55 simplbda φzRFz=0
57 eqid Xpf×z=Xpf×z
58 57 facth FPolySzFz=0F=Xpf×z×fFquotXpf×z
59 43 50 56 58 syl3anc φzRF=Xpf×z×fFquotXpf×z
60 9 oveq2i Xpf×z×fQ=Xpf×z×fFquotXpf×z
61 59 60 eqtr4di φzRF=Xpf×z×fQ
62 61 cnveqd φzRF-1=Xpf×z×fQ-1
63 62 imaeq1d φzRF-10=Xpf×z×fQ-10
64 3 63 eqtrid φzRR=Xpf×z×fQ-10
65 cnex V
66 57 plyremlem zXpf×zPolydegXpf×z=1Xpf×z-10=z
67 50 66 syl φzRXpf×zPolydegXpf×z=1Xpf×z-10=z
68 67 simp1d φzRXpf×zPoly
69 plyf Xpf×zPolyXpf×z:
70 68 69 syl φzRXpf×z:
71 plyf QPolyQ:
72 32 71 syl φzRQ:
73 ofmulrt VXpf×z:Q:Xpf×z×fQ-10=Xpf×z-10Q-10
74 65 70 72 73 mp3an2i φzRXpf×z×fQ-10=Xpf×z-10Q-10
75 67 simp3d φzRXpf×z-10=z
76 75 uneq1d φzRXpf×z-10Q-10=zQ-10
77 64 74 76 3eqtrd φzRR=zQ-10
78 77 fveq2d φzRR=zQ-10
79 5 7 eqtr4d φR=D+1
80 79 adantr φzRR=D+1
81 78 80 eqtr3d φzRzQ-10=D+1
82 19 adantr φzRF0𝑝
83 61 82 eqnetrrd φzRXpf×z×fQ0𝑝
84 plymul0or Xpf×zPolyQPolyXpf×z×fQ=0𝑝Xpf×z=0𝑝Q=0𝑝
85 68 32 84 syl2anc φzRXpf×z×fQ=0𝑝Xpf×z=0𝑝Q=0𝑝
86 85 necon3abid φzRXpf×z×fQ0𝑝¬Xpf×z=0𝑝Q=0𝑝
87 83 86 mpbid φzR¬Xpf×z=0𝑝Q=0𝑝
88 neanior Xpf×z0𝑝Q0𝑝¬Xpf×z=0𝑝Q=0𝑝
89 87 88 sylibr φzRXpf×z0𝑝Q0𝑝
90 89 simprd φzRQ0𝑝
91 eqid Q-10=Q-10
92 91 fta1 QPolyQ0𝑝Q-10FinQ-10degQ
93 32 90 92 syl2anc φzRQ-10FinQ-10degQ
94 93 simprd φzRQ-10degQ
95 94 31 breqtrrd φzRQ-10D
96 snfi zFin
97 93 simpld φzRQ-10Fin
98 hashun2 zFinQ-10FinzQ-10z+Q-10
99 96 97 98 sylancr φzRzQ-10z+Q-10
100 ax-1cn 1
101 6 nncnd φD
102 101 adantr φzRD
103 addcom 1D1+D=D+1
104 100 102 103 sylancr φzR1+D=D+1
105 81 104 eqtr4d φzRzQ-10=1+D
106 hashsng zRz=1
107 106 adantl φzRz=1
108 107 oveq1d φzRz+Q-10=1+Q-10
109 99 105 108 3brtr3d φzR1+D1+Q-10
110 hashcl Q-10FinQ-100
111 97 110 syl φzRQ-100
112 111 nn0red φzRQ-10
113 1red φzR1
114 36 112 113 leadd2d φzRDQ-101+D1+Q-10
115 109 114 mpbird φzRDQ-10
116 112 36 letri3d φzRQ-10=DQ-10DDQ-10
117 95 115 116 mpbir2and φzRQ-10=D
118 81 117 eqeq12d φzRzQ-10=Q-10D+1=D
119 42 118 imbitrid φzRzQ-10D+1=D
120 119 necon3ad φzRD+1D¬zQ-10
121 38 120 mpd φzR¬zQ-10
122 disjsn Q-10z=¬zQ-10
123 121 122 sylibr φzRQ-10z=
124 29 123 eqtrid φzRzQ-10=
125 22 adantr φzRRFin
126 49 adantr φzRR
127 126 sselda φzRxRx
128 124 77 125 127 fsumsplit φzRxRx=xzx+xQ-10x
129 id x=zx=z
130 129 sumsn zzxzx=z
131 50 50 130 syl2anc φzRxzx=z
132 50 negnegd φzRz=z
133 131 132 eqtr4d φzRxzx=z
134 117 31 eqtrd φzRQ-10=degQ
135 fveq2 f=Qdegf=degQ
136 135 eqeq2d f=QD=degfD=degQ
137 cnveq f=Qf-1=Q-1
138 137 imaeq1d f=Qf-10=Q-10
139 138 fveq2d f=Qf-10=Q-10
140 139 135 eqeq12d f=Qf-10=degfQ-10=degQ
141 136 140 anbi12d f=QD=degff-10=degfD=degQQ-10=degQ
142 138 sumeq1d f=Qxf-10x=xQ-10x
143 fveq2 f=Qcoefff=coeffQ
144 135 oveq1d f=Qdegf1=degQ1
145 143 144 fveq12d f=Qcoefffdegf1=coeffQdegQ1
146 143 135 fveq12d f=Qcoefffdegf=coeffQdegQ
147 145 146 oveq12d f=Qcoefffdegf1coefffdegf=coeffQdegQ1coeffQdegQ
148 147 negeqd f=Qcoefffdegf1coefffdegf=coeffQdegQ1coeffQdegQ
149 142 148 eqeq12d f=Qxf-10x=coefffdegf1coefffdegfxQ-10x=coeffQdegQ1coeffQdegQ
150 141 149 imbi12d f=QD=degff-10=degfxf-10x=coefffdegf1coefffdegfD=degQQ-10=degQxQ-10x=coeffQdegQ1coeffQdegQ
151 8 adantr φzRfPolyD=degff-10=degfxf-10x=coefffdegf1coefffdegf
152 150 151 32 rspcdva φzRD=degQQ-10=degQxQ-10x=coeffQdegQ1coeffQdegQ
153 31 134 152 mp2and φzRxQ-10x=coeffQdegQ1coeffQdegQ
154 31 fvoveq1d φzRcoeffQD1=coeffQdegQ1
155 61 fveq2d φzRcoeffF=coeffXpf×z×fQ
156 1 155 eqtrid φzRA=coeffXpf×z×fQ
157 61 fveq2d φzRdegF=degXpf×z×fQ
158 67 simp2d φzRdegXpf×z=1
159 ax-1ne0 10
160 159 a1i φzR10
161 158 160 eqnetrd φzRdegXpf×z0
162 fveq2 Xpf×z=0𝑝degXpf×z=deg0𝑝
163 162 16 eqtrdi Xpf×z=0𝑝degXpf×z=0
164 163 necon3i degXpf×z0Xpf×z0𝑝
165 161 164 syl φzRXpf×z0𝑝
166 eqid degXpf×z=degXpf×z
167 eqid degQ=degQ
168 166 167 dgrmul Xpf×zPolyXpf×z0𝑝QPolyQ0𝑝degXpf×z×fQ=degXpf×z+degQ
169 68 165 32 90 168 syl22anc φzRdegXpf×z×fQ=degXpf×z+degQ
170 157 169 eqtrd φzRdegF=degXpf×z+degQ
171 2 170 eqtrid φzRN=degXpf×z+degQ
172 156 171 fveq12d φzRAN=coeffXpf×z×fQdegXpf×z+degQ
173 eqid coeffXpf×z=coeffXpf×z
174 eqid coeffQ=coeffQ
175 173 174 166 167 coemulhi Xpf×zPolyQPolycoeffXpf×z×fQdegXpf×z+degQ=coeffXpf×zdegXpf×zcoeffQdegQ
176 68 32 175 syl2anc φzRcoeffXpf×z×fQdegXpf×z+degQ=coeffXpf×zdegXpf×zcoeffQdegQ
177 158 fveq2d φzRcoeffXpf×zdegXpf×z=coeffXpf×z1
178 ssid
179 plyid 1XpPoly
180 178 100 179 mp2an XpPoly
181 plyconst z×zPoly
182 178 50 181 sylancr φzR×zPoly
183 eqid coeffXp=coeffXp
184 eqid coeff×z=coeff×z
185 183 184 coesub XpPoly×zPolycoeffXpf×z=coeffXpfcoeff×z
186 180 182 185 sylancr φzRcoeffXpf×z=coeffXpfcoeff×z
187 186 fveq1d φzRcoeffXpf×z1=coeffXpfcoeff×z1
188 1nn0 10
189 183 coef3 XpPolycoeffXp:0
190 ffn coeffXp:0coeffXpFn0
191 180 189 190 mp2b coeffXpFn0
192 191 a1i φzRcoeffXpFn0
193 184 coef3 ×zPolycoeff×z:0
194 ffn coeff×z:0coeff×zFn0
195 182 193 194 3syl φzRcoeff×zFn0
196 nn0ex 0V
197 196 a1i φzR0V
198 inidm 00=0
199 coeidp 10coeffXp1=if1=110
200 199 adantl φzR10coeffXp1=if1=110
201 eqid 1=1
202 201 iftruei if1=110=1
203 200 202 eqtrdi φzR10coeffXp1=1
204 0lt1 0<1
205 0re 0
206 1re 1
207 205 206 ltnlei 0<1¬10
208 204 207 mpbi ¬10
209 50 adantr φzR10z
210 0dgr zdeg×z=0
211 209 210 syl φzR10deg×z=0
212 211 breq2d φzR101deg×z10
213 208 212 mtbiri φzR10¬1deg×z
214 eqid deg×z=deg×z
215 184 214 dgrub ×zPoly10coeff×z101deg×z
216 215 3expia ×zPoly10coeff×z101deg×z
217 182 216 sylan φzR10coeff×z101deg×z
218 217 necon1bd φzR10¬1deg×zcoeff×z1=0
219 213 218 mpd φzR10coeff×z1=0
220 192 195 197 197 198 203 219 ofval φzR10coeffXpfcoeff×z1=10
221 188 220 mpan2 φzRcoeffXpfcoeff×z1=10
222 1m0e1 10=1
223 221 222 eqtrdi φzRcoeffXpfcoeff×z1=1
224 187 223 eqtrd φzRcoeffXpf×z1=1
225 177 224 eqtrd φzRcoeffXpf×zdegXpf×z=1
226 225 oveq1d φzRcoeffXpf×zdegXpf×zcoeffQdegQ=1coeffQdegQ
227 174 coef3 QPolycoeffQ:0
228 32 227 syl φzRcoeffQ:0
229 228 34 ffvelcdmd φzRcoeffQdegQ
230 229 mullidd φzR1coeffQdegQ=coeffQdegQ
231 226 230 eqtrd φzRcoeffXpf×zdegXpf×zcoeffQdegQ=coeffQdegQ
232 172 176 231 3eqtrd φzRAN=coeffQdegQ
233 154 232 oveq12d φzRcoeffQD1AN=coeffQdegQ1coeffQdegQ
234 233 negeqd φzRcoeffQD1AN=coeffQdegQ1coeffQdegQ
235 153 234 eqtr4d φzRxQ-10x=coeffQD1AN
236 133 235 oveq12d φzRxzx+xQ-10x=-z+coeffQD1AN
237 50 negcld φzRz
238 nnm1nn0 DD10
239 6 238 syl φD10
240 239 adantr φzRD10
241 228 240 ffvelcdmd φzRcoeffQD1
242 232 229 eqeltrd φzRAN
243 2 1 dgreq0 FPolySF=0𝑝AN=0
244 43 243 syl φzRF=0𝑝AN=0
245 244 necon3bid φzRF0𝑝AN0
246 82 245 mpbid φzRAN0
247 241 242 246 divcld φzRcoeffQD1AN
248 237 247 negdid φzR-z+coeffQD1AN=-z+coeffQD1AN
249 237 242 mulcld φzRzAN
250 249 241 242 246 divdird φzRzAN+coeffQD1AN=zANAN+coeffQD1AN
251 nnm1nn0 NN10
252 11 251 syl φN10
253 252 adantr φzRN10
254 173 174 coemul Xpf×zPolyQPolyN10coeffXpf×z×fQN1=k=0N1coeffXpf×zkcoeffQN-1-k
255 68 32 253 254 syl3anc φzRcoeffXpf×z×fQN1=k=0N1coeffXpf×zkcoeffQN-1-k
256 156 fveq1d φzRAN1=coeffXpf×z×fQN1
257 1e0p1 1=0+1
258 257 oveq2i 01=00+1
259 258 sumeq1i k=01coeffXpf×zkcoeffQN-1-k=k=00+1coeffXpf×zkcoeffQN-1-k
260 0nn0 00
261 nn0uz 0=0
262 260 261 eleqtri 00
263 262 a1i φzR00
264 258 eleq2i k01k00+1
265 173 coef3 Xpf×zPolycoeffXpf×z:0
266 68 265 syl φzRcoeffXpf×z:0
267 elfznn0 k01k0
268 ffvelcdm coeffXpf×z:0k0coeffXpf×zk
269 266 267 268 syl2an φzRk01coeffXpf×zk
270 7 oveq1d φD+1-1=N1
271 pncan D1D+1-1=D
272 101 100 271 sylancl φD+1-1=D
273 270 272 eqtr3d φN1=D
274 273 adantr φzRN1=D
275 6 adantr φzRD
276 274 275 eqeltrd φzRN1
277 nnuz =1
278 276 277 eleqtrdi φzRN11
279 fzss2 N11010N1
280 278 279 syl φzR010N1
281 280 sselda φzRk01k0N1
282 fznn0sub k0N1N-1-k0
283 ffvelcdm coeffQ:0N-1-k0coeffQN-1-k
284 228 282 283 syl2an φzRk0N1coeffQN-1-k
285 281 284 syldan φzRk01coeffQN-1-k
286 269 285 mulcld φzRk01coeffXpf×zkcoeffQN-1-k
287 264 286 sylan2br φzRk00+1coeffXpf×zkcoeffQN-1-k
288 id k=0+1k=0+1
289 288 257 eqtr4di k=0+1k=1
290 289 fveq2d k=0+1coeffXpf×zk=coeffXpf×z1
291 289 oveq2d k=0+1N-1-k=N-1-1
292 291 fveq2d k=0+1coeffQN-1-k=coeffQN-1-1
293 290 292 oveq12d k=0+1coeffXpf×zkcoeffQN-1-k=coeffXpf×z1coeffQN-1-1
294 263 287 293 fsump1 φzRk=00+1coeffXpf×zkcoeffQN-1-k=k=00coeffXpf×zkcoeffQN-1-k+coeffXpf×z1coeffQN-1-1
295 259 294 eqtrid φzRk=01coeffXpf×zkcoeffQN-1-k=k=00coeffXpf×zkcoeffQN-1-k+coeffXpf×z1coeffQN-1-1
296 eldifn k0N101¬k01
297 296 adantl φzRk0N101¬k01
298 eldifi k0N101k0N1
299 elfznn0 k0N1k0
300 298 299 syl k0N101k0
301 173 166 dgrub Xpf×zPolyk0coeffXpf×zk0kdegXpf×z
302 301 3expia Xpf×zPolyk0coeffXpf×zk0kdegXpf×z
303 68 300 302 syl2an φzRk0N101coeffXpf×zk0kdegXpf×z
304 elfzuz k0N1k0
305 298 304 syl k0N101k0
306 305 adantl φzRk0N101k0
307 1z 1
308 elfz5 k01k01k1
309 306 307 308 sylancl φzRk0N101k01k1
310 158 breq2d φzRkdegXpf×zk1
311 310 adantr φzRk0N101kdegXpf×zk1
312 309 311 bitr4d φzRk0N101k01kdegXpf×z
313 303 312 sylibrd φzRk0N101coeffXpf×zk0k01
314 313 necon1bd φzRk0N101¬k01coeffXpf×zk=0
315 297 314 mpd φzRk0N101coeffXpf×zk=0
316 315 oveq1d φzRk0N101coeffXpf×zkcoeffQN-1-k=0coeffQN-1-k
317 298 284 sylan2 φzRk0N101coeffQN-1-k
318 317 mul02d φzRk0N1010coeffQN-1-k=0
319 316 318 eqtrd φzRk0N101coeffXpf×zkcoeffQN-1-k=0
320 fzfid φzR0N1Fin
321 280 286 319 320 fsumss φzRk=01coeffXpf×zkcoeffQN-1-k=k=0N1coeffXpf×zkcoeffQN-1-k
322 0z 0
323 186 fveq1d φzRcoeffXpf×z0=coeffXpfcoeff×z0
324 coeidp 00coeffXp0=if0=110
325 159 nesymi ¬0=1
326 325 iffalsei if0=110=0
327 324 326 eqtrdi 00coeffXp0=0
328 327 adantl φzR00coeffXp0=0
329 184 coefv0 ×zPoly×z0=coeff×z0
330 182 329 syl φzR×z0=coeff×z0
331 0cn 0
332 vex zV
333 332 fvconst2 0×z0=z
334 331 333 ax-mp ×z0=z
335 330 334 eqtr3di φzRcoeff×z0=z
336 335 adantr φzR00coeff×z0=z
337 192 195 197 197 198 328 336 ofval φzR00coeffXpfcoeff×z0=0z
338 260 337 mpan2 φzRcoeffXpfcoeff×z0=0z
339 df-neg z=0z
340 338 339 eqtr4di φzRcoeffXpfcoeff×z0=z
341 323 340 eqtrd φzRcoeffXpf×z0=z
342 274 oveq1d φzRN-1-0=D0
343 102 subid1d φzRD0=D
344 342 343 31 3eqtrd φzRN-1-0=degQ
345 344 fveq2d φzRcoeffQN-1-0=coeffQdegQ
346 345 232 eqtr4d φzRcoeffQN-1-0=AN
347 341 346 oveq12d φzRcoeffXpf×z0coeffQN-1-0=zAN
348 347 249 eqeltrd φzRcoeffXpf×z0coeffQN-1-0
349 fveq2 k=0coeffXpf×zk=coeffXpf×z0
350 oveq2 k=0N-1-k=N-1-0
351 350 fveq2d k=0coeffQN-1-k=coeffQN-1-0
352 349 351 oveq12d k=0coeffXpf×zkcoeffQN-1-k=coeffXpf×z0coeffQN-1-0
353 352 fsum1 0coeffXpf×z0coeffQN-1-0k=00coeffXpf×zkcoeffQN-1-k=coeffXpf×z0coeffQN-1-0
354 322 348 353 sylancr φzRk=00coeffXpf×zkcoeffQN-1-k=coeffXpf×z0coeffQN-1-0
355 354 347 eqtrd φzRk=00coeffXpf×zkcoeffQN-1-k=zAN
356 274 fvoveq1d φzRcoeffQN-1-1=coeffQD1
357 224 356 oveq12d φzRcoeffXpf×z1coeffQN-1-1=1coeffQD1
358 241 mullidd φzR1coeffQD1=coeffQD1
359 357 358 eqtrd φzRcoeffXpf×z1coeffQN-1-1=coeffQD1
360 355 359 oveq12d φzRk=00coeffXpf×zkcoeffQN-1-k+coeffXpf×z1coeffQN-1-1=zAN+coeffQD1
361 295 321 360 3eqtr3rd φzRzAN+coeffQD1=k=0N1coeffXpf×zkcoeffQN-1-k
362 255 256 361 3eqtr4rd φzRzAN+coeffQD1=AN1
363 362 oveq1d φzRzAN+coeffQD1AN=AN1AN
364 237 242 246 divcan4d φzRzANAN=z
365 364 oveq1d φzRzANAN+coeffQD1AN=-z+coeffQD1AN
366 250 363 365 3eqtr3rd φzR-z+coeffQD1AN=AN1AN
367 366 negeqd φzR-z+coeffQD1AN=AN1AN
368 248 367 eqtr3d φzR-z+coeffQD1AN=AN1AN
369 128 236 368 3eqtrd φzRxRx=AN1AN
370 28 369 exlimddv φxRx=AN1AN