Metamath Proof Explorer


Theorem itg2addnclem2

Description: Lemma for itg2addnc . The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017)

Ref Expression
Hypotheses itg2addnc.f1 φFMblFn
itg2addnc.f2 φF:0+∞
Assertion itg2addnclem2 φhdom1v+xifFxv31v3hxhx0Fxv31v3hxdom1

Proof

Step Hyp Ref Expression
1 itg2addnc.f1 φFMblFn
2 itg2addnc.f2 φF:0+∞
3 rge0ssre 0+∞
4 fss F:0+∞0+∞F:
5 2 3 4 sylancl φF:
6 5 ad2antrr φhdom1v+F:
7 6 ffvelcdmda φhdom1v+xFx
8 rpre v+v
9 3re 3
10 3ne0 30
11 9 10 pm3.2i 330
12 redivcl v330v3
13 12 3expb v330v3
14 8 11 13 sylancl v+v3
15 14 ad2antlr φhdom1v+xv3
16 rpcnne0 v+vv0
17 3cn 3
18 17 10 pm3.2i 330
19 divne0 vv0330v30
20 16 18 19 sylancl v+v30
21 20 ad2antlr φhdom1v+xv30
22 7 15 21 redivcld φhdom1v+xFxv3
23 reflcl Fxv3Fxv3
24 22 23 syl φhdom1v+xFxv3
25 peano2rem Fxv3Fxv31
26 24 25 syl φhdom1v+xFxv31
27 26 15 remulcld φhdom1v+xFxv31v3
28 i1ff hdom1h:
29 28 ad2antlr φhdom1v+h:
30 29 ffvelcdmda φhdom1v+xhx
31 27 30 ifcld φhdom1v+xifFxv31v3hxhx0Fxv31v3hx
32 31 fmpttd φhdom1v+xifFxv31v3hxhx0Fxv31v3hx:
33 fzfi 0supranh<v3+1Fin
34 ovex t1v3V
35 eqid t0supranh<v3+1t1v3=t0supranh<v3+1t1v3
36 34 35 fnmpti t0supranh<v3+1t1v3Fn0supranh<v3+1
37 dffn4 t0supranh<v3+1t1v3Fn0supranh<v3+1t0supranh<v3+1t1v3:0supranh<v3+1ontorant0supranh<v3+1t1v3
38 36 37 mpbi t0supranh<v3+1t1v3:0supranh<v3+1ontorant0supranh<v3+1t1v3
39 fofi 0supranh<v3+1Fint0supranh<v3+1t1v3:0supranh<v3+1ontorant0supranh<v3+1t1v3rant0supranh<v3+1t1v3Fin
40 33 38 39 mp2an rant0supranh<v3+1t1v3Fin
41 i1frn hdom1ranhFin
42 41 ad2antlr φhdom1v+ranhFin
43 unfi rant0supranh<v3+1t1v3FinranhFinrant0supranh<v3+1t1v3ranhFin
44 40 42 43 sylancr φhdom1v+rant0supranh<v3+1t1v3ranhFin
45 0zd φhdom1v+xFxv31v3hxhx00
46 28 frnd hdom1ranh
47 i1f0rn hdom10ranh
48 elex2 0ranhxxranh
49 47 48 syl hdom1xxranh
50 n0 ranhxxranh
51 49 50 sylibr hdom1ranh
52 fimaxre2 ranhranhFinxyranhyx
53 46 41 52 syl2anc hdom1xyranhyx
54 suprcl ranhranhxyranhyxsupranh<
55 46 51 53 54 syl3anc hdom1supranh<
56 55 ad3antlr φhdom1v+xsupranh<
57 56 15 21 redivcld φhdom1v+xsupranh<v3
58 peano2re supranh<v3supranh<v3+1
59 57 58 syl φhdom1v+xsupranh<v3+1
60 ceicl supranh<v3+1supranh<v3+1
61 59 60 syl φhdom1v+xsupranh<v3+1
62 61 adantr φhdom1v+xFxv31v3hxhx0supranh<v3+1
63 22 flcld φhdom1v+xFxv3
64 63 adantr φhdom1v+xFxv31v3hxhx0Fxv3
65 3nn 3
66 nnrp 33+
67 65 66 ax-mp 3+
68 rpdivcl v+3+v3+
69 67 68 mpan2 v+v3+
70 69 ad2antlr φhdom1v+xv3+
71 2 ad2antrr φhdom1v+F:0+∞
72 71 ffvelcdmda φhdom1v+xFx0+∞
73 elrege0 Fx0+∞Fx0Fx
74 72 73 sylib φhdom1v+xFx0Fx
75 74 simprd φhdom1v+x0Fx
76 7 70 75 divge0d φhdom1v+x0Fxv3
77 flge0nn0 Fxv30Fxv3Fxv30
78 22 76 77 syl2anc φhdom1v+xFxv30
79 78 nn0ge0d φhdom1v+x0Fxv3
80 79 adantr φhdom1v+xFxv31v3hxhx00Fxv3
81 46 51 53 3jca hdom1ranhranhxyranhyx
82 81 ad3antlr φhdom1v+xranhranhxyranhyx
83 ffn h:hFn
84 28 83 syl hdom1hFn
85 dffn3 hFnh:ranh
86 84 85 sylib hdom1h:ranh
87 86 ad2antlr φhdom1v+h:ranh
88 87 ffvelcdmda φhdom1v+xhxranh
89 suprub ranhranhxyranhyxhxranhhxsupranh<
90 82 88 89 syl2anc φhdom1v+xhxsupranh<
91 letr Fxv31v3hxsupranh<Fxv31v3hxhxsupranh<Fxv31v3supranh<
92 27 30 56 91 syl3anc φhdom1v+xFxv31v3hxhxsupranh<Fxv31v3supranh<
93 26 56 70 lemuldivd φhdom1v+xFxv31v3supranh<Fxv31supranh<v3
94 1red φhdom1v+x1
95 24 94 57 lesubaddd φhdom1v+xFxv31supranh<v3Fxv3supranh<v3+1
96 93 95 bitrd φhdom1v+xFxv31v3supranh<Fxv3supranh<v3+1
97 ceige supranh<v3+1supranh<v3+1supranh<v3+1
98 59 97 syl φhdom1v+xsupranh<v3+1supranh<v3+1
99 61 zred φhdom1v+xsupranh<v3+1
100 letr Fxv3supranh<v3+1supranh<v3+1Fxv3supranh<v3+1supranh<v3+1supranh<v3+1Fxv3supranh<v3+1
101 24 59 99 100 syl3anc φhdom1v+xFxv3supranh<v3+1supranh<v3+1supranh<v3+1Fxv3supranh<v3+1
102 98 101 mpan2d φhdom1v+xFxv3supranh<v3+1Fxv3supranh<v3+1
103 96 102 sylbid φhdom1v+xFxv31v3supranh<Fxv3supranh<v3+1
104 92 103 syld φhdom1v+xFxv31v3hxhxsupranh<Fxv3supranh<v3+1
105 90 104 mpan2d φhdom1v+xFxv31v3hxFxv3supranh<v3+1
106 105 adantrd φhdom1v+xFxv31v3hxhx0Fxv3supranh<v3+1
107 106 imp φhdom1v+xFxv31v3hxhx0Fxv3supranh<v3+1
108 45 62 64 80 107 elfzd φhdom1v+xFxv31v3hxhx0Fxv30supranh<v3+1
109 eqid Fxv31v3=Fxv31v3
110 oveq1 t=Fxv3t1=Fxv31
111 110 oveq1d t=Fxv3t1v3=Fxv31v3
112 111 rspceeqv Fxv30supranh<v3+1Fxv31v3=Fxv31v3t0supranh<v3+1Fxv31v3=t1v3
113 108 109 112 sylancl φhdom1v+xFxv31v3hxhx0t0supranh<v3+1Fxv31v3=t1v3
114 ovex Fxv31v3V
115 35 elrnmpt Fxv31v3VFxv31v3rant0supranh<v3+1t1v3t0supranh<v3+1Fxv31v3=t1v3
116 114 115 ax-mp Fxv31v3rant0supranh<v3+1t1v3t0supranh<v3+1Fxv31v3=t1v3
117 113 116 sylibr φhdom1v+xFxv31v3hxhx0Fxv31v3rant0supranh<v3+1t1v3
118 elun1 Fxv31v3rant0supranh<v3+1t1v3Fxv31v3rant0supranh<v3+1t1v3ranh
119 117 118 syl φhdom1v+xFxv31v3hxhx0Fxv31v3rant0supranh<v3+1t1v3ranh
120 elun2 hxranhhxrant0supranh<v3+1t1v3ranh
121 88 120 syl φhdom1v+xhxrant0supranh<v3+1t1v3ranh
122 121 adantr φhdom1v+x¬Fxv31v3hxhx0hxrant0supranh<v3+1t1v3ranh
123 119 122 ifclda φhdom1v+xifFxv31v3hxhx0Fxv31v3hxrant0supranh<v3+1t1v3ranh
124 123 fmpttd φhdom1v+xifFxv31v3hxhx0Fxv31v3hx:rant0supranh<v3+1t1v3ranh
125 124 frnd φhdom1v+ranxifFxv31v3hxhx0Fxv31v3hxrant0supranh<v3+1t1v3ranh
126 ssfi rant0supranh<v3+1t1v3ranhFinranxifFxv31v3hxhx0Fxv31v3hxrant0supranh<v3+1t1v3ranhranxifFxv31v3hxhx0Fxv31v3hxFin
127 44 125 126 syl2anc φhdom1v+ranxifFxv31v3hxhx0Fxv31v3hxFin
128 eqid xifFxv31v3hxhx0Fxv31v3hx=xifFxv31v3hxhx0Fxv31v3hx
129 128 mptpreima xifFxv31v3hxhx0Fxv31v3hx-1t=x|ifFxv31v3hxhx0Fxv31v3hxt
130 unrab x|Fxv31v3hxhx0t=Fxv31v3x|¬Fxv31v3hxhx=0t=hx=x|Fxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx=0t=hx
131 inrab x|Fxv31v3hxx|hx0=x|Fxv31v3hxhx0
132 131 ineq1i x|Fxv31v3hxx|hx0x|t=Fxv31v3=x|Fxv31v3hxhx0x|t=Fxv31v3
133 inrab x|Fxv31v3hxhx0x|t=Fxv31v3=x|Fxv31v3hxhx0t=Fxv31v3
134 132 133 eqtri x|Fxv31v3hxx|hx0x|t=Fxv31v3=x|Fxv31v3hxhx0t=Fxv31v3
135 unrab x|¬Fxv31v3hxx|hx=0=x|¬Fxv31v3hxhx=0
136 135 ineq1i x|¬Fxv31v3hxx|hx=0x|t=hx=x|¬Fxv31v3hxhx=0x|t=hx
137 inrab x|¬Fxv31v3hxhx=0x|t=hx=x|¬Fxv31v3hxhx=0t=hx
138 136 137 eqtri x|¬Fxv31v3hxx|hx=0x|t=hx=x|¬Fxv31v3hxhx=0t=hx
139 134 138 uneq12i x|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hx=x|Fxv31v3hxhx0t=Fxv31v3x|¬Fxv31v3hxhx=0t=hx
140 eqcom ifFxv31v3hxhx0Fxv31v3hx=tt=ifFxv31v3hxhx0Fxv31v3hx
141 fvex hxV
142 114 141 ifex ifFxv31v3hxhx0Fxv31v3hxV
143 142 elsn ifFxv31v3hxhx0Fxv31v3hxtifFxv31v3hxhx0Fxv31v3hx=t
144 ianor ¬Fxv31v3hxhx0¬Fxv31v3hx¬hx0
145 nne ¬hx0hx=0
146 145 orbi2i ¬Fxv31v3hx¬hx0¬Fxv31v3hxhx=0
147 144 146 bitr2i ¬Fxv31v3hxhx=0¬Fxv31v3hxhx0
148 147 anbi1i ¬Fxv31v3hxhx=0t=hx¬Fxv31v3hxhx0t=hx
149 148 orbi2i Fxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx=0t=hxFxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx0t=hx
150 eqif t=ifFxv31v3hxhx0Fxv31v3hxFxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx0t=hx
151 149 150 bitr4i Fxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx=0t=hxt=ifFxv31v3hxhx0Fxv31v3hx
152 140 143 151 3bitr4i ifFxv31v3hxhx0Fxv31v3hxtFxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx=0t=hx
153 152 rabbii x|ifFxv31v3hxhx0Fxv31v3hxt=x|Fxv31v3hxhx0t=Fxv31v3¬Fxv31v3hxhx=0t=hx
154 130 139 153 3eqtr4ri x|ifFxv31v3hxhx0Fxv31v3hxt=x|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hx
155 129 154 eqtri xifFxv31v3hxhx0Fxv31v3hx-1t=x|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hx
156 eldifi tranxifFxv31v3hxhx0Fxv31v3hx0tranxifFxv31v3hxhx0Fxv31v3hx
157 32 frnd φhdom1v+ranxifFxv31v3hxhx0Fxv31v3hx
158 157 sseld φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hxt
159 156 158 syl5 φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0t
160 159 imdistani φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0φhdom1v+t
161 rabiun xtranhh-1t|Fxv31v3hx=tranhxh-1t|Fxv31v3hx
162 cnvimarndm h-1ranh=domh
163 iunid tranht=ranh
164 163 imaeq2i h-1tranht=h-1ranh
165 imaiun h-1tranht=tranhh-1t
166 164 165 eqtr3i h-1ranh=tranhh-1t
167 162 166 eqtr3i domh=tranhh-1t
168 28 fdmd hdom1domh=
169 167 168 eqtr3id hdom1tranhh-1t=
170 169 ad2antlr φhdom1v+tranhh-1t=
171 rabeq tranhh-1t=xtranhh-1t|Fxv31v3hx=x|Fxv31v3hx
172 170 171 syl φhdom1v+xtranhh-1t|Fxv31v3hx=x|Fxv31v3hx
173 161 172 eqtr3id φhdom1v+tranhxh-1t|Fxv31v3hx=x|Fxv31v3hx
174 fniniseg hFnxh-1txhx=t
175 28 83 174 3syl hdom1xh-1txhx=t
176 175 simplbda hdom1xh-1thx=t
177 176 breq2d hdom1xh-1tFxv31v3hxFxv31v3t
178 177 rabbidva hdom1xh-1t|Fxv31v3hx=xh-1t|Fxv31v3t
179 inrab2 x|Fxv31v3th-1t=xh-1t|Fxv31v3t
180 imassrn h-1tranh-1
181 dfdm4 domh=ranh-1
182 181 168 eqtr3id hdom1ranh-1=
183 180 182 sseqtrid hdom1h-1t
184 sseqin2 h-1th-1t=h-1t
185 183 184 sylib hdom1h-1t=h-1t
186 rabeq h-1t=h-1txh-1t|Fxv31v3t=xh-1t|Fxv31v3t
187 185 186 syl hdom1xh-1t|Fxv31v3t=xh-1t|Fxv31v3t
188 179 187 eqtrid hdom1x|Fxv31v3th-1t=xh-1t|Fxv31v3t
189 178 188 eqtr4d hdom1xh-1t|Fxv31v3hx=x|Fxv31v3th-1t
190 189 ad3antlr φhdom1v+tranhxh-1t|Fxv31v3hx=x|Fxv31v3th-1t
191 26 adantlr φhdom1v+tranhxFxv31
192 46 ad2antlr φhdom1v+ranh
193 192 sselda φhdom1v+tranht
194 193 adantr φhdom1v+tranhxt
195 69 ad3antlr φhdom1v+tranhxv3+
196 191 194 195 lemuldivd φhdom1v+tranhxFxv31v3tFxv31tv3
197 24 adantlr φhdom1v+tranhxFxv3
198 1red φhdom1v+tranhx1
199 14 ad3antlr φhdom1v+tranhxv3
200 20 ad3antlr φhdom1v+tranhxv30
201 194 199 200 redivcld φhdom1v+tranhxtv3
202 197 198 201 lesubaddd φhdom1v+tranhxFxv31tv3Fxv3tv3+1
203 7 adantlr φhdom1v+tranhxFx
204 peano2re tv3tv3+1
205 201 204 syl φhdom1v+tranhxtv3+1
206 reflcl tv3+1tv3+1
207 205 206 syl φhdom1v+tranhxtv3+1
208 peano2re tv3+1tv3+1+1
209 207 208 syl φhdom1v+tranhxtv3+1+1
210 203 209 195 ltdivmuld φhdom1v+tranhxFxv3<tv3+1+1Fx<v3tv3+1+1
211 22 adantlr φhdom1v+tranhxFxv3
212 flflp1 Fxv3tv3+1Fxv3tv3+1Fxv3<tv3+1+1
213 211 205 212 syl2anc φhdom1v+tranhxFxv3tv3+1Fxv3<tv3+1+1
214 199 209 remulcld φhdom1v+tranhxv3tv3+1+1
215 214 rexrd φhdom1v+tranhxv3tv3+1+1*
216 elioomnf v3tv3+1+1*Fx−∞v3tv3+1+1FxFx<v3tv3+1+1
217 215 216 syl φhdom1v+tranhxFx−∞v3tv3+1+1FxFx<v3tv3+1+1
218 203 biantrurd φhdom1v+tranhxFx<v3tv3+1+1FxFx<v3tv3+1+1
219 217 218 bitr4d φhdom1v+tranhxFx−∞v3tv3+1+1Fx<v3tv3+1+1
220 210 213 219 3bitr4d φhdom1v+tranhxFxv3tv3+1Fx−∞v3tv3+1+1
221 196 202 220 3bitrd φhdom1v+tranhxFxv31v3tFx−∞v3tv3+1+1
222 221 rabbidva φhdom1v+tranhx|Fxv31v3t=x|Fx−∞v3tv3+1+1
223 2 feqmptd φF=xFx
224 223 cnveqd φF-1=xFx-1
225 224 imaeq1d φF-1−∞v3tv3+1+1=xFx-1−∞v3tv3+1+1
226 eqid xFx=xFx
227 226 mptpreima xFx-1−∞v3tv3+1+1=x|Fx−∞v3tv3+1+1
228 225 227 eqtrdi φF-1−∞v3tv3+1+1=x|Fx−∞v3tv3+1+1
229 228 ad3antrrr φhdom1v+tranhF-1−∞v3tv3+1+1=x|Fx−∞v3tv3+1+1
230 222 229 eqtr4d φhdom1v+tranhx|Fxv31v3t=F-1−∞v3tv3+1+1
231 mbfima FMblFnF:F-1−∞v3tv3+1+1domvol
232 1 5 231 syl2anc φF-1−∞v3tv3+1+1domvol
233 232 ad3antrrr φhdom1v+tranhF-1−∞v3tv3+1+1domvol
234 230 233 eqeltrd φhdom1v+tranhx|Fxv31v3tdomvol
235 46 sseld hdom1tranht
236 235 ad2antlr φhdom1v+tranht
237 236 imdistani φhdom1v+tranhφhdom1v+t
238 i1fmbf hdom1hMblFn
239 238 28 jca hdom1hMblFnh:
240 239 ad2antlr φhdom1v+hMblFnh:
241 mbfimasn hMblFnh:th-1tdomvol
242 241 3expa hMblFnh:th-1tdomvol
243 240 242 sylan φhdom1v+th-1tdomvol
244 237 243 syl φhdom1v+tranhh-1tdomvol
245 inmbl x|Fxv31v3tdomvolh-1tdomvolx|Fxv31v3th-1tdomvol
246 234 244 245 syl2anc φhdom1v+tranhx|Fxv31v3th-1tdomvol
247 190 246 eqeltrd φhdom1v+tranhxh-1t|Fxv31v3hxdomvol
248 247 ralrimiva φhdom1v+tranhxh-1t|Fxv31v3hxdomvol
249 finiunmbl ranhFintranhxh-1t|Fxv31v3hxdomvoltranhxh-1t|Fxv31v3hxdomvol
250 42 248 249 syl2anc φhdom1v+tranhxh-1t|Fxv31v3hxdomvol
251 173 250 eqeltrrd φhdom1v+x|Fxv31v3hxdomvol
252 unrab x|hx−∞0x|hx0+∞=x|hx−∞0hx0+∞
253 28 feqmptd hdom1h=xhx
254 253 cnveqd hdom1h-1=xhx-1
255 254 imaeq1d hdom1h-1−∞0=xhx-1−∞0
256 eqid xhx=xhx
257 256 mptpreima xhx-1−∞0=x|hx−∞0
258 255 257 eqtrdi hdom1h-1−∞0=x|hx−∞0
259 254 imaeq1d hdom1h-10+∞=xhx-10+∞
260 256 mptpreima xhx-10+∞=x|hx0+∞
261 259 260 eqtrdi hdom1h-10+∞=x|hx0+∞
262 258 261 uneq12d hdom1h-1−∞0h-10+∞=x|hx−∞0x|hx0+∞
263 28 ffvelcdmda hdom1xhx
264 0re 0
265 lttri2 hx0hx0hx<00<hx
266 264 265 mpan2 hxhx0hx<00<hx
267 ibar hxhx<00<hxhxhx<00<hx
268 andi hxhx<00<hxhxhx<0hx0<hx
269 0xr 0*
270 elioomnf 0*hx−∞0hxhx<0
271 elioopnf 0*hx0+∞hx0<hx
272 270 271 orbi12d 0*hx−∞0hx0+∞hxhx<0hx0<hx
273 269 272 ax-mp hx−∞0hx0+∞hxhx<0hx0<hx
274 268 273 bitr4i hxhx<00<hxhx−∞0hx0+∞
275 267 274 bitrdi hxhx<00<hxhx−∞0hx0+∞
276 266 275 bitrd hxhx0hx−∞0hx0+∞
277 263 276 syl hdom1xhx0hx−∞0hx0+∞
278 277 rabbidva hdom1x|hx0=x|hx−∞0hx0+∞
279 252 262 278 3eqtr4a hdom1h-1−∞0h-10+∞=x|hx0
280 i1fima hdom1h-1−∞0domvol
281 i1fima hdom1h-10+∞domvol
282 unmbl h-1−∞0domvolh-10+∞domvolh-1−∞0h-10+∞domvol
283 280 281 282 syl2anc hdom1h-1−∞0h-10+∞domvol
284 279 283 eqeltrrd hdom1x|hx0domvol
285 284 ad2antlr φhdom1v+x|hx0domvol
286 inmbl x|Fxv31v3hxdomvolx|hx0domvolx|Fxv31v3hxx|hx0domvol
287 251 285 286 syl2anc φhdom1v+x|Fxv31v3hxx|hx0domvol
288 287 adantr φhdom1v+tx|Fxv31v3hxx|hx0domvol
289 24 recnd φhdom1v+xFxv3
290 289 adantlr φhdom1v+txFxv3
291 1cnd φhdom1v+tx1
292 simplr φhdom1v+txt
293 14 ad3antlr φhdom1v+txv3
294 20 ad3antlr φhdom1v+txv30
295 292 293 294 redivcld φhdom1v+txtv3
296 295 recnd φhdom1v+txtv3
297 290 291 296 subadd2d φhdom1v+txFxv31=tv3tv3+1=Fxv3
298 eqcom Fxv31=tv3tv3=Fxv31
299 recn tt
300 299 ad2antlr φhdom1v+txt
301 26 recnd φhdom1v+xFxv31
302 301 adantlr φhdom1v+txFxv31
303 14 recnd v+v3
304 303 ad3antlr φhdom1v+txv3
305 300 302 304 294 divmul3d φhdom1v+txtv3=Fxv31t=Fxv31v3
306 298 305 bitrid φhdom1v+txFxv31=tv3t=Fxv31v3
307 297 306 bitr3d φhdom1v+txtv3+1=Fxv3t=Fxv31v3
308 307 rabbidva φhdom1v+tx|tv3+1=Fxv3=x|t=Fxv31v3
309 imaundi F-1tv3+1v3tv3+1v3v3tv3+1+1=F-1tv3+1v3F-1tv3+1v3v3tv3+1+1
310 224 ad4antr φhdom1v+ttv3+1F-1=xFx-1
311 zre tv3+1tv3+1
312 311 adantl φhdom1v+ttv3+1tv3+1
313 14 ad3antlr φhdom1v+ttv3+1v3
314 312 313 remulcld φhdom1v+ttv3+1tv3+1v3
315 314 rexrd φhdom1v+ttv3+1tv3+1v3*
316 peano2z tv3+1tv3+1+1
317 316 zred tv3+1tv3+1+1
318 317 adantl φhdom1v+ttv3+1tv3+1+1
319 313 318 remulcld φhdom1v+ttv3+1v3tv3+1+1
320 319 rexrd φhdom1v+ttv3+1v3tv3+1+1*
321 zcn tv3+1tv3+1
322 321 adantl φhdom1v+ttv3+1tv3+1
323 303 ad3antlr φhdom1v+ttv3+1v3
324 322 323 mulcomd φhdom1v+ttv3+1tv3+1v3=v3tv3+1
325 69 ad3antlr φhdom1v+ttv3+1v3+
326 311 ltp1d tv3+1tv3+1<tv3+1+1
327 326 adantl φhdom1v+ttv3+1tv3+1<tv3+1+1
328 312 318 325 327 ltmul2dd φhdom1v+ttv3+1v3tv3+1<v3tv3+1+1
329 324 328 eqbrtrd φhdom1v+ttv3+1tv3+1v3<v3tv3+1+1
330 snunioo tv3+1v3*v3tv3+1+1*tv3+1v3<v3tv3+1+1tv3+1v3tv3+1v3v3tv3+1+1=tv3+1v3v3tv3+1+1
331 315 320 329 330 syl3anc φhdom1v+ttv3+1tv3+1v3tv3+1v3v3tv3+1+1=tv3+1v3v3tv3+1+1
332 310 331 imaeq12d φhdom1v+ttv3+1F-1tv3+1v3tv3+1v3v3tv3+1+1=xFx-1tv3+1v3v3tv3+1+1
333 309 332 eqtr3id φhdom1v+ttv3+1F-1tv3+1v3F-1tv3+1v3v3tv3+1+1=xFx-1tv3+1v3v3tv3+1+1
334 226 mptpreima xFx-1tv3+1v3v3tv3+1+1=x|Fxtv3+1v3v3tv3+1+1
335 5 ad3antrrr φhdom1v+tF:
336 335 ffvelcdmda φhdom1v+txFx
337 336 3biant1d φhdom1v+txtv3+1v3FxFx<v3tv3+1+1Fxtv3+1v3FxFx<v3tv3+1+1
338 337 adantr φhdom1v+txtv3+1tv3+1v3FxFx<v3tv3+1+1Fxtv3+1v3FxFx<v3tv3+1+1
339 311 adantl φhdom1v+txtv3+1tv3+1
340 336 adantr φhdom1v+txtv3+1Fx
341 69 ad4antlr φhdom1v+txtv3+1v3+
342 339 340 341 lemuldivd φhdom1v+txtv3+1tv3+1v3Fxtv3+1Fxv3
343 317 adantl φhdom1v+txtv3+1tv3+1+1
344 340 343 341 ltdivmuld φhdom1v+txtv3+1Fxv3<tv3+1+1Fx<v3tv3+1+1
345 344 bicomd φhdom1v+txtv3+1Fx<v3tv3+1+1Fxv3<tv3+1+1
346 342 345 anbi12d φhdom1v+txtv3+1tv3+1v3FxFx<v3tv3+1+1tv3+1Fxv3Fxv3<tv3+1+1
347 338 346 bitr3d φhdom1v+txtv3+1Fxtv3+1v3FxFx<v3tv3+1+1tv3+1Fxv3Fxv3<tv3+1+1
348 elico2 tv3+1v3v3tv3+1+1*Fxtv3+1v3v3tv3+1+1Fxtv3+1v3FxFx<v3tv3+1+1
349 314 320 348 syl2anc φhdom1v+ttv3+1Fxtv3+1v3v3tv3+1+1Fxtv3+1v3FxFx<v3tv3+1+1
350 349 adantlr φhdom1v+txtv3+1Fxtv3+1v3v3tv3+1+1Fxtv3+1v3FxFx<v3tv3+1+1
351 eqcom tv3+1=Fxv3Fxv3=tv3+1
352 22 adantlr φhdom1v+txFxv3
353 flbi Fxv3tv3+1Fxv3=tv3+1tv3+1Fxv3Fxv3<tv3+1+1
354 352 353 sylan φhdom1v+txtv3+1Fxv3=tv3+1tv3+1Fxv3Fxv3<tv3+1+1
355 351 354 bitrid φhdom1v+txtv3+1tv3+1=Fxv3tv3+1Fxv3Fxv3<tv3+1+1
356 347 350 355 3bitr4d φhdom1v+txtv3+1Fxtv3+1v3v3tv3+1+1tv3+1=Fxv3
357 356 an32s φhdom1v+ttv3+1xFxtv3+1v3v3tv3+1+1tv3+1=Fxv3
358 357 rabbidva φhdom1v+ttv3+1x|Fxtv3+1v3v3tv3+1+1=x|tv3+1=Fxv3
359 334 358 eqtrid φhdom1v+ttv3+1xFx-1tv3+1v3v3tv3+1+1=x|tv3+1=Fxv3
360 333 359 eqtrd φhdom1v+ttv3+1F-1tv3+1v3F-1tv3+1v3v3tv3+1+1=x|tv3+1=Fxv3
361 1 ad4antr φhdom1v+ttv3+1FMblFn
362 5 ad4antr φhdom1v+ttv3+1F:
363 mbfimasn FMblFnF:tv3+1v3F-1tv3+1v3domvol
364 361 362 314 363 syl3anc φhdom1v+ttv3+1F-1tv3+1v3domvol
365 mbfima FMblFnF:F-1tv3+1v3v3tv3+1+1domvol
366 1 5 365 syl2anc φF-1tv3+1v3v3tv3+1+1domvol
367 366 ad4antr φhdom1v+ttv3+1F-1tv3+1v3v3tv3+1+1domvol
368 unmbl F-1tv3+1v3domvolF-1tv3+1v3v3tv3+1+1domvolF-1tv3+1v3F-1tv3+1v3v3tv3+1+1domvol
369 364 367 368 syl2anc φhdom1v+ttv3+1F-1tv3+1v3F-1tv3+1v3v3tv3+1+1domvol
370 360 369 eqeltrrd φhdom1v+ttv3+1x|tv3+1=Fxv3domvol
371 simpr φhdom1v+txtv3+1=Fxv3tv3+1=Fxv3
372 352 flcld φhdom1v+txFxv3
373 372 adantr φhdom1v+txtv3+1=Fxv3Fxv3
374 371 373 eqeltrd φhdom1v+txtv3+1=Fxv3tv3+1
375 374 stoic1a φhdom1v+tx¬tv3+1¬tv3+1=Fxv3
376 375 an32s φhdom1v+t¬tv3+1x¬tv3+1=Fxv3
377 376 ralrimiva φhdom1v+t¬tv3+1x¬tv3+1=Fxv3
378 rabeq0 x|tv3+1=Fxv3=x¬tv3+1=Fxv3
379 377 378 sylibr φhdom1v+t¬tv3+1x|tv3+1=Fxv3=
380 0mbl domvol
381 379 380 eqeltrdi φhdom1v+t¬tv3+1x|tv3+1=Fxv3domvol
382 370 381 pm2.61dan φhdom1v+tx|tv3+1=Fxv3domvol
383 308 382 eqeltrrd φhdom1v+tx|t=Fxv31v3domvol
384 inmbl x|Fxv31v3hxx|hx0domvolx|t=Fxv31v3domvolx|Fxv31v3hxx|hx0x|t=Fxv31v3domvol
385 288 383 384 syl2anc φhdom1v+tx|Fxv31v3hxx|hx0x|t=Fxv31v3domvol
386 rabiun xtranhh-1t|¬Fxv31v3hx=tranhxh-1t|¬Fxv31v3hx
387 rabeq tranhh-1t=xtranhh-1t|¬Fxv31v3hx=x|¬Fxv31v3hx
388 169 387 syl hdom1xtranhh-1t|¬Fxv31v3hx=x|¬Fxv31v3hx
389 386 388 eqtr3id hdom1tranhxh-1t|¬Fxv31v3hx=x|¬Fxv31v3hx
390 389 ad2antlr φhdom1v+tranhxh-1t|¬Fxv31v3hx=x|¬Fxv31v3hx
391 177 notbid hdom1xh-1t¬Fxv31v3hx¬Fxv31v3t
392 391 rabbidva hdom1xh-1t|¬Fxv31v3hx=xh-1t|¬Fxv31v3t
393 inrab2 x|¬Fxv31v3th-1t=xh-1t|¬Fxv31v3t
394 rabeq h-1t=h-1txh-1t|¬Fxv31v3t=xh-1t|¬Fxv31v3t
395 185 394 syl hdom1xh-1t|¬Fxv31v3t=xh-1t|¬Fxv31v3t
396 393 395 eqtrid hdom1x|¬Fxv31v3th-1t=xh-1t|¬Fxv31v3t
397 392 396 eqtr4d hdom1xh-1t|¬Fxv31v3hx=x|¬Fxv31v3th-1t
398 397 ad3antlr φhdom1v+tranhxh-1t|¬Fxv31v3hx=x|¬Fxv31v3th-1t
399 imaundi F-1tv3+1+1v3tv3+1+1v3+∞=F-1tv3+1+1v3F-1tv3+1+1v3+∞
400 14 20 jca v+v3v30
401 redivcl tv3v30tv3
402 401 3expb tv3v30tv3
403 400 402 sylan2 tv+tv3
404 403 ancoms v+ttv3
405 404 adantll φhdom1v+ttv3
406 405 204 syl φhdom1v+ttv3+1
407 peano2re tv3+1tv3+1+1
408 reflcl tv3+1+1tv3+1+1
409 406 407 408 3syl φhdom1v+ttv3+1+1
410 14 ad2antlr φhdom1v+tv3
411 409 410 remulcld φhdom1v+ttv3+1+1v3
412 411 rexrd φhdom1v+ttv3+1+1v3*
413 pnfxr +∞*
414 413 a1i φhdom1v+t+∞*
415 ltpnf tv3+1+1v3tv3+1+1v3<+∞
416 411 415 syl φhdom1v+ttv3+1+1v3<+∞
417 snunioo tv3+1+1v3*+∞*tv3+1+1v3<+∞tv3+1+1v3tv3+1+1v3+∞=tv3+1+1v3+∞
418 412 414 416 417 syl3anc φhdom1v+ttv3+1+1v3tv3+1+1v3+∞=tv3+1+1v3+∞
419 418 imaeq2d φhdom1v+tF-1tv3+1+1v3tv3+1+1v3+∞=F-1tv3+1+1v3+∞
420 399 419 eqtr3id φhdom1v+tF-1tv3+1+1v3F-1tv3+1+1v3+∞=F-1tv3+1+1v3+∞
421 224 imaeq1d φF-1tv3+1+1v3+∞=xFx-1tv3+1+1v3+∞
422 226 mptpreima xFx-1tv3+1+1v3+∞=x|Fxtv3+1+1v3+∞
423 421 422 eqtrdi φF-1tv3+1+1v3+∞=x|Fxtv3+1+1v3+∞
424 423 ad3antrrr φhdom1v+tF-1tv3+1+1v3+∞=x|Fxtv3+1+1v3+∞
425 406 407 syl φhdom1v+ttv3+1+1
426 425 adantr φhdom1v+txtv3+1+1
427 flflp1 tv3+1+1Fxv3tv3+1+1Fxv3tv3+1+1<Fxv3+1
428 426 352 427 syl2anc φhdom1v+txtv3+1+1Fxv3tv3+1+1<Fxv3+1
429 411 adantr φhdom1v+txtv3+1+1v3
430 elicopnf tv3+1+1v3Fxtv3+1+1v3+∞Fxtv3+1+1v3Fx
431 429 430 syl φhdom1v+txFxtv3+1+1v3+∞Fxtv3+1+1v3Fx
432 336 biantrurd φhdom1v+txtv3+1+1v3FxFxtv3+1+1v3Fx
433 409 adantr φhdom1v+txtv3+1+1
434 69 ad3antlr φhdom1v+txv3+
435 433 336 434 lemuldivd φhdom1v+txtv3+1+1v3Fxtv3+1+1Fxv3
436 431 432 435 3bitr2d φhdom1v+txFxtv3+1+1v3+∞tv3+1+1Fxv3
437 406 adantr φhdom1v+txtv3+1
438 352 23 syl φhdom1v+txFxv3
439 1red φhdom1v+tx1
440 437 438 439 ltadd1d φhdom1v+txtv3+1<Fxv3tv3+1+1<Fxv3+1
441 428 436 440 3bitr4d φhdom1v+txFxtv3+1+1v3+∞tv3+1<Fxv3
442 295 439 438 ltaddsubd φhdom1v+txtv3+1<Fxv3tv3<Fxv31
443 441 442 bitrd φhdom1v+txFxtv3+1+1v3+∞tv3<Fxv31
444 438 25 syl φhdom1v+txFxv31
445 292 444 434 ltdivmul2d φhdom1v+txtv3<Fxv31t<Fxv31v3
446 444 293 remulcld φhdom1v+txFxv31v3
447 292 446 ltnled φhdom1v+txt<Fxv31v3¬Fxv31v3t
448 443 445 447 3bitrd φhdom1v+txFxtv3+1+1v3+∞¬Fxv31v3t
449 448 rabbidva φhdom1v+tx|Fxtv3+1+1v3+∞=x|¬Fxv31v3t
450 420 424 449 3eqtrd φhdom1v+tF-1tv3+1+1v3F-1tv3+1+1v3+∞=x|¬Fxv31v3t
451 1 ad3antrrr φhdom1v+tFMblFn
452 mbfimasn FMblFnF:tv3+1+1v3F-1tv3+1+1v3domvol
453 451 335 411 452 syl3anc φhdom1v+tF-1tv3+1+1v3domvol
454 mbfima FMblFnF:F-1tv3+1+1v3+∞domvol
455 1 5 454 syl2anc φF-1tv3+1+1v3+∞domvol
456 455 ad3antrrr φhdom1v+tF-1tv3+1+1v3+∞domvol
457 unmbl F-1tv3+1+1v3domvolF-1tv3+1+1v3+∞domvolF-1tv3+1+1v3F-1tv3+1+1v3+∞domvol
458 453 456 457 syl2anc φhdom1v+tF-1tv3+1+1v3F-1tv3+1+1v3+∞domvol
459 450 458 eqeltrrd φhdom1v+tx|¬Fxv31v3tdomvol
460 237 459 syl φhdom1v+tranhx|¬Fxv31v3tdomvol
461 inmbl x|¬Fxv31v3tdomvolh-1tdomvolx|¬Fxv31v3th-1tdomvol
462 460 244 461 syl2anc φhdom1v+tranhx|¬Fxv31v3th-1tdomvol
463 398 462 eqeltrd φhdom1v+tranhxh-1t|¬Fxv31v3hxdomvol
464 463 ralrimiva φhdom1v+tranhxh-1t|¬Fxv31v3hxdomvol
465 finiunmbl ranhFintranhxh-1t|¬Fxv31v3hxdomvoltranhxh-1t|¬Fxv31v3hxdomvol
466 42 464 465 syl2anc φhdom1v+tranhxh-1t|¬Fxv31v3hxdomvol
467 390 466 eqeltrrd φhdom1v+x|¬Fxv31v3hxdomvol
468 254 imaeq1d hdom1h-10=xhx-10
469 256 mptpreima xhx-10=x|hx0
470 141 elsn hx0hx=0
471 470 rabbii x|hx0=x|hx=0
472 469 471 eqtri xhx-10=x|hx=0
473 468 472 eqtrdi hdom1h-10=x|hx=0
474 i1fima hdom1h-10domvol
475 473 474 eqeltrrd hdom1x|hx=0domvol
476 475 ad2antlr φhdom1v+x|hx=0domvol
477 unmbl x|¬Fxv31v3hxdomvolx|hx=0domvolx|¬Fxv31v3hxx|hx=0domvol
478 467 476 477 syl2anc φhdom1v+x|¬Fxv31v3hxx|hx=0domvol
479 478 adantr φhdom1v+tx|¬Fxv31v3hxx|hx=0domvol
480 254 imaeq1d hdom1h-1t=xhx-1t
481 256 mptpreima xhx-1t=x|hxt
482 141 elsn hxthx=t
483 eqcom hx=tt=hx
484 482 483 bitri hxtt=hx
485 484 rabbii x|hxt=x|t=hx
486 481 485 eqtri xhx-1t=x|t=hx
487 480 486 eqtrdi hdom1h-1t=x|t=hx
488 487 ad3antlr φhdom1v+th-1t=x|t=hx
489 488 243 eqeltrrd φhdom1v+tx|t=hxdomvol
490 inmbl x|¬Fxv31v3hxx|hx=0domvolx|t=hxdomvolx|¬Fxv31v3hxx|hx=0x|t=hxdomvol
491 479 489 490 syl2anc φhdom1v+tx|¬Fxv31v3hxx|hx=0x|t=hxdomvol
492 unmbl x|Fxv31v3hxx|hx0x|t=Fxv31v3domvolx|¬Fxv31v3hxx|hx=0x|t=hxdomvolx|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hxdomvol
493 385 491 492 syl2anc φhdom1v+tx|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hxdomvol
494 160 493 syl φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0x|Fxv31v3hxx|hx0x|t=Fxv31v3x|¬Fxv31v3hxx|hx=0x|t=hxdomvol
495 155 494 eqeltrid φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0xifFxv31v3hxhx0Fxv31v3hx-1tdomvol
496 mblvol xifFxv31v3hxhx0Fxv31v3hx-1tdomvolvolxifFxv31v3hxhx0Fxv31v3hx-1t=vol*xifFxv31v3hxhx0Fxv31v3hx-1t
497 495 496 syl φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0volxifFxv31v3hxhx0Fxv31v3hx-1t=vol*xifFxv31v3hxhx0Fxv31v3hx-1t
498 eldifsn tranxifFxv31v3hxhx0Fxv31v3hx0tranxifFxv31v3hxhx0Fxv31v3hxt0
499 158 anim1d φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hxt0tt0
500 498 499 biimtrid φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0tt0
501 500 imdistani φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0φhdom1v+tt0
502 129 a1i hdom1xifFxv31v3hxhx0Fxv31v3hx-1t=x|ifFxv31v3hxhx0Fxv31v3hxt
503 468 469 eqtrdi hdom1h-10=x|hx0
504 502 503 ineq12d hdom1xifFxv31v3hxhx0Fxv31v3hx-1th-10=x|ifFxv31v3hxhx0Fxv31v3hxtx|hx0
505 inrab x|ifFxv31v3hxhx0Fxv31v3hxtx|hx0=x|ifFxv31v3hxhx0Fxv31v3hxthx0
506 504 505 eqtrdi hdom1xifFxv31v3hxhx0Fxv31v3hx-1th-10=x|ifFxv31v3hxhx0Fxv31v3hxthx0
507 506 ad3antlr φhdom1v+tt0xifFxv31v3hxhx0Fxv31v3hx-1th-10=x|ifFxv31v3hxhx0Fxv31v3hxthx0
508 145 biimpri hx=0¬hx0
509 508 intnand hx=0¬Fxv31v3hxhx0
510 509 iffalsed hx=0ifFxv31v3hxhx0Fxv31v3hx=hx
511 eqtr ifFxv31v3hxhx0Fxv31v3hx=hxhx=0ifFxv31v3hxhx0Fxv31v3hx=0
512 510 511 mpancom hx=0ifFxv31v3hxhx0Fxv31v3hx=0
513 512 adantl t0xhx=0ifFxv31v3hxhx0Fxv31v3hx=0
514 simpll t0xhx=0t0
515 514 necomd t0xhx=00t
516 513 515 eqnetrd t0xhx=0ifFxv31v3hxhx0Fxv31v3hxt
517 516 ex t0xhx=0ifFxv31v3hxhx0Fxv31v3hxt
518 orcom ¬ifFxv31v3hxhx0Fxv31v3hxt¬hx0¬hx0¬ifFxv31v3hxhx0Fxv31v3hxt
519 ianor ¬ifFxv31v3hxhx0Fxv31v3hxthx0¬ifFxv31v3hxhx0Fxv31v3hxt¬hx0
520 imor hx0¬ifFxv31v3hxhx0Fxv31v3hxt¬hx0¬ifFxv31v3hxhx0Fxv31v3hxt
521 518 519 520 3bitr4i ¬ifFxv31v3hxhx0Fxv31v3hxthx0hx0¬ifFxv31v3hxhx0Fxv31v3hxt
522 143 necon3bbii ¬ifFxv31v3hxhx0Fxv31v3hxtifFxv31v3hxhx0Fxv31v3hxt
523 470 522 imbi12i hx0¬ifFxv31v3hxhx0Fxv31v3hxthx=0ifFxv31v3hxhx0Fxv31v3hxt
524 521 523 bitri ¬ifFxv31v3hxhx0Fxv31v3hxthx0hx=0ifFxv31v3hxhx0Fxv31v3hxt
525 517 524 sylibr t0x¬ifFxv31v3hxhx0Fxv31v3hxthx0
526 525 ralrimiva t0x¬ifFxv31v3hxhx0Fxv31v3hxthx0
527 rabeq0 x|ifFxv31v3hxhx0Fxv31v3hxthx0=x¬ifFxv31v3hxhx0Fxv31v3hxthx0
528 526 527 sylibr t0x|ifFxv31v3hxhx0Fxv31v3hxthx0=
529 528 ad2antll φhdom1v+tt0x|ifFxv31v3hxhx0Fxv31v3hxthx0=
530 507 529 eqtrd φhdom1v+tt0xifFxv31v3hxhx0Fxv31v3hx-1th-10=
531 imassrn xifFxv31v3hxhx0Fxv31v3hx-1tranxifFxv31v3hxhx0Fxv31v3hx-1
532 dfdm4 domxifFxv31v3hxhx0Fxv31v3hx=ranxifFxv31v3hxhx0Fxv31v3hx-1
533 142 128 dmmpti domxifFxv31v3hxhx0Fxv31v3hx=
534 532 533 eqtr3i ranxifFxv31v3hxhx0Fxv31v3hx-1=
535 531 534 sseqtri xifFxv31v3hxhx0Fxv31v3hx-1t
536 reldisj xifFxv31v3hxhx0Fxv31v3hx-1txifFxv31v3hxhx0Fxv31v3hx-1th-10=xifFxv31v3hxhx0Fxv31v3hx-1th-10
537 535 536 ax-mp xifFxv31v3hxhx0Fxv31v3hx-1th-10=xifFxv31v3hxhx0Fxv31v3hx-1th-10
538 530 537 sylib φhdom1v+tt0xifFxv31v3hxhx0Fxv31v3hx-1th-10
539 ffun h:Funh
540 difpreima Funhh-1ranh0=h-1ranhh-10
541 539 540 syl h:h-1ranh0=h-1ranhh-10
542 fdm h:domh=
543 162 542 eqtrid h:h-1ranh=
544 543 difeq1d h:h-1ranhh-10=h-10
545 541 544 eqtrd h:h-1ranh0=h-10
546 28 545 syl hdom1h-1ranh0=h-10
547 546 ad3antlr φhdom1v+tt0h-1ranh0=h-10
548 538 547 sseqtrrd φhdom1v+tt0xifFxv31v3hxhx0Fxv31v3hx-1th-1ranh0
549 imassrn h-1ranh0ranh-1
550 549 182 sseqtrid hdom1h-1ranh0
551 550 ad3antlr φhdom1v+tt0h-1ranh0
552 i1fima hdom1h-1ranh0domvol
553 mblvol h-1ranh0domvolvolh-1ranh0=vol*h-1ranh0
554 552 553 syl hdom1volh-1ranh0=vol*h-1ranh0
555 neldifsn ¬0ranh0
556 i1fima2 hdom1¬0ranh0volh-1ranh0
557 555 556 mpan2 hdom1volh-1ranh0
558 554 557 eqeltrrd hdom1vol*h-1ranh0
559 558 ad3antlr φhdom1v+tt0vol*h-1ranh0
560 ovolsscl xifFxv31v3hxhx0Fxv31v3hx-1th-1ranh0h-1ranh0vol*h-1ranh0vol*xifFxv31v3hxhx0Fxv31v3hx-1t
561 548 551 559 560 syl3anc φhdom1v+tt0vol*xifFxv31v3hxhx0Fxv31v3hx-1t
562 501 561 syl φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0vol*xifFxv31v3hxhx0Fxv31v3hx-1t
563 497 562 eqeltrd φhdom1v+tranxifFxv31v3hxhx0Fxv31v3hx0volxifFxv31v3hxhx0Fxv31v3hx-1t
564 32 127 495 563 i1fd φhdom1v+xifFxv31v3hxhx0Fxv31v3hxdom1