Metamath Proof Explorer


Theorem matunitlindflem1

Description: One direction of matunitlindf . (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion matunitlindflem1 RFieldM:I×IBaseRIFin¬curryMLIndFRfreeLModIImaDetRM=0R

Proof

Step Hyp Ref Expression
1 isfld RFieldRDivRingRCRing
2 1 simplbi RFieldRDivRing
3 drngring RDivRingRRing
4 2 3 syl RFieldRRing
5 eqid RfreeLModI=RfreeLModI
6 5 frlmlmod RRingIFinRfreeLModILMod
7 6 adantlr RRingM:I×IBaseRIFinRfreeLModILMod
8 simpr RRingM:I×IBaseRIFinIFin
9 eldifi IFinIFin
10 eqid BaseR=BaseR
11 5 10 frlmfibas RRingIFinBaseRI=BaseRfreeLModI
12 9 11 sylan2 RRingIFinBaseRI=BaseRfreeLModI
13 fvex BaseRV
14 curf M:I×IBaseRIFinBaseRVcurryM:IBaseRI
15 13 14 mp3an3 M:I×IBaseRIFincurryM:IBaseRI
16 feq3 BaseRI=BaseRfreeLModIcurryM:IBaseRIcurryM:IBaseRfreeLModI
17 16 biimpa BaseRI=BaseRfreeLModIcurryM:IBaseRIcurryM:IBaseRfreeLModI
18 12 15 17 syl2an RRingIFinM:I×IBaseRIFincurryM:IBaseRfreeLModI
19 18 anandirs RRingM:I×IBaseRIFincurryM:IBaseRfreeLModI
20 eqid BaseRfreeLModI=BaseRfreeLModI
21 eqid ScalarRfreeLModI=ScalarRfreeLModI
22 eqid RfreeLModI=RfreeLModI
23 eqid 0RfreeLModI=0RfreeLModI
24 eqid 0ScalarRfreeLModI=0ScalarRfreeLModI
25 eqid BaseScalarRfreeLModIfreeLModI=BaseScalarRfreeLModIfreeLModI
26 20 21 22 23 24 25 islindf4 RfreeLModILModIFincurryM:IBaseRfreeLModIcurryMLIndFRfreeLModIfBaseScalarRfreeLModIfreeLModIRfreeLModIfRfreeLModIfcurryM=0RfreeLModIf=I×0ScalarRfreeLModI
27 7 8 19 26 syl3anc RRingM:I×IBaseRIFincurryMLIndFRfreeLModIfBaseScalarRfreeLModIfreeLModIRfreeLModIfRfreeLModIfcurryM=0RfreeLModIf=I×0ScalarRfreeLModI
28 5 frlmsca RRingIFinR=ScalarRfreeLModI
29 28 fvoveq1d RRingIFinBaseRfreeLModI=BaseScalarRfreeLModIfreeLModI
30 12 29 eqtrd RRingIFinBaseRI=BaseScalarRfreeLModIfreeLModI
31 30 adantlr RRingM:I×IBaseRIFinBaseRI=BaseScalarRfreeLModIfreeLModI
32 elmapi fBaseRIf:IBaseR
33 ffn f:IBaseRfFnI
34 33 adantl RRingM:I×IBaseRIFinf:IBaseRfFnI
35 19 ffnd RRingM:I×IBaseRIFincurryMFnI
36 35 adantr RRingM:I×IBaseRIFinf:IBaseRcurryMFnI
37 simplr RRingM:I×IBaseRIFinf:IBaseRIFin
38 inidm II=I
39 eqidd RRingM:I×IBaseRIFinf:IBaseRnIfn=fn
40 eqidd RRingM:I×IBaseRIFinf:IBaseRnIcurryMn=curryMn
41 34 36 37 37 38 39 40 offval RRingM:I×IBaseRIFinf:IBaseRfRfreeLModIfcurryM=nIfnRfreeLModIcurryMn
42 simpllr RRingM:I×IBaseRIFinf:IBaseRnIIFin
43 ffvelcdm f:IBaseRnIfnBaseR
44 43 adantll RRingM:I×IBaseRIFinf:IBaseRnIfnBaseR
45 19 ffvelcdmda RRingM:I×IBaseRIFinnIcurryMnBaseRfreeLModI
46 45 adantlr RRingM:I×IBaseRIFinf:IBaseRnIcurryMnBaseRfreeLModI
47 eqid R=R
48 5 20 10 42 44 46 22 47 frlmvscafval RRingM:I×IBaseRIFinf:IBaseRnIfnRfreeLModIcurryMn=I×fnRfcurryMn
49 fvex fnV
50 fnconstg fnVI×fnFnI
51 49 50 mp1i RRingM:I×IBaseRIFinf:IBaseRnII×fnFnI
52 15 ffvelcdmda M:I×IBaseRIFinnIcurryMnBaseRI
53 elmapfn curryMnBaseRIcurryMnFnI
54 52 53 syl M:I×IBaseRIFinnIcurryMnFnI
55 54 adantlll RRingM:I×IBaseRIFinnIcurryMnFnI
56 55 adantlr RRingM:I×IBaseRIFinf:IBaseRnIcurryMnFnI
57 49 fvconst2 kII×fnk=fn
58 57 adantl RRingM:I×IBaseRIFinf:IBaseRnIkII×fnk=fn
59 ffn M:I×IBaseRMFnI×I
60 59 anim2i IFinM:I×IBaseRIFinMFnI×I
61 60 ancoms M:I×IBaseRIFinIFinMFnI×I
62 61 ad4ant23 RRingM:I×IBaseRIFinf:IBaseRIFinMFnI×I
63 curfv MFnI×InIkIIFincurryMnk=nMk
64 63 3exp1 MFnI×InIkIIFincurryMnk=nMk
65 64 com4r IFinMFnI×InIkIcurryMnk=nMk
66 65 imp41 IFinMFnI×InIkIcurryMnk=nMk
67 62 66 sylanl1 RRingM:I×IBaseRIFinf:IBaseRnIkIcurryMnk=nMk
68 51 56 42 42 38 58 67 offval RRingM:I×IBaseRIFinf:IBaseRnII×fnRfcurryMn=kIfnRnMk
69 48 68 eqtrd RRingM:I×IBaseRIFinf:IBaseRnIfnRfreeLModIcurryMn=kIfnRnMk
70 69 mpteq2dva RRingM:I×IBaseRIFinf:IBaseRnIfnRfreeLModIcurryMn=nIkIfnRnMk
71 41 70 eqtrd RRingM:I×IBaseRIFinf:IBaseRfRfreeLModIfcurryM=nIkIfnRnMk
72 71 oveq2d RRingM:I×IBaseRIFinf:IBaseRRfreeLModIfRfreeLModIfcurryM=RfreeLModInIkIfnRnMk
73 simplll RRingM:I×IBaseRIFinf:IBaseRRRing
74 simp-4l RRingM:I×IBaseRf:IBaseRnIkIRRing
75 43 ad4ant23 RRingM:I×IBaseRf:IBaseRnIkIfnBaseR
76 fovcdm M:I×IBaseRnIkInMkBaseR
77 76 ad5ant245 RRingM:I×IBaseRf:IBaseRnIkInMkBaseR
78 10 47 ringcl RRingfnBaseRnMkBaseRfnRnMkBaseR
79 74 75 77 78 syl3anc RRingM:I×IBaseRf:IBaseRnIkIfnRnMkBaseR
80 79 fmpttd RRingM:I×IBaseRf:IBaseRnIkIfnRnMk:IBaseR
81 80 adantllr RRingM:I×IBaseRIFinf:IBaseRnIkIfnRnMk:IBaseR
82 elmapg BaseRVIFinkIfnRnMkBaseRIkIfnRnMk:IBaseR
83 13 82 mpan IFinkIfnRnMkBaseRIkIfnRnMk:IBaseR
84 83 adantl RRingIFinkIfnRnMkBaseRIkIfnRnMk:IBaseR
85 12 eleq2d RRingIFinkIfnRnMkBaseRIkIfnRnMkBaseRfreeLModI
86 84 85 bitr3d RRingIFinkIfnRnMk:IBaseRkIfnRnMkBaseRfreeLModI
87 86 ad5ant13 RRingM:I×IBaseRIFinf:IBaseRnIkIfnRnMk:IBaseRkIfnRnMkBaseRfreeLModI
88 81 87 mpbid RRingM:I×IBaseRIFinf:IBaseRnIkIfnRnMkBaseRfreeLModI
89 mptexg IFinkIfnRnMkV
90 89 ralrimivw IFinnIkIfnRnMkV
91 eqid nIkIfnRnMk=nIkIfnRnMk
92 91 fnmpt nIkIfnRnMkVnIkIfnRnMkFnI
93 90 92 syl IFinnIkIfnRnMkFnI
94 fvexd IFin0RfreeLModIV
95 93 9 94 fndmfifsupp IFinfinSupp0RfreeLModInIkIfnRnMk
96 95 ad2antlr RRingM:I×IBaseRIFinf:IBaseRfinSupp0RfreeLModInIkIfnRnMk
97 5 20 23 37 37 73 88 96 frlmgsum RRingM:I×IBaseRIFinf:IBaseRRfreeLModInIkIfnRnMk=kIRnIfnRnMk
98 72 97 eqtr2d RRingM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=RfreeLModIfRfreeLModIfcurryM
99 32 98 sylan2 RRingM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=RfreeLModIfRfreeLModIfcurryM
100 eqid 0R=0R
101 5 100 frlm0 RRingIFinI×0R=0RfreeLModI
102 101 ad4ant13 RRingM:I×IBaseRIFinfBaseRII×0R=0RfreeLModI
103 99 102 eqeq12d RRingM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0RRfreeLModIfRfreeLModIfcurryM=0RfreeLModI
104 28 fveq2d RRingIFin0R=0ScalarRfreeLModI
105 104 sneqd RRingIFin0R=0ScalarRfreeLModI
106 105 xpeq2d RRingIFinI×0R=I×0ScalarRfreeLModI
107 106 eqeq2d RRingIFinf=I×0Rf=I×0ScalarRfreeLModI
108 107 ad4ant13 RRingM:I×IBaseRIFinfBaseRIf=I×0Rf=I×0ScalarRfreeLModI
109 103 108 imbi12d RRingM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0Rf=I×0RRfreeLModIfRfreeLModIfcurryM=0RfreeLModIf=I×0ScalarRfreeLModI
110 31 109 raleqbidva RRingM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0Rf=I×0RfBaseScalarRfreeLModIfreeLModIRfreeLModIfRfreeLModIfcurryM=0RfreeLModIf=I×0ScalarRfreeLModI
111 27 110 bitr4d RRingM:I×IBaseRIFincurryMLIndFRfreeLModIfBaseRIkIRnIfnRnMk=I×0Rf=I×0R
112 111 notbid RRingM:I×IBaseRIFin¬curryMLIndFRfreeLModI¬fBaseRIkIRnIfnRnMk=I×0Rf=I×0R
113 rexanali fBaseRIkIRnIfnRnMk=I×0R¬f=I×0R¬fBaseRIkIRnIfnRnMk=I×0Rf=I×0R
114 112 113 bitr4di RRingM:I×IBaseRIFin¬curryMLIndFRfreeLModIfBaseRIkIRnIfnRnMk=I×0R¬f=I×0R
115 4 114 sylanl1 RFieldM:I×IBaseRIFin¬curryMLIndFRfreeLModIfBaseRIkIRnIfnRnMk=I×0R¬f=I×0R
116 fconstfv f:I0RfFnIiIfi=0R
117 fvex 0RV
118 117 fconst2 f:I0Rf=I×0R
119 116 118 sylbb1 fFnIiIfi=0Rf=I×0R
120 119 ex fFnIiIfi=0Rf=I×0R
121 120 con3d fFnI¬f=I×0R¬iIfi=0R
122 df-ne fi0R¬fi=0R
123 122 rexbii iIfi0RiI¬fi=0R
124 rexnal iI¬fi=0R¬iIfi=0R
125 123 124 bitri iIfi0R¬iIfi=0R
126 121 125 imbitrrdi fFnI¬f=I×0RiIfi0R
127 33 126 syl f:IBaseR¬f=I×0RiIfi0R
128 127 adantl RFieldM:I×IBaseRIFinf:IBaseR¬f=I×0RiIfi0R
129 neldifsn ¬iIi
130 difss IiI
131 diffi IFinIiFin
132 131 ad4antlr RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIiIiIIiFin
133 eleq2 y=iyi
134 133 notbid y=¬iy¬i
135 sseq1 y=yII
136 134 135 anbi12d y=¬iyyI¬iI
137 136 anbi2d y=RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iI
138 mpteq1 y=nyinvrRfiRfnRnMk=ninvrRfiRfnRnMk
139 mpt0 ninvrRfiRfnRnMk=
140 138 139 eqtrdi y=nyinvrRfiRfnRnMk=
141 140 oveq2d y=RnyinvrRfiRfnRnMk=R
142 100 gsum0 R=0R
143 141 142 eqtrdi y=RnyinvrRfiRfnRnMk=0R
144 143 oveq1d y=RnyinvrRfiRfnRnMk+RiMk=0R+RiMk
145 144 ifeq1d y=ifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ifj=i0R+RiMkjMk
146 145 mpoeq3dv y=jI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=i0R+RiMkjMk
147 146 fveq2d y=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=i0R+RiMkjMk
148 147 eqeq2d y=ImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=i0R+RiMkjMk
149 137 148 imbi12d y=RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIImaDetRM=ImaDetRjI,kIifj=i0R+RiMkjMk
150 elequ2 y=xiyix
151 150 notbid y=x¬iy¬ix
152 sseq1 y=xyIxI
153 151 152 anbi12d y=x¬iyyI¬ixxI
154 153 anbi2d y=xRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxI
155 mpteq1 y=xnyinvrRfiRfnRnMk=nxinvrRfiRfnRnMk
156 155 oveq2d y=xRnyinvrRfiRfnRnMk=RnxinvrRfiRfnRnMk
157 156 oveq1d y=xRnyinvrRfiRfnRnMk+RiMk=RnxinvrRfiRfnRnMk+RiMk
158 157 ifeq1d y=xifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ifj=iRnxinvrRfiRfnRnMk+RiMkjMk
159 158 mpoeq3dv y=xjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
160 159 fveq2d y=xImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
161 160 eqeq2d y=xImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
162 154 161 imbi12d y=xRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxIImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
163 eleq2 y=xziyixz
164 163 notbid y=xz¬iy¬ixz
165 sseq1 y=xzyIxzI
166 164 165 anbi12d y=xz¬iyyI¬ixzxzI
167 166 anbi2d y=xzRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI
168 mpteq1 y=xznyinvrRfiRfnRnMk=nxzinvrRfiRfnRnMk
169 168 oveq2d y=xzRnyinvrRfiRfnRnMk=RnxzinvrRfiRfnRnMk
170 169 oveq1d y=xzRnyinvrRfiRfnRnMk+RiMk=RnxzinvrRfiRfnRnMk+RiMk
171 170 ifeq1d y=xzifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
172 171 mpoeq3dv y=xzjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
173 172 fveq2d y=xzImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
174 173 eqeq2d y=xzImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
175 167 174 imbi12d y=xzRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzIImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
176 eleq2 y=IiiyiIi
177 176 notbid y=Ii¬iy¬iIi
178 sseq1 y=IiyIIiI
179 177 178 anbi12d y=Ii¬iyyI¬iIiIiI
180 179 anbi2d y=IiRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIiIiI
181 mpteq1 y=IinyinvrRfiRfnRnMk=nIiinvrRfiRfnRnMk
182 181 oveq2d y=IiRnyinvrRfiRfnRnMk=RnIiinvrRfiRfnRnMk
183 182 oveq1d y=IiRnyinvrRfiRfnRnMk+RiMk=RnIiinvrRfiRfnRnMk+RiMk
184 183 ifeq1d y=Iiifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
185 184 mpoeq3dv y=IijI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
186 185 fveq2d y=IiImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
187 186 eqeq2d y=IiImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
188 180 187 imbi12d y=IiRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iyyIImaDetRM=ImaDetRjI,kIifj=iRnyinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIiIiIImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
189 fnov MFnI×IM=jI,kIjMk
190 59 189 sylib M:I×IBaseRM=jI,kIjMk
191 190 adantl RFieldM:I×IBaseRM=jI,kIjMk
192 ringgrp RRingRGrp
193 4 192 syl RFieldRGrp
194 oveq1 i=jiMk=jMk
195 194 equcoms j=iiMk=jMk
196 195 oveq2d j=i0R+RiMk=0R+RjMk
197 simp1l RGrpM:I×IBaseRjIkIRGrp
198 fovcdm M:I×IBaseRjIkIjMkBaseR
199 198 3adant1l RGrpM:I×IBaseRjIkIjMkBaseR
200 eqid +R=+R
201 10 200 100 grplid RGrpjMkBaseR0R+RjMk=jMk
202 197 199 201 syl2anc RGrpM:I×IBaseRjIkI0R+RjMk=jMk
203 196 202 sylan9eqr RGrpM:I×IBaseRjIkIj=i0R+RiMk=jMk
204 eqidd RGrpM:I×IBaseRjIkI¬j=ijMk=jMk
205 203 204 ifeqda RGrpM:I×IBaseRjIkIifj=i0R+RiMkjMk=jMk
206 205 mpoeq3dva RGrpM:I×IBaseRjI,kIifj=i0R+RiMkjMk=jI,kIjMk
207 193 206 sylan RFieldM:I×IBaseRjI,kIifj=i0R+RiMkjMk=jI,kIjMk
208 191 207 eqtr4d RFieldM:I×IBaseRM=jI,kIifj=i0R+RiMkjMk
209 208 fveq2d RFieldM:I×IBaseRImaDetRM=ImaDetRjI,kIifj=i0R+RiMkjMk
210 209 ad4antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIImaDetRM=ImaDetRjI,kIifj=i0R+RiMkjMk
211 elun1 ixixz
212 211 con3i ¬ixz¬ix
213 ssun1 xxz
214 sstr xxzxzIxI
215 213 214 mpan xzIxI
216 212 215 anim12i ¬ixzxzI¬ixxI
217 216 anim2i RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxI
218 217 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI¬zxRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxI
219 velsn izi=z
220 elun2 izixz
221 219 220 sylbir i=zixz
222 221 necon3bi ¬ixziz
223 222 anim1i ¬ixzxzIizxzI
224 ringcmn RRingRCMnd
225 4 224 syl RFieldRCMnd
226 225 ad7antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIRCMnd
227 simplr RFieldM:I×IBaseRIFinf:IBaseRIFin
228 215 adantl izxzIxI
229 ssfi IFinxIxFin
230 227 228 229 syl2an RFieldM:I×IBaseRIFinf:IBaseRizxzIxFin
231 230 ad5ant13 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIxFin
232 215 sselda xzInxnI
233 232 adantll izxzInxnI
234 233 ad4ant24 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkInxnI
235 4 ad6antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInIRRing
236 2 ad2antrr RFieldM:I×IBaseRIFinRDivRing
237 ffvelcdm f:IBaseRiIfiBaseR
238 237 anim2i RDivRingf:IBaseRiIRDivRingfiBaseR
239 238 anassrs RDivRingf:IBaseRiIRDivRingfiBaseR
240 eqid invrR=invrR
241 10 100 240 drnginvrcl RDivRingfiBaseRfi0RinvrRfiBaseR
242 241 3expa RDivRingfiBaseRfi0RinvrRfiBaseR
243 239 242 sylan RDivRingf:IBaseRiIfi0RinvrRfiBaseR
244 243 anasss RDivRingf:IBaseRiIfi0RinvrRfiBaseR
245 236 244 sylanl1 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RinvrRfiBaseR
246 245 ad2antrr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInIinvrRfiBaseR
247 43 ad5ant25 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInIfnBaseR
248 simp-4r RFieldM:I×IBaseRIFinf:IBaseRiIfi0RM:I×IBaseR
249 76 3expa M:I×IBaseRnIkInMkBaseR
250 249 an32s M:I×IBaseRkInInMkBaseR
251 248 250 sylanl1 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInInMkBaseR
252 235 247 251 78 syl3anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInIfnRnMkBaseR
253 10 47 ringcl RRinginvrRfiBaseRfnRnMkBaseRinvrRfiRfnRnMkBaseR
254 235 246 252 253 syl3anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkInIinvrRfiRfnRnMkBaseR
255 254 adantllr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkInIinvrRfiRfnRnMkBaseR
256 234 255 syldan RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkInxinvrRfiRfnRnMkBaseR
257 256 adantllr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkInxinvrRfiRfnRnMkBaseR
258 vex zV
259 258 a1i RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIzV
260 simplr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkI¬zx
261 ssun2 zxz
262 sstr zxzxzIzI
263 261 262 mpan xzIzI
264 258 snss zIzI
265 263 264 sylibr xzIzI
266 265 adantl izxzIzI
267 4 ad6antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIRRing
268 4 ad5antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIRRing
269 245 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIinvrRfiBaseR
270 ffvelcdm f:IBaseRzIfzBaseR
271 270 ad4ant24 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIfzBaseR
272 10 47 ringcl RRinginvrRfiBaseRfzBaseRinvrRfiRfzBaseR
273 268 269 271 272 syl3anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIinvrRfiRfzBaseR
274 273 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIinvrRfiRfzBaseR
275 fovcdm M:I×IBaseRzIkIzMkBaseR
276 275 3expa M:I×IBaseRzIkIzMkBaseR
277 248 276 sylanl1 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIzMkBaseR
278 10 47 ringcl RRinginvrRfiRfzBaseRzMkBaseRinvrRfiRfzRzMkBaseR
279 267 274 277 278 syl3anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIinvrRfiRfzRzMkBaseR
280 266 279 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIinvrRfiRfzRzMkBaseR
281 280 adantlr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIinvrRfiRfzRzMkBaseR
282 fveq2 n=zfn=fz
283 oveq1 n=znMk=zMk
284 282 283 oveq12d n=zfnRnMk=fzRzMk
285 284 oveq2d n=zinvrRfiRfnRnMk=invrRfiRfzRzMk
286 245 ad2antrr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIinvrRfiBaseR
287 270 ad5ant24 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIfzBaseR
288 10 47 ringass RRinginvrRfiBaseRfzBaseRzMkBaseRinvrRfiRfzRzMk=invrRfiRfzRzMk
289 267 286 287 277 288 syl13anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIinvrRfiRfzRzMk=invrRfiRfzRzMk
290 289 eqcomd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RzIkIinvrRfiRfzRzMk=invrRfiRfzRzMk
291 266 290 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIinvrRfiRfzRzMk=invrRfiRfzRzMk
292 285 291 sylan9eqr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIn=zinvrRfiRfnRnMk=invrRfiRfzRzMk
293 292 adantllr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIn=zinvrRfiRfnRnMk=invrRfiRfzRzMk
294 10 200 226 231 257 259 260 281 293 gsumunsnd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIRnxzinvrRfiRfnRnMk=RnxinvrRfiRfnRnMk+RinvrRfiRfzRzMk
295 294 oveq1d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIRnxzinvrRfiRfnRnMk+RiMk=RnxinvrRfiRfnRnMk+RinvrRfiRfzRzMk+RiMk
296 ringabl RRingRAbel
297 4 296 syl RFieldRAbel
298 297 ad6antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIkIRAbel
299 225 ad6antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIRCMnd
300 vex xV
301 300 a1i RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIxV
302 ssel2 xInxnI
303 302 254 sylan2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIxInxinvrRfiRfnRnMkBaseR
304 303 anassrs RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIxInxinvrRfiRfnRnMkBaseR
305 304 fmpttd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIxInxinvrRfiRfnRnMk:xBaseR
306 305 an32s RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkInxinvrRfiRfnRnMk:xBaseR
307 ovex invrRfiRfnRnMkV
308 eqid nxinvrRfiRfnRnMk=nxinvrRfiRfnRnMk
309 307 308 fnmpti nxinvrRfiRfnRnMkFnx
310 309 a1i IFinxInxinvrRfiRfnRnMkFnx
311 fvexd IFinxI0RV
312 310 229 311 fndmfifsupp IFinxIfinSupp0RnxinvrRfiRfnRnMk
313 312 adantll RFieldM:I×IBaseRIFinxIfinSupp0RnxinvrRfiRfnRnMk
314 313 ad5ant14 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIfinSupp0RnxinvrRfiRfnRnMk
315 10 100 299 301 306 314 gsumcl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIRnxinvrRfiRfnRnMkBaseR
316 215 315 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIkIRnxinvrRfiRfnRnMkBaseR
317 265 279 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIkIinvrRfiRfzRzMkBaseR
318 simpllr RFieldM:I×IBaseRIFinf:IBaseRM:I×IBaseR
319 simpl iIfi0RiI
320 318 319 anim12i RFieldM:I×IBaseRIFinf:IBaseRiIfi0RM:I×IBaseRiI
321 320 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIM:I×IBaseRiI
322 fovcdm M:I×IBaseRiIkIiMkBaseR
323 322 3expa M:I×IBaseRiIkIiMkBaseR
324 321 323 sylan RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIkIiMkBaseR
325 10 200 298 316 317 324 abl32 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxzIkIRnxinvrRfiRfnRnMk+RinvrRfiRfzRzMk+RiMk=RnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMk
326 325 adantlrl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIRnxinvrRfiRfnRnMk+RinvrRfiRfzRzMk+RiMk=RnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMk
327 326 adantlr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIRnxinvrRfiRfnRnMk+RinvrRfiRfzRzMk+RiMk=RnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMk
328 295 327 eqtrd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIRnxzinvrRfiRfnRnMk+RiMk=RnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMk
329 328 ifeq1d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxkIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk
330 329 3adant2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxjIkIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk
331 330 mpoeq3dva RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=jI,kIifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk
332 331 fveq2d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk
333 eqid ImaDetR=ImaDetR
334 1 simprbi RFieldRCRing
335 334 ad5antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIRCRing
336 simp-4r RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIIFin
337 193 ad6antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIRGrp
338 320 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIM:I×IBaseRiI
339 338 323 sylan RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIiMkBaseR
340 10 200 grpcl RGrpRnxinvrRfiRfnRnMkBaseRiMkBaseRRnxinvrRfiRfnRnMk+RiMkBaseR
341 337 315 339 340 syl3anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RxIkIRnxinvrRfiRfnRnMk+RiMkBaseR
342 228 341 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIRnxinvrRfiRfnRnMk+RiMkBaseR
343 248 266 anim12i RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIM:I×IBaseRzI
344 343 276 sylan RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIkIzMkBaseR
345 simp-5r RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIM:I×IBaseR
346 345 198 syl3an1 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIjIkIjMkBaseR
347 266 273 sylan2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIinvrRfiRfzBaseR
348 simplrl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIiI
349 265 ad2antll RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIzI
350 simprl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIiz
351 333 10 200 47 335 336 342 344 346 347 348 349 350 mdetero RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzIImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk
352 351 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMk+RinvrRfiRfzRzMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk
353 332 352 eqtrd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk
354 iftrue j=zifj=zzMkjMk=zMk
355 oveq1 j=zjMk=zMk
356 354 355 eqtr4d j=zifj=zzMkjMk=jMk
357 iffalse ¬j=zifj=zzMkjMk=jMk
358 356 357 pm2.61i ifj=zzMkjMk=jMk
359 ifeq2 ifj=zzMkjMk=jMkifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
360 358 359 mp1i jIkIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
361 360 mpoeq3ia jI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=jI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
362 361 fveq2i ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
363 ifeq2 ifj=zzMkjMk=jMkifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxinvrRfiRfnRnMk+RiMkjMk
364 358 363 mp1i jIkIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ifj=iRnxinvrRfiRfnRnMk+RiMkjMk
365 364 mpoeq3ia jI,kIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk=jI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
366 365 fveq2i ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkifj=zzMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
367 353 362 366 3eqtr3g RFieldM:I×IBaseRIFinf:IBaseRiIfi0RizxzI¬zxImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
368 223 367 sylanl2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI¬zxImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
369 368 eqeq2d RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI¬zxImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMk
370 369 biimprd RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI¬zxImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
371 218 370 embantd RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzI¬zxRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxIImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
372 371 expcom ¬zxRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzIRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxIImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMkImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
373 372 com23 ¬zxRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxIImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzIImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
374 373 adantl xFin¬zxRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixxIImaDetRM=ImaDetRjI,kIifj=iRnxinvrRfiRfnRnMk+RiMkjMkRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬ixzxzIImaDetRM=ImaDetRjI,kIifj=iRnxzinvrRfiRfnRnMk+RiMkjMk
375 149 162 175 188 210 374 findcard2s IiFinRFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIiIiIImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
376 132 375 mpcom RFieldM:I×IBaseRIFinf:IBaseRiIfi0R¬iIiIiIImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
377 129 130 376 mpanr12 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
378 377 adantlr RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRM=ImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk
379 eqid I=I
380 fconstmpt I×0R=kI0R
381 380 eqeq2i kIRnIfnRnMk=I×0RkIRnIfnRnMk=kI0R
382 ovex RnIfnRnMkV
383 382 rgenw kIRnIfnRnMkV
384 mpteqb kIRnIfnRnMkVkIRnIfnRnMk=kI0RkIRnIfnRnMk=0R
385 383 384 ax-mp kIRnIfnRnMk=kI0RkIRnIfnRnMk=0R
386 381 385 bitri kIRnIfnRnMk=I×0RkIRnIfnRnMk=0R
387 225 ad5antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRCMnd
388 simp-4r RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIIFin
389 eqid nIinvrRfiRfnRnMk=nIinvrRfiRfnRnMk
390 307 389 fnmpti nIinvrRfiRfnRnMkFnI
391 390 a1i IFinnIinvrRfiRfnRnMkFnI
392 id IFinIFin
393 fvexd IFin0RV
394 391 392 393 fndmfifsupp IFinfinSupp0RnIinvrRfiRfnRnMk
395 394 ad4antlr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIfinSupp0RnIinvrRfiRfnRnMk
396 simplrl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIiI
397 320 323 sylan RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIiMkBaseR
398 fveq2 n=ifn=fi
399 oveq1 n=inMk=iMk
400 398 399 oveq12d n=ifnRnMk=fiRiMk
401 400 oveq2d n=iinvrRfiRfnRnMk=invrRfiRfiRiMk
402 simpll RFieldM:I×IBaseRIFinRField
403 2 237 anim12i RFieldf:IBaseRiIRDivRingfiBaseR
404 403 anassrs RFieldf:IBaseRiIRDivRingfiBaseR
405 eqid 1R=1R
406 10 100 47 405 240 drnginvrl RDivRingfiBaseRfi0RinvrRfiRfi=1R
407 406 3expa RDivRingfiBaseRfi0RinvrRfiRfi=1R
408 404 407 sylan RFieldf:IBaseRiIfi0RinvrRfiRfi=1R
409 408 anasss RFieldf:IBaseRiIfi0RinvrRfiRfi=1R
410 409 oveq1d RFieldf:IBaseRiIfi0RinvrRfiRfiRiMk=1RRiMk
411 402 410 sylanl1 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RinvrRfiRfiRiMk=1RRiMk
412 411 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIinvrRfiRfiRiMk=1RRiMk
413 4 ad5antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRRing
414 245 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIinvrRfiBaseR
415 237 ad2ant2lr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RfiBaseR
416 415 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIfiBaseR
417 10 47 ringass RRinginvrRfiBaseRfiBaseRiMkBaseRinvrRfiRfiRiMk=invrRfiRfiRiMk
418 413 414 416 397 417 syl13anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIinvrRfiRfiRiMk=invrRfiRfiRiMk
419 4 adantr RFieldM:I×IBaseRRRing
420 419 3ad2ant1 RFieldM:I×IBaseRiIkIRRing
421 322 3adant1l RFieldM:I×IBaseRiIkIiMkBaseR
422 10 47 405 ringlidm RRingiMkBaseR1RRiMk=iMk
423 420 421 422 syl2anc RFieldM:I×IBaseRiIkI1RRiMk=iMk
424 423 ad5ant145 RFieldM:I×IBaseRIFinf:IBaseRiIkI1RRiMk=iMk
425 424 adantlrr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkI1RRiMk=iMk
426 412 418 425 3eqtr3d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIinvrRfiRfiRiMk=iMk
427 401 426 sylan9eqr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIn=iinvrRfiRfnRnMk=iMk
428 10 200 387 388 395 254 396 397 427 gsumdifsnd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIinvrRfiRfnRnMk=RnIiinvrRfiRfnRnMk+RiMk
429 ovex fnRnMkV
430 eqid nIfnRnMk=nIfnRnMk
431 429 430 fnmpti nIfnRnMkFnI
432 431 a1i IFinnIfnRnMkFnI
433 432 392 393 fndmfifsupp IFinfinSupp0RnIfnRnMk
434 433 ad4antlr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIfinSupp0RnIfnRnMk
435 10 100 47 413 388 414 252 434 gsummulc2 RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIinvrRfiRfnRnMk=invrRfiRRnIfnRnMk
436 428 435 eqtr3d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIiinvrRfiRfnRnMk+RiMk=invrRfiRRnIfnRnMk
437 436 adantr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RRnIiinvrRfiRfnRnMk+RiMk=invrRfiRRnIfnRnMk
438 oveq2 RnIfnRnMk=0RinvrRfiRRnIfnRnMk=invrRfiR0R
439 438 adantl RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RinvrRfiRRnIfnRnMk=invrRfiR0R
440 4 ad4antr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RRRing
441 10 47 100 ringrz RRinginvrRfiBaseRinvrRfiR0R=0R
442 440 245 441 syl2anc RFieldM:I×IBaseRIFinf:IBaseRiIfi0RinvrRfiR0R=0R
443 442 ad2antrr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RinvrRfiR0R=0R
444 437 439 443 3eqtrd RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RRnIiinvrRfiRfnRnMk+RiMk=0R
445 444 ifeq1d RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0Rifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
446 445 ex RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0Rifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
447 446 ralimdva RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
448 447 imp RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=0RkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
449 386 448 sylan2b RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=I×0RkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
450 449 379 jctil RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=I×0RI=IkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
451 450 ralrimivw RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=I×0RjII=IkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMk
452 mpoeq123 I=IjII=IkIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ifj=i0RjMkjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=i0RjMk
453 379 451 452 sylancr RFieldM:I×IBaseRIFinf:IBaseRiIfi0RkIRnIfnRnMk=I×0RjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=i0RjMk
454 453 an32s RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=jI,kIifj=i0RjMk
455 454 fveq2d RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRjI,kIifj=iRnIiinvrRfiRfnRnMk+RiMkjMk=ImaDetRjI,kIifj=i0RjMk
456 334 ad3antrrr RFieldM:I×IBaseRIFiniIfi0RRCRing
457 simplr RFieldM:I×IBaseRIFiniIfi0RIFin
458 simpllr RFieldM:I×IBaseRIFiniIfi0RM:I×IBaseR
459 458 198 syl3an1 RFieldM:I×IBaseRIFiniIfi0RjIkIjMkBaseR
460 simprl RFieldM:I×IBaseRIFiniIfi0RiI
461 333 10 100 456 457 459 460 mdetr0 RFieldM:I×IBaseRIFiniIfi0RImaDetRjI,kIifj=i0RjMk=0R
462 461 ad4ant14 RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRjI,kIifj=i0RjMk=0R
463 378 455 462 3eqtrd RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRM=0R
464 463 rexlimdvaa RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRM=0R
465 464 expimpd RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0RiIfi0RImaDetRM=0R
466 128 465 sylan2d RFieldM:I×IBaseRIFinf:IBaseRkIRnIfnRnMk=I×0R¬f=I×0RImaDetRM=0R
467 32 466 sylan2 RFieldM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0R¬f=I×0RImaDetRM=0R
468 467 rexlimdva RFieldM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0R¬f=I×0RImaDetRM=0R
469 9 468 sylan2 RFieldM:I×IBaseRIFinfBaseRIkIRnIfnRnMk=I×0R¬f=I×0RImaDetRM=0R
470 115 469 sylbid RFieldM:I×IBaseRIFin¬curryMLIndFRfreeLModIImaDetRM=0R