Metamath Proof Explorer


Theorem fourierdlem76

Description: Continuity of O and its limits with respect to the S partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem76.f φF:
fourierdlem76.xre φX
fourierdlem76.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem76.m φM
fourierdlem76.v φVPM
fourierdlem76.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem76.r φi0..^MRFViVi+1limVi
fourierdlem76.l φi0..^MLFViVi+1limVi+1
fourierdlem76.a φA
fourierdlem76.b φB
fourierdlem76.altb φA<B
fourierdlem76.ab φABππ
fourierdlem76.n0 φ¬0AB
fourierdlem76.c φC
fourierdlem76.o O=sABFX+sCss2sins2
fourierdlem76.q Q=i0MViX
fourierdlem76.t T=ABranQAB
fourierdlem76.n N=T1
fourierdlem76.s S=ιf|fIsom<,<0NT
fourierdlem76.d D=ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12
fourierdlem76.e E=ifSj=QiRFX+SjCSjSj2sinSj2
fourierdlem76.ch χφj0..^Ni0..^MSjSj+1QiQi+1
Assertion fourierdlem76 φj0..^Ni0..^MSjSj+1QiQi+1DOSjSj+1limSj+1EOSjSj+1limSjOSjSj+1:SjSj+1cn

Proof

Step Hyp Ref Expression
1 fourierdlem76.f φF:
2 fourierdlem76.xre φX
3 fourierdlem76.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
4 fourierdlem76.m φM
5 fourierdlem76.v φVPM
6 fourierdlem76.fcn φi0..^MFViVi+1:ViVi+1cn
7 fourierdlem76.r φi0..^MRFViVi+1limVi
8 fourierdlem76.l φi0..^MLFViVi+1limVi+1
9 fourierdlem76.a φA
10 fourierdlem76.b φB
11 fourierdlem76.altb φA<B
12 fourierdlem76.ab φABππ
13 fourierdlem76.n0 φ¬0AB
14 fourierdlem76.c φC
15 fourierdlem76.o O=sABFX+sCss2sins2
16 fourierdlem76.q Q=i0MViX
17 fourierdlem76.t T=ABranQAB
18 fourierdlem76.n N=T1
19 fourierdlem76.s S=ιf|fIsom<,<0NT
20 fourierdlem76.d D=ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12
21 fourierdlem76.e E=ifSj=QiRFX+SjCSjSj2sinSj2
22 fourierdlem76.ch χφj0..^Ni0..^MSjSj+1QiQi+1
23 eqid sSjSj+1FX+sCs=sSjSj+1FX+sCs
24 eqid sSjSj+1s2sins2=sSjSj+1s2sins2
25 eqid sSjSj+1FX+sCss2sins2=sSjSj+1FX+sCss2sins2
26 simplll φj0..^Ni0..^MSjSj+1QiQi+1φ
27 22 26 sylbi χφ
28 27 adantr χsSjSj+1φ
29 ioossicc ABAB
30 9 rexrd φA*
31 27 30 syl χA*
32 31 adantr χsSjSj+1A*
33 10 rexrd φB*
34 27 33 syl χB*
35 34 adantr χsSjSj+1B*
36 elioore sSjSj+1s
37 36 adantl χsSjSj+1s
38 27 9 syl χA
39 38 adantr χsSjSj+1A
40 prfi ABFin
41 40 a1i φABFin
42 fzfid φ0MFin
43 16 rnmptfi 0MFinranQFin
44 infi ranQFinranQABFin
45 42 43 44 3syl φranQABFin
46 unfi ABFinranQABFinABranQABFin
47 41 45 46 syl2anc φABranQABFin
48 17 47 eqeltrid φTFin
49 prssg ABABAB
50 9 10 49 syl2anc φABAB
51 9 10 50 mpbi2and φAB
52 inss2 ranQABAB
53 ioossre AB
54 52 53 sstri ranQAB
55 54 a1i φranQAB
56 51 55 unssd φABranQAB
57 17 56 eqsstrid φT
58 48 57 19 18 fourierdlem36 φSIsom<,<0NT
59 27 58 syl χSIsom<,<0NT
60 isof1o SIsom<,<0NTS:0N1-1 ontoT
61 f1of S:0N1-1 ontoTS:0NT
62 59 60 61 3syl χS:0NT
63 27 57 syl χT
64 62 63 fssd χS:0N
65 64 adantr χsSjSj+1S:0N
66 simpllr φj0..^Ni0..^MSjSj+1QiQi+1j0..^N
67 22 66 sylbi χj0..^N
68 elfzofz j0..^Nj0N
69 67 68 syl χj0N
70 69 adantr χsSjSj+1j0N
71 65 70 ffvelcdmd χsSjSj+1Sj
72 58 60 61 3syl φS:0NT
73 frn S:0NTranST
74 72 73 syl φranST
75 9 leidd φAA
76 9 10 11 ltled φAB
77 9 10 9 75 76 eliccd φAAB
78 10 leidd φBB
79 9 10 10 76 78 eliccd φBAB
80 prssg ABAABBABABAB
81 9 10 80 syl2anc φAABBABABAB
82 77 79 81 mpbi2and φABAB
83 52 29 sstri ranQABAB
84 83 a1i φranQABAB
85 82 84 unssd φABranQABAB
86 17 85 eqsstrid φTAB
87 74 86 sstrd φranSAB
88 27 87 syl χranSAB
89 ffun S:0NFunS
90 64 89 syl χFunS
91 fdm S:0NdomS=0N
92 64 91 syl χdomS=0N
93 92 eqcomd χ0N=domS
94 69 93 eleqtrd χjdomS
95 fvelrn FunSjdomSSjranS
96 90 94 95 syl2anc χSjranS
97 88 96 sseldd χSjAB
98 iccgelb A*B*SjABASj
99 31 34 97 98 syl3anc χASj
100 99 adantr χsSjSj+1ASj
101 71 rexrd χsSjSj+1Sj*
102 fzofzp1 j0..^Nj+10N
103 67 102 syl χj+10N
104 64 103 ffvelcdmd χSj+1
105 104 rexrd χSj+1*
106 105 adantr χsSjSj+1Sj+1*
107 simpr χsSjSj+1sSjSj+1
108 ioogtlb Sj*Sj+1*sSjSj+1Sj<s
109 101 106 107 108 syl3anc χsSjSj+1Sj<s
110 39 71 37 100 109 lelttrd χsSjSj+1A<s
111 104 adantr χsSjSj+1Sj+1
112 27 10 syl χB
113 112 adantr χsSjSj+1B
114 iooltub Sj*Sj+1*sSjSj+1s<Sj+1
115 101 106 107 114 syl3anc χsSjSj+1s<Sj+1
116 103 93 eleqtrd χj+1domS
117 fvelrn FunSj+1domSSj+1ranS
118 90 116 117 syl2anc χSj+1ranS
119 88 118 sseldd χSj+1AB
120 iccleub A*B*Sj+1ABSj+1B
121 31 34 119 120 syl3anc χSj+1B
122 121 adantr χsSjSj+1Sj+1B
123 37 111 113 115 122 ltletrd χsSjSj+1s<B
124 32 35 37 110 123 eliood χsSjSj+1sAB
125 29 124 sselid χsSjSj+1sAB
126 1 adantr φsABF:
127 2 adantr φsABX
128 9 10 iccssred φAB
129 128 sselda φsABs
130 127 129 readdcld φsABX+s
131 126 130 ffvelcdmd φsABFX+s
132 28 125 131 syl2anc χsSjSj+1FX+s
133 132 recnd χsSjSj+1FX+s
134 14 recnd φC
135 27 134 syl χC
136 135 adantr χsSjSj+1C
137 133 136 subcld χsSjSj+1FX+sC
138 ioossre SjSj+1
139 138 a1i χSjSj+1
140 139 sselda χsSjSj+1s
141 140 recnd χsSjSj+1s
142 nne ¬s0s=0
143 142 biimpi ¬s0s=0
144 143 eqcomd ¬s00=s
145 144 adantl φsAB¬s00=s
146 simpr φsABsAB
147 146 adantr φsAB¬s0sAB
148 145 147 eqeltrd φsAB¬s00AB
149 13 ad2antrr φsAB¬s0¬0AB
150 148 149 condan φsABs0
151 28 125 150 syl2anc χsSjSj+1s0
152 137 141 151 divcld χsSjSj+1FX+sCs
153 2cnd χsSjSj+12
154 141 halfcld χsSjSj+1s2
155 154 sincld χsSjSj+1sins2
156 153 155 mulcld χsSjSj+12sins2
157 36 recnd sSjSj+1s
158 157 adantl χsSjSj+1s
159 158 halfcld χsSjSj+1s2
160 159 sincld χsSjSj+1sins2
161 2ne0 20
162 161 a1i χsSjSj+120
163 27 12 syl χABππ
164 163 adantr χsSjSj+1ABππ
165 164 125 sseldd χsSjSj+1sππ
166 fourierdlem44 sππs0sins20
167 165 151 166 syl2anc χsSjSj+1sins20
168 153 160 162 167 mulne0d χsSjSj+12sins20
169 141 156 168 divcld χsSjSj+1s2sins2
170 eqid sSjSj+1FX+sC=sSjSj+1FX+sC
171 eqid sSjSj+1s=sSjSj+1s
172 151 neneqd χsSjSj+1¬s=0
173 velsn s0s=0
174 172 173 sylnibr χsSjSj+1¬s0
175 141 174 eldifd χsSjSj+1s0
176 eqid sSjSj+1FX+s=sSjSj+1FX+s
177 eqid sSjSj+1C=sSjSj+1C
178 elfzofz i0..^Mi0M
179 178 adantl φi0..^Mi0M
180 pire π
181 180 renegcli π
182 181 a1i φπ
183 182 2 readdcld φ-π+X
184 180 a1i φπ
185 184 2 readdcld φπ+X
186 183 185 iccssred φ-π+Xπ+X
187 186 adantr φi0..^M-π+Xπ+X
188 3 4 5 fourierdlem15 φV:0M-π+Xπ+X
189 188 adantr φi0..^MV:0M-π+Xπ+X
190 189 179 ffvelcdmd φi0..^MVi-π+Xπ+X
191 187 190 sseldd φi0..^MVi
192 2 adantr φi0..^MX
193 191 192 resubcld φi0..^MViX
194 16 fvmpt2 i0MViXQi=ViX
195 179 193 194 syl2anc φi0..^MQi=ViX
196 195 193 eqeltrd φi0..^MQi
197 196 adantlr φj0..^Ni0..^MQi
198 197 adantr φj0..^Ni0..^MSjSj+1QiQi+1Qi
199 22 198 sylbi χQi
200 fveq2 i=jVi=Vj
201 200 oveq1d i=jViX=VjX
202 201 cbvmptv i0MViX=j0MVjX
203 16 202 eqtri Q=j0MVjX
204 203 a1i φi0..^MQ=j0MVjX
205 fveq2 j=i+1Vj=Vi+1
206 205 oveq1d j=i+1VjX=Vi+1X
207 206 adantl φi0..^Mj=i+1VjX=Vi+1X
208 fzofzp1 i0..^Mi+10M
209 208 adantl φi0..^Mi+10M
210 189 209 ffvelcdmd φi0..^MVi+1-π+Xπ+X
211 187 210 sseldd φi0..^MVi+1
212 211 192 resubcld φi0..^MVi+1X
213 204 207 209 212 fvmptd φi0..^MQi+1=Vi+1X
214 213 212 eqeltrd φi0..^MQi+1
215 214 adantlr φj0..^Ni0..^MQi+1
216 215 adantr φj0..^Ni0..^MSjSj+1QiQi+1Qi+1
217 22 216 sylbi χQi+1
218 3 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
219 4 218 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
220 5 219 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
221 220 simprrd φi0..^MVi<Vi+1
222 221 r19.21bi φi0..^MVi<Vi+1
223 191 211 192 222 ltsub1dd φi0..^MViX<Vi+1X
224 223 195 213 3brtr4d φi0..^MQi<Qi+1
225 224 adantlr φj0..^Ni0..^MQi<Qi+1
226 225 adantr φj0..^Ni0..^MSjSj+1QiQi+1Qi<Qi+1
227 22 226 sylbi χQi<Qi+1
228 22 biimpi χφj0..^Ni0..^MSjSj+1QiQi+1
229 228 simplrd χi0..^M
230 27 229 191 syl2anc χVi
231 230 rexrd χVi*
232 231 adantr χsQiQi+1Vi*
233 27 229 211 syl2anc χVi+1
234 233 rexrd χVi+1*
235 234 adantr χsQiQi+1Vi+1*
236 27 2 syl χX
237 236 adantr χsQiQi+1X
238 elioore sQiQi+1s
239 238 adantl χsQiQi+1s
240 237 239 readdcld χsQiQi+1X+s
241 27 229 195 syl2anc χQi=ViX
242 241 oveq2d χX+Qi=X+Vi-X
243 236 recnd χX
244 230 recnd χVi
245 243 244 pncan3d χX+Vi-X=Vi
246 242 245 eqtr2d χVi=X+Qi
247 246 adantr χsQiQi+1Vi=X+Qi
248 199 adantr χsQiQi+1Qi
249 199 rexrd χQi*
250 249 adantr χsQiQi+1Qi*
251 217 rexrd χQi+1*
252 251 adantr χsQiQi+1Qi+1*
253 simpr χsQiQi+1sQiQi+1
254 ioogtlb Qi*Qi+1*sQiQi+1Qi<s
255 250 252 253 254 syl3anc χsQiQi+1Qi<s
256 248 239 237 255 ltadd2dd χsQiQi+1X+Qi<X+s
257 247 256 eqbrtrd χsQiQi+1Vi<X+s
258 217 adantr χsQiQi+1Qi+1
259 iooltub Qi*Qi+1*sQiQi+1s<Qi+1
260 250 252 253 259 syl3anc χsQiQi+1s<Qi+1
261 239 258 237 260 ltadd2dd χsQiQi+1X+s<X+Qi+1
262 27 229 213 syl2anc χQi+1=Vi+1X
263 262 oveq2d χX+Qi+1=X+Vi+1-X
264 233 recnd χVi+1
265 243 264 pncan3d χX+Vi+1-X=Vi+1
266 263 265 eqtrd χX+Qi+1=Vi+1
267 266 adantr χsQiQi+1X+Qi+1=Vi+1
268 261 267 breqtrd χsQiQi+1X+s<Vi+1
269 232 235 240 257 268 eliood χsQiQi+1X+sViVi+1
270 fvres X+sViVi+1FViVi+1X+s=FX+s
271 269 270 syl χsQiQi+1FViVi+1X+s=FX+s
272 271 eqcomd χsQiQi+1FX+s=FViVi+1X+s
273 272 mpteq2dva χsQiQi+1FX+s=sQiQi+1FViVi+1X+s
274 ioosscn ViVi+1
275 274 a1i χViVi+1
276 27 229 6 syl2anc χFViVi+1:ViVi+1cn
277 ioosscn QiQi+1
278 277 a1i χQiQi+1
279 275 276 278 243 269 fourierdlem23 χsQiQi+1FViVi+1X+s:QiQi+1cn
280 273 279 eqeltrd χsQiQi+1FX+s:QiQi+1cn
281 27 1 syl χF:
282 ioossre QiQi+1
283 282 a1i χQiQi+1
284 eqid sQiQi+1FX+s=sQiQi+1FX+s
285 ioossre ViVi+1
286 285 a1i χViVi+1
287 239 260 ltned χsQiQi+1sQi+1
288 27 229 8 syl2anc χLFViVi+1limVi+1
289 266 eqcomd χVi+1=X+Qi+1
290 289 oveq2d χFViVi+1limVi+1=FViVi+1limX+Qi+1
291 288 290 eleqtrd χLFViVi+1limX+Qi+1
292 217 recnd χQi+1
293 281 236 283 284 269 286 287 291 292 fourierdlem53 χLsQiQi+1FX+slimQi+1
294 64 69 ffvelcdmd χSj
295 elfzoelz j0..^Nj
296 zre jj
297 67 295 296 3syl χj
298 297 ltp1d χj<j+1
299 isorel SIsom<,<0NTj0Nj+10Nj<j+1Sj<Sj+1
300 59 69 103 299 syl12anc χj<j+1Sj<Sj+1
301 298 300 mpbid χSj<Sj+1
302 22 simprbi χSjSj+1QiQi+1
303 eqid ifSj+1=Qi+1LsQiQi+1FX+sSj+1=ifSj+1=Qi+1LsQiQi+1FX+sSj+1
304 eqid TopOpenfld𝑡QiQi+1Qi+1=TopOpenfld𝑡QiQi+1Qi+1
305 199 217 227 280 293 294 104 301 302 303 304 fourierdlem33 χifSj+1=Qi+1LsQiQi+1FX+sSj+1sQiQi+1FX+sSjSj+1limSj+1
306 eqidd χ¬Sj+1=Qi+1sQiQi+1FX+s=sQiQi+1FX+s
307 simpr χ¬Sj+1=Qi+1s=Sj+1s=Sj+1
308 307 oveq2d χ¬Sj+1=Qi+1s=Sj+1X+s=X+Sj+1
309 308 fveq2d χ¬Sj+1=Qi+1s=Sj+1FX+s=FX+Sj+1
310 249 adantr χ¬Sj+1=Qi+1Qi*
311 251 adantr χ¬Sj+1=Qi+1Qi+1*
312 104 adantr χ¬Sj+1=Qi+1Sj+1
313 199 217 294 104 301 302 fourierdlem10 χQiSjSj+1Qi+1
314 313 simpld χQiSj
315 199 294 104 314 301 lelttrd χQi<Sj+1
316 315 adantr χ¬Sj+1=Qi+1Qi<Sj+1
317 217 adantr χ¬Sj+1=Qi+1Qi+1
318 313 simprd χSj+1Qi+1
319 318 adantr χ¬Sj+1=Qi+1Sj+1Qi+1
320 neqne ¬Sj+1=Qi+1Sj+1Qi+1
321 320 necomd ¬Sj+1=Qi+1Qi+1Sj+1
322 321 adantl χ¬Sj+1=Qi+1Qi+1Sj+1
323 312 317 319 322 leneltd χ¬Sj+1=Qi+1Sj+1<Qi+1
324 310 311 312 316 323 eliood χ¬Sj+1=Qi+1Sj+1QiQi+1
325 236 104 readdcld χX+Sj+1
326 281 325 ffvelcdmd χFX+Sj+1
327 326 adantr χ¬Sj+1=Qi+1FX+Sj+1
328 306 309 324 327 fvmptd χ¬Sj+1=Qi+1sQiQi+1FX+sSj+1=FX+Sj+1
329 328 ifeq2da χifSj+1=Qi+1LsQiQi+1FX+sSj+1=ifSj+1=Qi+1LFX+Sj+1
330 302 resmptd χsQiQi+1FX+sSjSj+1=sSjSj+1FX+s
331 330 oveq1d χsQiQi+1FX+sSjSj+1limSj+1=sSjSj+1FX+slimSj+1
332 305 329 331 3eltr3d χifSj+1=Qi+1LFX+Sj+1sSjSj+1FX+slimSj+1
333 ax-resscn
334 139 333 sstrdi χSjSj+1
335 104 recnd χSj+1
336 177 334 135 335 constlimc χCsSjSj+1ClimSj+1
337 176 177 170 133 136 332 336 sublimc χifSj+1=Qi+1LFX+Sj+1CsSjSj+1FX+sClimSj+1
338 334 171 335 idlimc χSj+1sSjSj+1slimSj+1
339 27 119 jca χφSj+1AB
340 eleq1 s=Sj+1sABSj+1AB
341 340 anbi2d s=Sj+1φsABφSj+1AB
342 neeq1 s=Sj+1s0Sj+10
343 341 342 imbi12d s=Sj+1φsABs0φSj+1ABSj+10
344 343 150 vtoclg Sj+1φSj+1ABSj+10
345 104 339 344 sylc χSj+10
346 170 171 23 137 175 337 338 345 151 divlimc χifSj+1=Qi+1LFX+Sj+1CSj+1sSjSj+1FX+sCslimSj+1
347 eqid sSjSj+12sins2=sSjSj+12sins2
348 153 160 mulcld χsSjSj+12sins2
349 168 neneqd χsSjSj+1¬2sins2=0
350 2re 2
351 350 a1i χsSjSj+12
352 36 rehalfcld sSjSj+1s2
353 352 resincld sSjSj+1sins2
354 353 adantl χsSjSj+1sins2
355 351 354 remulcld χsSjSj+12sins2
356 elsng 2sins22sins202sins2=0
357 355 356 syl χsSjSj+12sins202sins2=0
358 349 357 mtbird χsSjSj+1¬2sins20
359 348 358 eldifd χsSjSj+12sins20
360 eqid sSjSj+12=sSjSj+12
361 eqid sSjSj+1sins2=sSjSj+1sins2
362 2cnd χ2
363 360 334 362 335 constlimc χ2sSjSj+12limSj+1
364 352 ad2antrl χsSjSj+1s2Sj+12s2
365 recn xx
366 365 sincld xsinx
367 366 adantl χxsinx
368 eqid sSjSj+1s2=sSjSj+1s2
369 2cn 2
370 eldifsn 20220
371 369 161 370 mpbir2an 20
372 371 a1i χsSjSj+120
373 161 a1i χ20
374 171 360 368 158 372 338 363 373 162 divlimc χSj+12sSjSj+1s2limSj+1
375 sinf sin:
376 375 a1i sin:
377 333 a1i
378 376 377 feqresmpt sin=xsinx
379 378 mptru sin=xsinx
380 resincncf sin:cn
381 379 380 eqeltrri xsinx:cn
382 381 a1i χxsinx:cn
383 104 rehalfcld χSj+12
384 fveq2 x=Sj+12sinx=sinSj+12
385 382 383 384 cnmptlimc χsinSj+12xsinxlimSj+12
386 fveq2 x=s2sinx=sins2
387 fveq2 s2=Sj+12sins2=sinSj+12
388 387 ad2antll χsSjSj+1s2=Sj+12sins2=sinSj+12
389 364 367 374 385 386 388 limcco χsinSj+12sSjSj+1sins2limSj+1
390 360 361 347 153 160 363 389 mullimc χ2sinSj+12sSjSj+12sins2limSj+1
391 335 halfcld χSj+12
392 391 sincld χsinSj+12
393 163 119 sseldd χSj+1ππ
394 fourierdlem44 Sj+1ππSj+10sinSj+120
395 393 345 394 syl2anc χsinSj+120
396 362 392 373 395 mulne0d χ2sinSj+120
397 171 347 24 158 359 338 390 396 168 divlimc χSj+12sinSj+12sSjSj+1s2sins2limSj+1
398 23 24 25 152 169 346 397 mullimc χifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12sSjSj+1FX+sCss2sins2limSj+1
399 20 a1i χD=ifSj+1=Qi+1LFX+Sj+1CSj+1Sj+12sinSj+12
400 15 reseq1i OSjSj+1=sABFX+sCss2sins2SjSj+1
401 ioossicc SjSj+1SjSj+1
402 iccss ABASjSj+1BSjSj+1AB
403 38 112 99 121 402 syl22anc χSjSj+1AB
404 401 403 sstrid χSjSj+1AB
405 404 resmptd χsABFX+sCss2sins2SjSj+1=sSjSj+1FX+sCss2sins2
406 400 405 eqtrid χOSjSj+1=sSjSj+1FX+sCss2sins2
407 406 oveq1d χOSjSj+1limSj+1=sSjSj+1FX+sCss2sins2limSj+1
408 398 399 407 3eltr4d χDOSjSj+1limSj+1
409 22 408 sylbir φj0..^Ni0..^MSjSj+1QiQi+1DOSjSj+1limSj+1
410 248 255 gtned χsQiQi+1sQi
411 27 229 7 syl2anc χRFViVi+1limVi
412 246 oveq2d χFViVi+1limVi=FViVi+1limX+Qi
413 411 412 eleqtrd χRFViVi+1limX+Qi
414 199 recnd χQi
415 281 236 283 284 269 286 410 413 414 fourierdlem53 χRsQiQi+1FX+slimQi
416 eqid ifSj=QiRsQiQi+1FX+sSj=ifSj=QiRsQiQi+1FX+sSj
417 eqid TopOpenfld𝑡QiQi+1=TopOpenfld𝑡QiQi+1
418 199 217 227 280 415 294 104 301 302 416 417 fourierdlem32 χifSj=QiRsQiQi+1FX+sSjsQiQi+1FX+sSjSj+1limSj
419 eqidd χ¬Sj=QisQiQi+1FX+s=sQiQi+1FX+s
420 oveq2 s=SjX+s=X+Sj
421 420 fveq2d s=SjFX+s=FX+Sj
422 421 adantl χ¬Sj=Qis=SjFX+s=FX+Sj
423 249 adantr χ¬Sj=QiQi*
424 251 adantr χ¬Sj=QiQi+1*
425 294 adantr χ¬Sj=QiSj
426 199 adantr χ¬Sj=QiQi
427 314 adantr χ¬Sj=QiQiSj
428 neqne ¬Sj=QiSjQi
429 428 adantl χ¬Sj=QiSjQi
430 426 425 427 429 leneltd χ¬Sj=QiQi<Sj
431 104 adantr χ¬Sj=QiSj+1
432 217 adantr χ¬Sj=QiQi+1
433 301 adantr χ¬Sj=QiSj<Sj+1
434 318 adantr χ¬Sj=QiSj+1Qi+1
435 425 431 432 433 434 ltletrd χ¬Sj=QiSj<Qi+1
436 423 424 425 430 435 eliood χ¬Sj=QiSjQiQi+1
437 236 294 readdcld χX+Sj
438 281 437 ffvelcdmd χFX+Sj
439 438 adantr χ¬Sj=QiFX+Sj
440 419 422 436 439 fvmptd χ¬Sj=QisQiQi+1FX+sSj=FX+Sj
441 440 ifeq2da χifSj=QiRsQiQi+1FX+sSj=ifSj=QiRFX+Sj
442 330 oveq1d χsQiQi+1FX+sSjSj+1limSj=sSjSj+1FX+slimSj
443 418 441 442 3eltr3d χifSj=QiRFX+SjsSjSj+1FX+slimSj
444 294 recnd χSj
445 177 334 135 444 constlimc χCsSjSj+1ClimSj
446 176 177 170 133 136 443 445 sublimc χifSj=QiRFX+SjCsSjSj+1FX+sClimSj
447 334 171 444 idlimc χSjsSjSj+1slimSj
448 27 97 jca χφSjAB
449 eleq1 s=SjsABSjAB
450 449 anbi2d s=SjφsABφSjAB
451 neeq1 s=Sjs0Sj0
452 450 451 imbi12d s=SjφsABs0φSjABSj0
453 452 150 vtoclg SjABφSjABSj0
454 97 448 453 sylc χSj0
455 170 171 23 137 175 446 447 454 151 divlimc χifSj=QiRFX+SjCSjsSjSj+1FX+sCslimSj
456 360 334 362 444 constlimc χ2sSjSj+12limSj
457 352 ad2antrl χsSjSj+1s2Sj2s2
458 171 360 368 158 372 447 456 373 162 divlimc χSj2sSjSj+1s2limSj
459 294 rehalfcld χSj2
460 fveq2 x=Sj2sinx=sinSj2
461 382 459 460 cnmptlimc χsinSj2xsinxlimSj2
462 fveq2 s2=Sj2sins2=sinSj2
463 462 ad2antll χsSjSj+1s2=Sj2sins2=sinSj2
464 457 367 458 461 386 463 limcco χsinSj2sSjSj+1sins2limSj
465 360 361 347 153 160 456 464 mullimc χ2sinSj2sSjSj+12sins2limSj
466 444 halfcld χSj2
467 466 sincld χsinSj2
468 163 97 sseldd χSjππ
469 fourierdlem44 SjππSj0sinSj20
470 468 454 469 syl2anc χsinSj20
471 362 467 373 470 mulne0d χ2sinSj20
472 171 347 24 158 359 447 465 471 168 divlimc χSj2sinSj2sSjSj+1s2sins2limSj
473 23 24 25 152 169 455 472 mullimc χifSj=QiRFX+SjCSjSj2sinSj2sSjSj+1FX+sCss2sins2limSj
474 21 a1i χE=ifSj=QiRFX+SjCSjSj2sinSj2
475 406 oveq1d χOSjSj+1limSj=sSjSj+1FX+sCss2sins2limSj
476 473 474 475 3eltr4d χEOSjSj+1limSj
477 22 476 sylbir φj0..^Ni0..^MSjSj+1QiQi+1EOSjSj+1limSj
478 302 sselda χsSjSj+1sQiQi+1
479 478 272 syldan χsSjSj+1FX+s=FViVi+1X+s
480 479 mpteq2dva χsSjSj+1FX+s=sSjSj+1FViVi+1X+s
481 231 adantr χsSjSj+1Vi*
482 234 adantr χsSjSj+1Vi+1*
483 236 adantr χsSjSj+1X
484 483 140 readdcld χsSjSj+1X+s
485 246 adantr χsSjSj+1Vi=X+Qi
486 199 adantr χsSjSj+1Qi
487 249 adantr χsSjSj+1Qi*
488 251 adantr χsSjSj+1Qi+1*
489 487 488 478 254 syl3anc χsSjSj+1Qi<s
490 486 37 483 489 ltadd2dd χsSjSj+1X+Qi<X+s
491 485 490 eqbrtrd χsSjSj+1Vi<X+s
492 217 adantr χsSjSj+1Qi+1
493 487 488 478 259 syl3anc χsSjSj+1s<Qi+1
494 37 492 483 493 ltadd2dd χsSjSj+1X+s<X+Qi+1
495 266 adantr χsSjSj+1X+Qi+1=Vi+1
496 494 495 breqtrd χsSjSj+1X+s<Vi+1
497 481 482 484 491 496 eliood χsSjSj+1X+sViVi+1
498 275 276 334 243 497 fourierdlem23 χsSjSj+1FViVi+1X+s:SjSj+1cn
499 480 498 eqeltrd χsSjSj+1FX+s:SjSj+1cn
500 ssid
501 500 a1i χ
502 334 135 501 constcncfg χsSjSj+1C:SjSj+1cn
503 499 502 subcncf χsSjSj+1FX+sC:SjSj+1cn
504 175 ralrimiva χsSjSj+1s0
505 dfss3 SjSj+10sSjSj+1s0
506 504 505 sylibr χSjSj+10
507 difssd χ0
508 506 507 idcncfg χsSjSj+1s:SjSj+1cn0
509 503 508 divcncf χsSjSj+1FX+sCs:SjSj+1cn
510 334 501 idcncfg χsSjSj+1s:SjSj+1cn
511 359 347 fmptd χsSjSj+12sins2:SjSj+10
512 334 362 501 constcncfg χsSjSj+12:SjSj+1cn
513 sincn sin:cn
514 513 a1i χsin:cn
515 371 a1i χ20
516 334 515 507 constcncfg χsSjSj+12:SjSj+1cn0
517 510 516 divcncf χsSjSj+1s2:SjSj+1cn
518 514 517 cncfmpt1f χsSjSj+1sins2:SjSj+1cn
519 512 518 mulcncf χsSjSj+12sins2:SjSj+1cn
520 cncfcdm 0sSjSj+12sins2:SjSj+1cnsSjSj+12sins2:SjSj+1cn0sSjSj+12sins2:SjSj+10
521 507 519 520 syl2anc χsSjSj+12sins2:SjSj+1cn0sSjSj+12sins2:SjSj+10
522 511 521 mpbird χsSjSj+12sins2:SjSj+1cn0
523 510 522 divcncf χsSjSj+1s2sins2:SjSj+1cn
524 509 523 mulcncf χsSjSj+1FX+sCss2sins2:SjSj+1cn
525 406 524 eqeltrd χOSjSj+1:SjSj+1cn
526 22 525 sylbir φj0..^Ni0..^MSjSj+1QiQi+1OSjSj+1:SjSj+1cn
527 409 477 526 jca31 φj0..^Ni0..^MSjSj+1QiQi+1DOSjSj+1limSj+1EOSjSj+1limSjOSjSj+1:SjSj+1cn