Metamath Proof Explorer


Theorem ftc1anclem6

Description: Lemma for ftc1anc - construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of Fremlin5 p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued F . (Contributed by Brendan Leahy, 31-May-2018)

Ref Expression
Hypotheses ftc1anc.g G=xABAxFtdt
ftc1anc.a φA
ftc1anc.b φB
ftc1anc.le φAB
ftc1anc.s φABD
ftc1anc.d φD
ftc1anc.i φF𝐿1
ftc1anc.f φF:D
Assertion ftc1anclem6 φY+fdom1gdom12tiftDFt0ft+igt<Y

Proof

Step Hyp Ref Expression
1 ftc1anc.g G=xABAxFtdt
2 ftc1anc.a φA
3 ftc1anc.b φB
4 ftc1anc.le φAB
5 ftc1anc.s φABD
6 ftc1anc.d φD
7 ftc1anc.i φF𝐿1
8 ftc1anc.f φF:D
9 rphalfcl Y+Y2+
10 1 2 3 4 5 6 7 8 ftc1anclem5 φY2+fdom12tiftDFt0ft<Y2
11 9 10 sylan2 φY+fdom12tiftDFt0ft<Y2
12 eqid xABAxyD1iFytdt=xABAxyD1iFytdt
13 ax-icn i
14 ine0 i0
15 13 14 reccli 1i
16 15 a1i φ1i
17 8 ffvelcdmda φyDFy
18 8 feqmptd φF=yDFy
19 18 7 eqeltrrd φyDFy𝐿1
20 divrec2 Fyii0Fyi=1iFy
21 13 14 20 mp3an23 FyFyi=1iFy
22 17 21 syl φyDFyi=1iFy
23 22 mpteq2dva φyDFyi=yD1iFy
24 iblmbf yDFy𝐿1yDFyMblFn
25 19 24 syl φyDFyMblFn
26 2fveq3 y=xFy=Fx
27 26 cbvmptv yDFy=xDFx
28 27 eleq1i yDFyMblFnxDFxMblFn
29 17 recld φyDFy
30 29 recnd φyDFy
31 30 adantlr φxDFxMblFnyDFy
32 28 biimpri xDFxMblFnyDFyMblFn
33 32 adantl φxDFxMblFnyDFyMblFn
34 31 33 mbfneg φxDFxMblFnyDFyMblFn
35 28 34 sylan2b φyDFyMblFnyDFyMblFn
36 8 ffvelcdmda φxDFx
37 36 recld φxDFx
38 37 recnd φxDFx
39 38 negnegd φxDFx=Fx
40 39 mpteq2dva φxDFx=xDFx
41 40 27 eqtr4di φxDFx=yDFy
42 41 adantr φyDFyMblFnxDFx=yDFy
43 negex FxV
44 43 a1i φyDFyMblFnxDFxV
45 26 negeqd y=xFy=Fx
46 45 cbvmptv yDFy=xDFx
47 46 eleq1i yDFyMblFnxDFxMblFn
48 47 biimpi yDFyMblFnxDFxMblFn
49 48 adantl φyDFyMblFnxDFxMblFn
50 44 49 mbfneg φyDFyMblFnxDFxMblFn
51 42 50 eqeltrrd φyDFyMblFnyDFyMblFn
52 35 51 impbida φyDFyMblFnyDFyMblFn
53 divcl Fyii0Fyi
54 imre FyiFyi=iFyi
55 53 54 syl Fyii0Fyi=iFyi
56 13 14 55 mp3an23 FyFyi=iFyi
57 13 14 53 mp3an23 FyFyi
58 mulneg1 iFyiiFyi=iFyi
59 13 57 58 sylancr FyiFyi=iFyi
60 divcan2 Fyii0iFyi=Fy
61 13 14 60 mp3an23 FyiFyi=Fy
62 61 negeqd FyiFyi=Fy
63 59 62 eqtrd FyiFyi=Fy
64 63 fveq2d FyiFyi=Fy
65 reneg FyFy=Fy
66 56 64 65 3eqtrd FyFyi=Fy
67 17 66 syl φyDFyi=Fy
68 67 mpteq2dva φyDFyi=yDFy
69 68 eleq1d φyDFyiMblFnyDFyMblFn
70 52 69 bitr4d φyDFyMblFnyDFyiMblFn
71 imval FyFy=Fyi
72 17 71 syl φyDFy=Fyi
73 72 mpteq2dva φyDFy=yDFyi
74 73 eleq1d φyDFyMblFnyDFyiMblFn
75 70 74 anbi12d φyDFyMblFnyDFyMblFnyDFyiMblFnyDFyiMblFn
76 ancom yDFyiMblFnyDFyiMblFnyDFyiMblFnyDFyiMblFn
77 75 76 bitrdi φyDFyMblFnyDFyMblFnyDFyiMblFnyDFyiMblFn
78 17 ismbfcn2 φyDFyMblFnyDFyMblFnyDFyMblFn
79 17 57 syl φyDFyi
80 79 ismbfcn2 φyDFyiMblFnyDFyiMblFnyDFyiMblFn
81 77 78 80 3bitr4d φyDFyMblFnyDFyiMblFn
82 25 81 mpbid φyDFyiMblFn
83 23 82 eqeltrrd φyD1iFyMblFn
84 16 17 19 83 iblmulc2nc φyD1iFy𝐿1
85 mulcl 1iFy1iFy
86 15 17 85 sylancr φyD1iFy
87 86 fmpttd φyD1iFy:D
88 12 2 3 4 5 6 84 87 ftc1anclem5 φY2+gdom12tiftDyD1iFyt0gt<Y2
89 9 88 sylan2 φY+gdom12tiftDyD1iFyt0gt<Y2
90 8 ffvelcdmda φtDFt
91 0cnd φ¬tD0
92 90 91 ifclda φiftDFt0
93 imval iftDFt0iftDFt0=iftDFt0i
94 92 93 syl φiftDFt0=iftDFt0i
95 fveq2 y=tFy=Ft
96 95 oveq2d y=t1iFy=1iFt
97 eqid yD1iFy=yD1iFy
98 ovex 1iFtV
99 96 97 98 fvmpt tDyD1iFyt=1iFt
100 99 adantl φtDyD1iFyt=1iFt
101 divrec2 Ftii0Fti=1iFt
102 13 14 101 mp3an23 FtFti=1iFt
103 90 102 syl φtDFti=1iFt
104 100 103 eqtr4d φtDyD1iFyt=Fti
105 104 ifeq1da φiftDyD1iFyt0=iftDFti0
106 ovif iftDFt0i=iftDFti0i
107 13 14 div0i 0i=0
108 ifeq2 0i=0iftDFti0i=iftDFti0
109 107 108 ax-mp iftDFti0i=iftDFti0
110 106 109 eqtri iftDFt0i=iftDFti0
111 105 110 eqtr4di φiftDyD1iFyt0=iftDFt0i
112 111 fveq2d φiftDyD1iFyt0=iftDFt0i
113 94 112 eqtr4d φiftDFt0=iftDyD1iFyt0
114 113 fvoveq1d φiftDFt0gt=iftDyD1iFyt0gt
115 114 mpteq2dv φtiftDFt0gt=tiftDyD1iFyt0gt
116 115 fveq2d φ2tiftDFt0gt=2tiftDyD1iFyt0gt
117 116 breq1d φ2tiftDFt0gt<Y22tiftDyD1iFyt0gt<Y2
118 117 rexbidv φgdom12tiftDFt0gt<Y2gdom12tiftDyD1iFyt0gt<Y2
119 118 adantr φY+gdom12tiftDFt0gt<Y2gdom12tiftDyD1iFyt0gt<Y2
120 89 119 mpbird φY+gdom12tiftDFt0gt<Y2
121 reeanv fdom1gdom12tiftDFt0ft<Y22tiftDFt0gt<Y2fdom12tiftDFt0ft<Y2gdom12tiftDFt0gt<Y2
122 eleq1w x=txDtD
123 fveq2 x=tFx=Ft
124 122 123 ifbieq1d x=tifxDFx0=iftDFt0
125 124 fveq2d x=tifxDFx0=iftDFt0
126 eqid xifxDFx0=xifxDFx0
127 fvex iftDFt0V
128 125 126 127 fvmpt txifxDFx0t=iftDFt0
129 128 fvoveq1d txifxDFx0tft=iftDFt0ft
130 129 mpteq2ia txifxDFx0tft=tiftDFt0ft
131 130 fveq2i 2txifxDFx0tft=2tiftDFt0ft
132 rembl domvol
133 132 a1i φdomvol
134 0cnd φ¬xD0
135 36 134 ifclda φifxDFx0
136 135 adantr φxDifxDFx0
137 eldifn xD¬xD
138 137 adantl φxD¬xD
139 138 iffalsed φxDifxDFx0=0
140 8 feqmptd φF=xDFx
141 iftrue xDifxDFx0=Fx
142 141 mpteq2ia xDifxDFx0=xDFx
143 140 142 eqtr4di φF=xDifxDFx0
144 143 7 eqeltrrd φxDifxDFx0𝐿1
145 6 133 136 139 144 iblss2 φxifxDFx0𝐿1
146 135 adantr φxifxDFx0
147 146 iblcn φxifxDFx0𝐿1xifxDFx0𝐿1xifxDFx0𝐿1
148 145 147 mpbid φxifxDFx0𝐿1xifxDFx0𝐿1
149 148 simpld φxifxDFx0𝐿1
150 146 recld φxifxDFx0
151 150 fmpttd φxifxDFx0:
152 149 151 jca φxifxDFx0𝐿1xifxDFx0:
153 ftc1anclem4 fdom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0tft
154 153 3expb fdom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0tft
155 152 154 sylan2 fdom1φ2txifxDFx0tft
156 155 ancoms φfdom12txifxDFx0tft
157 131 156 eqeltrrid φfdom12tiftDFt0ft
158 124 fveq2d x=tifxDFx0=iftDFt0
159 eqid xifxDFx0=xifxDFx0
160 fvex iftDFt0V
161 158 159 160 fvmpt txifxDFx0t=iftDFt0
162 161 fvoveq1d txifxDFx0tgt=iftDFt0gt
163 162 mpteq2ia txifxDFx0tgt=tiftDFt0gt
164 163 fveq2i 2txifxDFx0tgt=2tiftDFt0gt
165 148 simprd φxifxDFx0𝐿1
166 135 imcld φifxDFx0
167 166 adantr φxifxDFx0
168 167 fmpttd φxifxDFx0:
169 165 168 jca φxifxDFx0𝐿1xifxDFx0:
170 ftc1anclem4 gdom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0tgt
171 170 3expb gdom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0tgt
172 169 171 sylan2 gdom1φ2txifxDFx0tgt
173 172 ancoms φgdom12txifxDFx0tgt
174 164 173 eqeltrrid φgdom12tiftDFt0gt
175 157 174 anim12dan φfdom1gdom12tiftDFt0ft2tiftDFt0gt
176 9 rpred Y+Y2
177 176 176 jca Y+Y2Y2
178 lt2add 2tiftDFt0ft2tiftDFt0gtY2Y22tiftDFt0ft<Y22tiftDFt0gt<Y22tiftDFt0ft+2tiftDFt0gt<Y2+Y2
179 175 177 178 syl2an φfdom1gdom1Y+2tiftDFt0ft<Y22tiftDFt0gt<Y22tiftDFt0ft+2tiftDFt0gt<Y2+Y2
180 179 an32s φY+fdom1gdom12tiftDFt0ft<Y22tiftDFt0gt<Y22tiftDFt0ft+2tiftDFt0gt<Y2+Y2
181 92 recld φiftDFt0
182 181 recnd φiftDFt0
183 i1ff fdom1f:
184 183 ffvelcdmda fdom1tft
185 184 recnd fdom1tft
186 subcl iftDFt0ftiftDFt0ft
187 182 185 186 syl2an φfdom1tiftDFt0ft
188 187 anassrs φfdom1tiftDFt0ft
189 188 adantlrr φfdom1gdom1tiftDFt0ft
190 92 imcld φiftDFt0
191 190 recnd φiftDFt0
192 i1ff gdom1g:
193 192 ffvelcdmda gdom1tgt
194 193 recnd gdom1tgt
195 subcl iftDFt0gtiftDFt0gt
196 191 194 195 syl2an φgdom1tiftDFt0gt
197 196 anassrs φgdom1tiftDFt0gt
198 mulcl iiftDFt0gtiiftDFt0gt
199 13 197 198 sylancr φgdom1tiiftDFt0gt
200 199 adantlrl φfdom1gdom1tiiftDFt0gt
201 189 200 addcld φfdom1gdom1tiftDFt0-ft+iiftDFt0gt
202 201 abscld φfdom1gdom1tiftDFt0-ft+iiftDFt0gt
203 202 rexrd φfdom1gdom1tiftDFt0-ft+iiftDFt0gt*
204 201 absge0d φfdom1gdom1t0iftDFt0-ft+iiftDFt0gt
205 elxrge0 iftDFt0-ft+iiftDFt0gt0+∞iftDFt0-ft+iiftDFt0gt*0iftDFt0-ft+iiftDFt0gt
206 203 204 205 sylanbrc φfdom1gdom1tiftDFt0-ft+iiftDFt0gt0+∞
207 206 fmpttd φfdom1gdom1tiftDFt0-ft+iiftDFt0gt:0+∞
208 icossicc 0+∞0+∞
209 ge0addcl x0+∞y0+∞x+y0+∞
210 208 209 sselid x0+∞y0+∞x+y0+∞
211 210 adantl φfdom1gdom1x0+∞y0+∞x+y0+∞
212 188 abscld φfdom1tiftDFt0ft
213 188 absge0d φfdom1t0iftDFt0ft
214 elrege0 iftDFt0ft0+∞iftDFt0ft0iftDFt0ft
215 212 213 214 sylanbrc φfdom1tiftDFt0ft0+∞
216 215 fmpttd φfdom1tiftDFt0ft:0+∞
217 216 adantrr φfdom1gdom1tiftDFt0ft:0+∞
218 197 abscld φgdom1tiftDFt0gt
219 197 absge0d φgdom1t0iftDFt0gt
220 elrege0 iftDFt0gt0+∞iftDFt0gt0iftDFt0gt
221 218 219 220 sylanbrc φgdom1tiftDFt0gt0+∞
222 221 fmpttd φgdom1tiftDFt0gt:0+∞
223 222 adantrl φfdom1gdom1tiftDFt0gt:0+∞
224 reex V
225 224 a1i φfdom1gdom1V
226 inidm =
227 211 217 223 225 225 226 off φfdom1gdom1tiftDFt0ft+ftiftDFt0gt:0+∞
228 189 200 abstrid φfdom1gdom1tiftDFt0-ft+iiftDFt0gtiftDFt0ft+iiftDFt0gt
229 228 ralrimiva φfdom1gdom1tiftDFt0-ft+iiftDFt0gtiftDFt0ft+iiftDFt0gt
230 ovexd φfdom1gdom1tiftDFt0ft+iiftDFt0gtV
231 eqidd φfdom1gdom1tiftDFt0-ft+iiftDFt0gt=tiftDFt0-ft+iiftDFt0gt
232 fvexd φfdom1gdom1tiftDFt0ftV
233 fvexd φfdom1gdom1tiiftDFt0gtV
234 eqidd φfdom1gdom1tiftDFt0ft=tiftDFt0ft
235 absmul iiftDFt0gtiiftDFt0gt=iiftDFt0gt
236 13 197 235 sylancr φgdom1tiiftDFt0gt=iiftDFt0gt
237 absi i=1
238 237 oveq1i iiftDFt0gt=1iftDFt0gt
239 218 recnd φgdom1tiftDFt0gt
240 239 mullidd φgdom1t1iftDFt0gt=iftDFt0gt
241 238 240 eqtrid φgdom1tiiftDFt0gt=iftDFt0gt
242 236 241 eqtr2d φgdom1tiftDFt0gt=iiftDFt0gt
243 242 mpteq2dva φgdom1tiftDFt0gt=tiiftDFt0gt
244 243 adantrl φfdom1gdom1tiftDFt0gt=tiiftDFt0gt
245 225 232 233 234 244 offval2 φfdom1gdom1tiftDFt0ft+ftiftDFt0gt=tiftDFt0ft+iiftDFt0gt
246 225 202 230 231 245 ofrfval2 φfdom1gdom1tiftDFt0-ft+iiftDFt0gtftiftDFt0ft+ftiftDFt0gttiftDFt0-ft+iiftDFt0gtiftDFt0ft+iiftDFt0gt
247 229 246 mpbird φfdom1gdom1tiftDFt0-ft+iiftDFt0gtftiftDFt0ft+ftiftDFt0gt
248 itg2le tiftDFt0-ft+iiftDFt0gt:0+∞tiftDFt0ft+ftiftDFt0gt:0+∞tiftDFt0-ft+iiftDFt0gtftiftDFt0ft+ftiftDFt0gt2tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+ftiftDFt0gt
249 207 227 247 248 syl3anc φfdom1gdom12tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+ftiftDFt0gt
250 absf abs:
251 250 a1i φfdom1abs:
252 251 188 cofmpt φfdom1abstiftDFt0ft=tiftDFt0ft
253 resubcl iftDFt0ftiftDFt0ft
254 181 184 253 syl2an φfdom1tiftDFt0ft
255 254 anassrs φfdom1tiftDFt0ft
256 255 fmpttd φfdom1tiftDFt0ft:
257 132 a1i φfdom1domvol
258 iunin2 yranftiftDFt0ft-1x+∞f-1y=tiftDFt0ft-1x+∞yranff-1y
259 imaiun f-1yranfy=yranff-1y
260 iunid yranfy=ranf
261 260 imaeq2i f-1yranfy=f-1ranf
262 259 261 eqtr3i yranff-1y=f-1ranf
263 262 ineq2i tiftDFt0ft-1x+∞yranff-1y=tiftDFt0ft-1x+∞f-1ranf
264 258 263 eqtri yranftiftDFt0ft-1x+∞f-1y=tiftDFt0ft-1x+∞f-1ranf
265 cnvimass tiftDFt0ft-1x+∞domtiftDFt0ft
266 ovex iftDFt0ftV
267 eqid tiftDFt0ft=tiftDFt0ft
268 266 267 dmmpti domtiftDFt0ft=
269 265 268 sseqtri tiftDFt0ft-1x+∞
270 cnvimarndm f-1ranf=domf
271 183 fdmd fdom1domf=
272 270 271 eqtrid fdom1f-1ranf=
273 269 272 sseqtrrid fdom1tiftDFt0ft-1x+∞f-1ranf
274 df-ss tiftDFt0ft-1x+∞f-1ranftiftDFt0ft-1x+∞f-1ranf=tiftDFt0ft-1x+∞
275 273 274 sylib fdom1tiftDFt0ft-1x+∞f-1ranf=tiftDFt0ft-1x+∞
276 264 275 eqtrid fdom1yranftiftDFt0ft-1x+∞f-1y=tiftDFt0ft-1x+∞
277 276 ad2antlr φfdom1xyranftiftDFt0ft-1x+∞f-1y=tiftDFt0ft-1x+∞
278 183 frnd fdom1ranf
279 278 ad2antlr φfdom1xranf
280 279 sselda φfdom1xyranfy
281 181 ad2antrr φxyiftDFt0
282 resubcl iftDFt0yiftDFt0y
283 181 282 sylan φyiftDFt0y
284 283 adantlr φxyiftDFt0y
285 281 284 2thd φxyiftDFt0iftDFt0y
286 ltaddsub xyiftDFt0x+y<iftDFt0x<iftDFt0y
287 181 286 syl3an3 xyφx+y<iftDFt0x<iftDFt0y
288 287 3comr φxyx+y<iftDFt0x<iftDFt0y
289 288 3expa φxyx+y<iftDFt0x<iftDFt0y
290 285 289 anbi12d φxyiftDFt0x+y<iftDFt0iftDFt0yx<iftDFt0y
291 readdcl xyx+y
292 291 rexrd xyx+y*
293 292 adantll φxyx+y*
294 elioopnf x+y*iftDFt0x+y+∞iftDFt0x+y<iftDFt0
295 293 294 syl φxyiftDFt0x+y+∞iftDFt0x+y<iftDFt0
296 rexr xx*
297 296 ad2antlr φxyx*
298 elioopnf x*iftDFt0yx+∞iftDFt0yx<iftDFt0y
299 297 298 syl φxyiftDFt0yx+∞iftDFt0yx<iftDFt0y
300 290 295 299 3bitr4rd φxyiftDFt0yx+∞iftDFt0x+y+∞
301 oveq2 ft=yiftDFt0ft=iftDFt0y
302 301 eleq1d ft=yiftDFt0ftx+∞iftDFt0yx+∞
303 302 bibi1d ft=yiftDFt0ftx+∞iftDFt0x+y+∞iftDFt0yx+∞iftDFt0x+y+∞
304 300 303 syl5ibrcom φxyft=yiftDFt0ftx+∞iftDFt0x+y+∞
305 304 pm5.32rd φxyiftDFt0ftx+∞ft=yiftDFt0x+y+∞ft=y
306 305 adantllr φfdom1xyiftDFt0ftx+∞ft=yiftDFt0x+y+∞ft=y
307 280 306 syldan φfdom1xyranfiftDFt0ftx+∞ft=yiftDFt0x+y+∞ft=y
308 307 rabbidv φfdom1xyranft|iftDFt0ftx+∞ft=y=t|iftDFt0x+y+∞ft=y
309 183 feqmptd fdom1f=tft
310 309 cnveqd fdom1f-1=tft-1
311 310 imaeq1d fdom1f-1y=tft-1y
312 311 ineq2d fdom1tiftDFt0ft-1x+∞f-1y=tiftDFt0ft-1x+∞tft-1y
313 267 mptpreima tiftDFt0ft-1x+∞=t|iftDFt0ftx+∞
314 vex yV
315 eqid tft=tft
316 315 mptiniseg yVtft-1y=t|ft=y
317 314 316 ax-mp tft-1y=t|ft=y
318 313 317 ineq12i tiftDFt0ft-1x+∞tft-1y=t|iftDFt0ftx+∞t|ft=y
319 inrab t|iftDFt0ftx+∞t|ft=y=t|iftDFt0ftx+∞ft=y
320 318 319 eqtri tiftDFt0ft-1x+∞tft-1y=t|iftDFt0ftx+∞ft=y
321 312 320 eqtrdi fdom1tiftDFt0ft-1x+∞f-1y=t|iftDFt0ftx+∞ft=y
322 321 ad3antlr φfdom1xyranftiftDFt0ft-1x+∞f-1y=t|iftDFt0ftx+∞ft=y
323 311 ineq2d fdom1tiftDFt0-1x+y+∞f-1y=tiftDFt0-1x+y+∞tft-1y
324 eqid tiftDFt0=tiftDFt0
325 324 mptpreima tiftDFt0-1x+y+∞=t|iftDFt0x+y+∞
326 325 317 ineq12i tiftDFt0-1x+y+∞tft-1y=t|iftDFt0x+y+∞t|ft=y
327 inrab t|iftDFt0x+y+∞t|ft=y=t|iftDFt0x+y+∞ft=y
328 326 327 eqtri tiftDFt0-1x+y+∞tft-1y=t|iftDFt0x+y+∞ft=y
329 323 328 eqtrdi fdom1tiftDFt0-1x+y+∞f-1y=t|iftDFt0x+y+∞ft=y
330 329 ad3antlr φfdom1xyranftiftDFt0-1x+y+∞f-1y=t|iftDFt0x+y+∞ft=y
331 308 322 330 3eqtr4d φfdom1xyranftiftDFt0ft-1x+∞f-1y=tiftDFt0-1x+y+∞f-1y
332 331 iuneq2dv φfdom1xyranftiftDFt0ft-1x+∞f-1y=yranftiftDFt0-1x+y+∞f-1y
333 277 332 eqtr3d φfdom1xtiftDFt0ft-1x+∞=yranftiftDFt0-1x+y+∞f-1y
334 i1frn fdom1ranfFin
335 334 adantl φfdom1ranfFin
336 92 adantr φtDiftDFt0
337 eldifn tD¬tD
338 337 adantl φtD¬tD
339 338 iffalsed φtDiftDFt0=0
340 8 feqmptd φF=tDFt
341 iftrue tDiftDFt0=Ft
342 341 mpteq2ia tDiftDFt0=tDFt
343 340 342 eqtr4di φF=tDiftDFt0
344 iblmbf F𝐿1FMblFn
345 7 344 syl φFMblFn
346 343 345 eqeltrrd φtDiftDFt0MblFn
347 6 133 336 339 346 mbfss φtiftDFt0MblFn
348 92 adantr φtiftDFt0
349 348 ismbfcn2 φtiftDFt0MblFntiftDFt0MblFntiftDFt0MblFn
350 347 349 mpbid φtiftDFt0MblFntiftDFt0MblFn
351 350 simpld φtiftDFt0MblFn
352 181 adantr φtiftDFt0
353 352 fmpttd φtiftDFt0:
354 mbfima tiftDFt0MblFntiftDFt0:tiftDFt0-1x+y+∞domvol
355 351 353 354 syl2anc φtiftDFt0-1x+y+∞domvol
356 i1fima fdom1f-1ydomvol
357 inmbl tiftDFt0-1x+y+∞domvolf-1ydomvoltiftDFt0-1x+y+∞f-1ydomvol
358 355 356 357 syl2an φfdom1tiftDFt0-1x+y+∞f-1ydomvol
359 358 ralrimivw φfdom1yranftiftDFt0-1x+y+∞f-1ydomvol
360 finiunmbl ranfFinyranftiftDFt0-1x+y+∞f-1ydomvolyranftiftDFt0-1x+y+∞f-1ydomvol
361 335 359 360 syl2anc φfdom1yranftiftDFt0-1x+y+∞f-1ydomvol
362 361 adantr φfdom1xyranftiftDFt0-1x+y+∞f-1ydomvol
363 333 362 eqeltrd φfdom1xtiftDFt0ft-1x+∞domvol
364 iunin2 yranftiftDFt0ft-1−∞xf-1y=tiftDFt0ft-1−∞xyranff-1y
365 262 ineq2i tiftDFt0ft-1−∞xyranff-1y=tiftDFt0ft-1−∞xf-1ranf
366 364 365 eqtri yranftiftDFt0ft-1−∞xf-1y=tiftDFt0ft-1−∞xf-1ranf
367 cnvimass tiftDFt0ft-1−∞xdomtiftDFt0ft
368 367 268 sseqtri tiftDFt0ft-1−∞x
369 368 272 sseqtrrid fdom1tiftDFt0ft-1−∞xf-1ranf
370 df-ss tiftDFt0ft-1−∞xf-1ranftiftDFt0ft-1−∞xf-1ranf=tiftDFt0ft-1−∞x
371 369 370 sylib fdom1tiftDFt0ft-1−∞xf-1ranf=tiftDFt0ft-1−∞x
372 366 371 eqtrid fdom1yranftiftDFt0ft-1−∞xf-1y=tiftDFt0ft-1−∞x
373 372 ad2antlr φfdom1xyranftiftDFt0ft-1−∞xf-1y=tiftDFt0ft-1−∞x
374 284 281 2thd φxyiftDFt0yiftDFt0
375 ltsubadd iftDFt0yxiftDFt0y<xiftDFt0<x+y
376 181 375 syl3an1 φyxiftDFt0y<xiftDFt0<x+y
377 376 3expa φyxiftDFt0y<xiftDFt0<x+y
378 377 an32s φxyiftDFt0y<xiftDFt0<x+y
379 374 378 anbi12d φxyiftDFt0yiftDFt0y<xiftDFt0iftDFt0<x+y
380 elioomnf x*iftDFt0y−∞xiftDFt0yiftDFt0y<x
381 297 380 syl φxyiftDFt0y−∞xiftDFt0yiftDFt0y<x
382 elioomnf x+y*iftDFt0−∞x+yiftDFt0iftDFt0<x+y
383 293 382 syl φxyiftDFt0−∞x+yiftDFt0iftDFt0<x+y
384 379 381 383 3bitr4d φxyiftDFt0y−∞xiftDFt0−∞x+y
385 301 eleq1d ft=yiftDFt0ft−∞xiftDFt0y−∞x
386 385 bibi1d ft=yiftDFt0ft−∞xiftDFt0−∞x+yiftDFt0y−∞xiftDFt0−∞x+y
387 384 386 syl5ibrcom φxyft=yiftDFt0ft−∞xiftDFt0−∞x+y
388 387 pm5.32rd φxyiftDFt0ft−∞xft=yiftDFt0−∞x+yft=y
389 388 adantllr φfdom1xyiftDFt0ft−∞xft=yiftDFt0−∞x+yft=y
390 280 389 syldan φfdom1xyranfiftDFt0ft−∞xft=yiftDFt0−∞x+yft=y
391 390 rabbidv φfdom1xyranft|iftDFt0ft−∞xft=y=t|iftDFt0−∞x+yft=y
392 311 ineq2d fdom1tiftDFt0ft-1−∞xf-1y=tiftDFt0ft-1−∞xtft-1y
393 267 mptpreima tiftDFt0ft-1−∞x=t|iftDFt0ft−∞x
394 393 317 ineq12i tiftDFt0ft-1−∞xtft-1y=t|iftDFt0ft−∞xt|ft=y
395 inrab t|iftDFt0ft−∞xt|ft=y=t|iftDFt0ft−∞xft=y
396 394 395 eqtri tiftDFt0ft-1−∞xtft-1y=t|iftDFt0ft−∞xft=y
397 392 396 eqtrdi fdom1tiftDFt0ft-1−∞xf-1y=t|iftDFt0ft−∞xft=y
398 397 ad3antlr φfdom1xyranftiftDFt0ft-1−∞xf-1y=t|iftDFt0ft−∞xft=y
399 311 ineq2d fdom1tiftDFt0-1−∞x+yf-1y=tiftDFt0-1−∞x+ytft-1y
400 324 mptpreima tiftDFt0-1−∞x+y=t|iftDFt0−∞x+y
401 400 317 ineq12i tiftDFt0-1−∞x+ytft-1y=t|iftDFt0−∞x+yt|ft=y
402 inrab t|iftDFt0−∞x+yt|ft=y=t|iftDFt0−∞x+yft=y
403 401 402 eqtri tiftDFt0-1−∞x+ytft-1y=t|iftDFt0−∞x+yft=y
404 399 403 eqtrdi fdom1tiftDFt0-1−∞x+yf-1y=t|iftDFt0−∞x+yft=y
405 404 ad3antlr φfdom1xyranftiftDFt0-1−∞x+yf-1y=t|iftDFt0−∞x+yft=y
406 391 398 405 3eqtr4d φfdom1xyranftiftDFt0ft-1−∞xf-1y=tiftDFt0-1−∞x+yf-1y
407 406 iuneq2dv φfdom1xyranftiftDFt0ft-1−∞xf-1y=yranftiftDFt0-1−∞x+yf-1y
408 373 407 eqtr3d φfdom1xtiftDFt0ft-1−∞x=yranftiftDFt0-1−∞x+yf-1y
409 mbfima tiftDFt0MblFntiftDFt0:tiftDFt0-1−∞x+ydomvol
410 351 353 409 syl2anc φtiftDFt0-1−∞x+ydomvol
411 inmbl tiftDFt0-1−∞x+ydomvolf-1ydomvoltiftDFt0-1−∞x+yf-1ydomvol
412 410 356 411 syl2an φfdom1tiftDFt0-1−∞x+yf-1ydomvol
413 412 ralrimivw φfdom1yranftiftDFt0-1−∞x+yf-1ydomvol
414 finiunmbl ranfFinyranftiftDFt0-1−∞x+yf-1ydomvolyranftiftDFt0-1−∞x+yf-1ydomvol
415 335 413 414 syl2anc φfdom1yranftiftDFt0-1−∞x+yf-1ydomvol
416 415 adantr φfdom1xyranftiftDFt0-1−∞x+yf-1ydomvol
417 408 416 eqeltrd φfdom1xtiftDFt0ft-1−∞xdomvol
418 256 257 363 417 ismbf2d φfdom1tiftDFt0ftMblFn
419 ftc1anclem1 tiftDFt0ft:tiftDFt0ftMblFnabstiftDFt0ftMblFn
420 256 418 419 syl2anc φfdom1abstiftDFt0ftMblFn
421 252 420 eqeltrrd φfdom1tiftDFt0ftMblFn
422 421 adantrr φfdom1gdom1tiftDFt0ftMblFn
423 157 adantrr φfdom1gdom12tiftDFt0ft
424 174 adantrl φfdom1gdom12tiftDFt0gt
425 422 217 423 223 424 itg2addnc φfdom1gdom12tiftDFt0ft+ftiftDFt0gt=2tiftDFt0ft+2tiftDFt0gt
426 249 425 breqtrd φfdom1gdom12tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+2tiftDFt0gt
427 426 adantlr φY+fdom1gdom12tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+2tiftDFt0gt
428 itg2cl tiftDFt0-ft+iiftDFt0gt:0+∞2tiftDFt0-ft+iiftDFt0gt*
429 207 428 syl φfdom1gdom12tiftDFt0-ft+iiftDFt0gt*
430 429 adantlr φY+fdom1gdom12tiftDFt0-ft+iiftDFt0gt*
431 readdcl 2tiftDFt0ft2tiftDFt0gt2tiftDFt0ft+2tiftDFt0gt
432 157 174 431 syl2an φfdom1φgdom12tiftDFt0ft+2tiftDFt0gt
433 432 anandis φfdom1gdom12tiftDFt0ft+2tiftDFt0gt
434 433 rexrd φfdom1gdom12tiftDFt0ft+2tiftDFt0gt*
435 434 adantlr φY+fdom1gdom12tiftDFt0ft+2tiftDFt0gt*
436 9 9 rpaddcld Y+Y2+Y2+
437 436 rpxrd Y+Y2+Y2*
438 437 ad2antlr φY+fdom1gdom1Y2+Y2*
439 xrlelttr 2tiftDFt0-ft+iiftDFt0gt*2tiftDFt0ft+2tiftDFt0gt*Y2+Y2*2tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+2tiftDFt0gt2tiftDFt0ft+2tiftDFt0gt<Y2+Y22tiftDFt0-ft+iiftDFt0gt<Y2+Y2
440 430 435 438 439 syl3anc φY+fdom1gdom12tiftDFt0-ft+iiftDFt0gt2tiftDFt0ft+2tiftDFt0gt2tiftDFt0ft+2tiftDFt0gt<Y2+Y22tiftDFt0-ft+iiftDFt0gt<Y2+Y2
441 427 440 mpand φY+fdom1gdom12tiftDFt0ft+2tiftDFt0gt<Y2+Y22tiftDFt0-ft+iiftDFt0gt<Y2+Y2
442 180 441 syld φY+fdom1gdom12tiftDFt0ft<Y22tiftDFt0gt<Y22tiftDFt0-ft+iiftDFt0gt<Y2+Y2
443 mulcl iiftDFt0iiftDFt0
444 13 191 443 sylancr φiiftDFt0
445 182 444 jca φiftDFt0iiftDFt0
446 mulcl igtigt
447 13 194 446 sylancr gdom1tigt
448 185 447 anim12i fdom1tgdom1tftigt
449 448 anandirs fdom1gdom1tftigt
450 addsub4 iftDFt0iiftDFt0ftigtiftDFt0+iiftDFt0-ft+igt=iftDFt0ft+iiftDFt0-igt
451 445 449 450 syl2an φfdom1gdom1tiftDFt0+iiftDFt0-ft+igt=iftDFt0ft+iiftDFt0-igt
452 451 anassrs φfdom1gdom1tiftDFt0+iiftDFt0-ft+igt=iftDFt0ft+iiftDFt0-igt
453 92 replimd φiftDFt0=iftDFt0+iiftDFt0
454 453 ad2antrr φfdom1gdom1tiftDFt0=iftDFt0+iiftDFt0
455 454 oveq1d φfdom1gdom1tiftDFt0ft+igt=iftDFt0+iiftDFt0-ft+igt
456 194 adantll fdom1gdom1tgt
457 subdi iiftDFt0gtiiftDFt0gt=iiftDFt0igt
458 13 191 456 457 mp3an3an φfdom1gdom1tiiftDFt0gt=iiftDFt0igt
459 458 anassrs φfdom1gdom1tiiftDFt0gt=iiftDFt0igt
460 459 oveq2d φfdom1gdom1tiftDFt0-ft+iiftDFt0gt=iftDFt0ft+iiftDFt0-igt
461 452 455 460 3eqtr4rd φfdom1gdom1tiftDFt0-ft+iiftDFt0gt=iftDFt0ft+igt
462 461 fveq2d φfdom1gdom1tiftDFt0-ft+iiftDFt0gt=iftDFt0ft+igt
463 462 mpteq2dva φfdom1gdom1tiftDFt0-ft+iiftDFt0gt=tiftDFt0ft+igt
464 463 fveq2d φfdom1gdom12tiftDFt0-ft+iiftDFt0gt=2tiftDFt0ft+igt
465 464 adantlr φY+fdom1gdom12tiftDFt0-ft+iiftDFt0gt=2tiftDFt0ft+igt
466 rpcn Y+Y
467 466 2halvesd Y+Y2+Y2=Y
468 467 ad2antlr φY+fdom1gdom1Y2+Y2=Y
469 465 468 breq12d φY+fdom1gdom12tiftDFt0-ft+iiftDFt0gt<Y2+Y22tiftDFt0ft+igt<Y
470 442 469 sylibd φY+fdom1gdom12tiftDFt0ft<Y22tiftDFt0gt<Y22tiftDFt0ft+igt<Y
471 470 reximdvva φY+fdom1gdom12tiftDFt0ft<Y22tiftDFt0gt<Y2fdom1gdom12tiftDFt0ft+igt<Y
472 121 471 biimtrrid φY+fdom12tiftDFt0ft<Y2gdom12tiftDFt0gt<Y2fdom1gdom12tiftDFt0ft+igt<Y
473 11 120 472 mp2and φY+fdom1gdom12tiftDFt0ft+igt<Y