Metamath Proof Explorer


Theorem lgamgulmlem2

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φ R
lgamgulm.u U = x | x R k 0 1 R x + k
lgamgulm.n φ N
lgamgulm.a φ A U
lgamgulm.l φ 2 R N
Assertion lgamgulmlem2 φ A N log A N + 1 R 1 N R 1 N

Proof

Step Hyp Ref Expression
1 lgamgulm.r φ R
2 lgamgulm.u U = x | x R k 0 1 R x + k
3 lgamgulm.n φ N
4 lgamgulm.a φ A U
5 lgamgulm.l φ 2 R N
6 1elunit 1 0 1
7 0elunit 0 0 1
8 0red φ 0
9 1red φ 1
10 eqid TopOpen fld = TopOpen fld
11 10 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
12 11 a1i φ TopOpen fld × t TopOpen fld Cn TopOpen fld
13 1 2 lgamgulmlem1 φ U
14 13 4 sseldd φ A
15 14 eldifad φ A
16 3 nnred φ N
17 16 recnd φ N
18 3 nnne0d φ N 0
19 15 17 18 divcld φ A N
20 unitssre 0 1
21 ax-resscn
22 20 21 sstri 0 1
23 22 a1i φ 0 1
24 ssidd φ
25 cncfmptc A N 0 1 t 0 1 A N : 0 1 cn
26 19 23 24 25 syl3anc φ t 0 1 A N : 0 1 cn
27 cncfmptid 0 1 t 0 1 t : 0 1 cn
28 22 24 27 sylancr φ t 0 1 t : 0 1 cn
29 26 28 mulcncf φ t 0 1 A N t : 0 1 cn
30 eqid −∞ 0 = −∞ 0
31 30 logcn log −∞ 0 : −∞ 0 cn
32 31 a1i φ log −∞ 0 : −∞ 0 cn
33 cncff log −∞ 0 : −∞ 0 cn log −∞ 0 : −∞ 0
34 32 33 syl φ log −∞ 0 : −∞ 0
35 19 adantr φ t 0 1 A N
36 simpr φ t 0 1 t 0 1
37 20 36 sseldi φ t 0 1 t
38 37 recnd φ t 0 1 t
39 35 38 mulcld φ t 0 1 A N t
40 1cnd φ t 0 1 1
41 39 40 addcld φ t 0 1 A N t + 1
42 rere A N t + 1 A N t + 1 = A N t + 1
43 42 adantl φ t 0 1 A N t + 1 A N t + 1 = A N t + 1
44 41 recld φ t 0 1 A N t + 1
45 39 recld φ t 0 1 A N t
46 45 recnd φ t 0 1 A N t
47 46 abscld φ t 0 1 A N t
48 39 abscld φ t 0 1 A N t
49 1red φ t 0 1 1
50 absrele A N t A N t A N t
51 39 50 syl φ t 0 1 A N t A N t
52 49 rehalfcld φ t 0 1 1 2
53 1 nnred φ R
54 53 adantr φ t 0 1 R
55 3 adantr φ t 0 1 N
56 54 55 nndivred φ t 0 1 R N
57 19 abscld φ A N
58 57 adantr φ t 0 1 A N
59 35 absge0d φ t 0 1 0 A N
60 elicc01 t 0 1 t 0 t t 1
61 60 simp2bi t 0 1 0 t
62 61 adantl φ t 0 1 0 t
63 15 17 18 absdivd φ A N = A N
64 3 nnrpd φ N +
65 64 rpge0d φ 0 N
66 16 65 absidd φ N = N
67 66 oveq2d φ A N = A N
68 63 67 eqtr2d φ A N = A N
69 15 abscld φ A
70 fveq2 x = A x = A
71 70 breq1d x = A x R A R
72 fvoveq1 x = A x + k = A + k
73 72 breq2d x = A 1 R x + k 1 R A + k
74 73 ralbidv x = A k 0 1 R x + k k 0 1 R A + k
75 71 74 anbi12d x = A x R k 0 1 R x + k A R k 0 1 R A + k
76 75 2 elrab2 A U A A R k 0 1 R A + k
77 76 simprbi A U A R k 0 1 R A + k
78 4 77 syl φ A R k 0 1 R A + k
79 78 simpld φ A R
80 69 53 64 79 lediv1dd φ A N R N
81 68 80 eqbrtrrd φ A N R N
82 81 adantr φ t 0 1 A N R N
83 60 simp3bi t 0 1 t 1
84 83 adantl φ t 0 1 t 1
85 58 56 37 49 59 62 82 84 lemul12ad φ t 0 1 A N t R N 1
86 35 38 absmuld φ t 0 1 A N t = A N t
87 37 62 absidd φ t 0 1 t = t
88 87 oveq2d φ t 0 1 A N t = A N t
89 86 88 eqtr2d φ t 0 1 A N t = A N t
90 56 recnd φ t 0 1 R N
91 90 mulid1d φ t 0 1 R N 1 = R N
92 85 89 91 3brtr3d φ t 0 1 A N t R N
93 2rp 2 +
94 93 a1i φ 2 +
95 53 16 94 lemuldiv2d φ 2 R N R N 2
96 5 95 mpbid φ R N 2
97 2cnd φ 2
98 2ne0 2 0
99 98 a1i φ 2 0
100 17 97 99 divrecd φ N 2 = N 1 2
101 96 100 breqtrd φ R N 1 2
102 9 rehalfcld φ 1 2
103 53 102 64 ledivmuld φ R N 1 2 R N 1 2
104 101 103 mpbird φ R N 1 2
105 104 adantr φ t 0 1 R N 1 2
106 48 56 52 92 105 letrd φ t 0 1 A N t 1 2
107 halflt1 1 2 < 1
108 107 a1i φ t 0 1 1 2 < 1
109 48 52 49 106 108 lelttrd φ t 0 1 A N t < 1
110 47 48 49 51 109 lelttrd φ t 0 1 A N t < 1
111 45 49 absltd φ t 0 1 A N t < 1 1 < A N t A N t < 1
112 110 111 mpbid φ t 0 1 1 < A N t A N t < 1
113 112 simpld φ t 0 1 1 < A N t
114 49 renegcld φ t 0 1 1
115 114 45 posdifd φ t 0 1 1 < A N t 0 < A N t -1
116 113 115 mpbid φ t 0 1 0 < A N t -1
117 46 40 subnegd φ t 0 1 A N t -1 = A N t + 1
118 116 117 breqtrd φ t 0 1 0 < A N t + 1
119 39 40 readdd φ t 0 1 A N t + 1 = A N t + 1
120 re1 1 = 1
121 120 oveq2i A N t + 1 = A N t + 1
122 119 121 syl6eq φ t 0 1 A N t + 1 = A N t + 1
123 118 122 breqtrrd φ t 0 1 0 < A N t + 1
124 44 123 elrpd φ t 0 1 A N t + 1 +
125 124 adantr φ t 0 1 A N t + 1 A N t + 1 +
126 43 125 eqeltrrd φ t 0 1 A N t + 1 A N t + 1 +
127 126 ex φ t 0 1 A N t + 1 A N t + 1 +
128 30 ellogdm A N t + 1 −∞ 0 A N t + 1 A N t + 1 A N t + 1 +
129 41 127 128 sylanbrc φ t 0 1 A N t + 1 −∞ 0
130 34 129 cofmpt φ log −∞ 0 t 0 1 A N t + 1 = t 0 1 log −∞ 0 A N t + 1
131 129 fvresd φ t 0 1 log −∞ 0 A N t + 1 = log A N t + 1
132 131 mpteq2dva φ t 0 1 log −∞ 0 A N t + 1 = t 0 1 log A N t + 1
133 130 132 eqtrd φ log −∞ 0 t 0 1 A N t + 1 = t 0 1 log A N t + 1
134 129 fmpttd φ t 0 1 A N t + 1 : 0 1 −∞ 0
135 difss −∞ 0
136 10 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
137 136 a1i φ + TopOpen fld × t TopOpen fld Cn TopOpen fld
138 1cnd φ 1
139 cncfmptc 1 0 1 t 0 1 1 : 0 1 cn
140 138 23 24 139 syl3anc φ t 0 1 1 : 0 1 cn
141 10 137 29 140 cncfmpt2f φ t 0 1 A N t + 1 : 0 1 cn
142 cncffvrn −∞ 0 t 0 1 A N t + 1 : 0 1 cn t 0 1 A N t + 1 : 0 1 cn −∞ 0 t 0 1 A N t + 1 : 0 1 −∞ 0
143 135 141 142 sylancr φ t 0 1 A N t + 1 : 0 1 cn −∞ 0 t 0 1 A N t + 1 : 0 1 −∞ 0
144 134 143 mpbird φ t 0 1 A N t + 1 : 0 1 cn −∞ 0
145 144 32 cncfco φ log −∞ 0 t 0 1 A N t + 1 : 0 1 cn
146 133 145 eqeltrrd φ t 0 1 log A N t + 1 : 0 1 cn
147 10 12 29 146 cncfmpt2f φ t 0 1 A N t log A N t + 1 : 0 1 cn
148 21 a1i φ
149 20 a1i φ 0 1
150 30 logdmn0 A N t + 1 −∞ 0 A N t + 1 0
151 129 150 syl φ t 0 1 A N t + 1 0
152 41 151 logcld φ t 0 1 log A N t + 1
153 39 152 subcld φ t 0 1 A N t log A N t + 1
154 10 tgioo2 topGen ran . = TopOpen fld 𝑡
155 0re 0
156 iccntr 0 1 int topGen ran . 0 1 = 0 1
157 155 9 156 sylancr φ int topGen ran . 0 1 = 0 1
158 148 149 153 154 10 157 dvmptntr φ dt 0 1 A N t log A N t + 1 d t = dt 0 1 A N t log A N t + 1 d t
159 reelprrecn
160 159 a1i φ
161 15 adantr φ t 0 1 A
162 17 adantr φ t 0 1 N
163 18 adantr φ t 0 1 N 0
164 161 162 163 divcld φ t 0 1 A N
165 ioossicc 0 1 0 1
166 165 sseli t 0 1 t 0 1
167 166 38 sylan2 φ t 0 1 t
168 164 167 mulcld φ t 0 1 A N t
169 15 adantr φ t A
170 17 adantr φ t N
171 18 adantr φ t N 0
172 169 170 171 divcld φ t A N
173 148 sselda φ t t
174 172 173 mulcld φ t A N t
175 1cnd φ t 1
176 160 dvmptid φ dt t d t = t 1
177 160 173 175 176 19 dvmptcmul φ dt A N t d t = t A N 1
178 19 mulid1d φ A N 1 = A N
179 178 mpteq2dv φ t A N 1 = t A N
180 177 179 eqtrd φ dt A N t d t = t A N
181 165 149 sstrid φ 0 1
182 retop topGen ran . Top
183 iooretop 0 1 topGen ran .
184 isopn3i topGen ran . Top 0 1 topGen ran . int topGen ran . 0 1 = 0 1
185 182 183 184 mp2an int topGen ran . 0 1 = 0 1
186 185 a1i φ int topGen ran . 0 1 = 0 1
187 160 174 172 180 181 154 10 186 dvmptres2 φ dt 0 1 A N t d t = t 0 1 A N
188 166 152 sylan2 φ t 0 1 log A N t + 1
189 1cnd φ t 0 1 1
190 168 189 addcld φ t 0 1 A N t + 1
191 166 151 sylan2 φ t 0 1 A N t + 1 0
192 190 191 reccld φ t 0 1 1 A N t + 1
193 192 164 mulcld φ t 0 1 1 A N t + 1 A N
194 cnelprrecn
195 194 a1i φ
196 166 129 sylan2 φ t 0 1 A N t + 1 −∞ 0
197 eldifi y −∞ 0 y
198 197 adantl φ y −∞ 0 y
199 30 logdmn0 y −∞ 0 y 0
200 199 adantl φ y −∞ 0 y 0
201 198 200 logcld φ y −∞ 0 log y
202 198 200 reccld φ y −∞ 0 1 y
203 174 175 addcld φ t A N t + 1
204 0cnd φ t 0
205 160 138 dvmptc φ dt 1 d t = t 0
206 160 174 172 180 175 204 205 dvmptadd φ dt A N t + 1 d t = t A N + 0
207 19 addid1d φ A N + 0 = A N
208 207 mpteq2dv φ t A N + 0 = t A N
209 206 208 eqtrd φ dt A N t + 1 d t = t A N
210 160 203 172 209 181 154 10 186 dvmptres2 φ dt 0 1 A N t + 1 d t = t 0 1 A N
211 34 feqmptd φ log −∞ 0 = y −∞ 0 log −∞ 0 y
212 fvres y −∞ 0 log −∞ 0 y = log y
213 212 mpteq2ia y −∞ 0 log −∞ 0 y = y −∞ 0 log y
214 211 213 syl6req φ y −∞ 0 log y = log −∞ 0
215 214 oveq2d φ dy −∞ 0 log y d y = D log −∞ 0
216 30 dvlog D log −∞ 0 = y −∞ 0 1 y
217 215 216 syl6eq φ dy −∞ 0 log y d y = y −∞ 0 1 y
218 fveq2 y = A N t + 1 log y = log A N t + 1
219 oveq2 y = A N t + 1 1 y = 1 A N t + 1
220 160 195 196 164 201 202 210 217 218 219 dvmptco φ dt 0 1 log A N t + 1 d t = t 0 1 1 A N t + 1 A N
221 160 168 164 187 188 193 220 dvmptsub φ dt 0 1 A N t log A N t + 1 d t = t 0 1 A N 1 A N t + 1 A N
222 158 221 eqtrd φ dt 0 1 A N t log A N t + 1 d t = t 0 1 A N 1 A N t + 1 A N
223 222 dmeqd φ dom dt 0 1 A N t log A N t + 1 d t = dom t 0 1 A N 1 A N t + 1 A N
224 ovex A N 1 A N t + 1 A N V
225 eqid t 0 1 A N 1 A N t + 1 A N = t 0 1 A N 1 A N t + 1 A N
226 224 225 dmmpti dom t 0 1 A N 1 A N t + 1 A N = 0 1
227 223 226 syl6eq φ dom dt 0 1 A N t log A N t + 1 d t = 0 1
228 2re 2
229 228 a1i φ 2
230 229 53 remulcld φ 2 R
231 1 nnrpd φ R +
232 53 231 ltaddrpd φ R < R + R
233 53 recnd φ R
234 233 2timesd φ 2 R = R + R
235 232 234 breqtrrd φ R < 2 R
236 53 230 16 235 5 ltletrd φ R < N
237 difrp R N R < N N R +
238 53 16 237 syl2anc φ R < N N R +
239 236 238 mpbid φ N R +
240 239 rprecred φ 1 N R
241 3 nnrecred φ 1 N
242 240 241 resubcld φ 1 N R 1 N
243 53 242 remulcld φ R 1 N R 1 N
244 222 fveq1d φ dt 0 1 A N t log A N t + 1 d t y = t 0 1 A N 1 A N t + 1 A N y
245 244 fveq2d φ dt 0 1 A N t log A N t + 1 d t y = t 0 1 A N 1 A N t + 1 A N y
246 245 adantr φ y 0 1 dt 0 1 A N t log A N t + 1 d t y = t 0 1 A N 1 A N t + 1 A N y
247 nfv t φ y 0 1
248 nfcv _ t abs
249 nffvmpt1 _ t t 0 1 A N 1 A N t + 1 A N y
250 248 249 nffv _ t t 0 1 A N 1 A N t + 1 A N y
251 nfcv _ t
252 nfcv _ t R 1 N R 1 N
253 250 251 252 nfbr t t 0 1 A N 1 A N t + 1 A N y R 1 N R 1 N
254 247 253 nfim t φ y 0 1 t 0 1 A N 1 A N t + 1 A N y R 1 N R 1 N
255 eleq1w t = y t 0 1 y 0 1
256 255 anbi2d t = y φ t 0 1 φ y 0 1
257 2fveq3 t = y t 0 1 A N 1 A N t + 1 A N t = t 0 1 A N 1 A N t + 1 A N y
258 257 breq1d t = y t 0 1 A N 1 A N t + 1 A N t R 1 N R 1 N t 0 1 A N 1 A N t + 1 A N y R 1 N R 1 N
259 256 258 imbi12d t = y φ t 0 1 t 0 1 A N 1 A N t + 1 A N t R 1 N R 1 N φ y 0 1 t 0 1 A N 1 A N t + 1 A N y R 1 N R 1 N
260 simpr φ t 0 1 t 0 1
261 225 fvmpt2 t 0 1 A N 1 A N t + 1 A N V t 0 1 A N 1 A N t + 1 A N t = A N 1 A N t + 1 A N
262 260 224 261 sylancl φ t 0 1 t 0 1 A N 1 A N t + 1 A N t = A N 1 A N t + 1 A N
263 262 fveq2d φ t 0 1 t 0 1 A N 1 A N t + 1 A N t = A N 1 A N t + 1 A N
264 164 189 192 subdid φ t 0 1 A N 1 1 A N t + 1 = A N 1 A N 1 A N t + 1
265 164 mulid1d φ t 0 1 A N 1 = A N
266 164 192 mulcomd φ t 0 1 A N 1 A N t + 1 = 1 A N t + 1 A N
267 265 266 oveq12d φ t 0 1 A N 1 A N 1 A N t + 1 = A N 1 A N t + 1 A N
268 264 267 eqtr2d φ t 0 1 A N 1 A N t + 1 A N = A N 1 1 A N t + 1
269 268 fveq2d φ t 0 1 A N 1 A N t + 1 A N = A N 1 1 A N t + 1
270 161 162 163 absdivd φ t 0 1 A N = A N
271 16 adantr φ t 0 1 N
272 65 adantr φ t 0 1 0 N
273 271 272 absidd φ t 0 1 N = N
274 273 oveq2d φ t 0 1 A N = A N
275 270 274 eqtrd φ t 0 1 A N = A N
276 275 oveq1d φ t 0 1 A N 1 1 A N t + 1 = A N 1 1 A N t + 1
277 189 192 subcld φ t 0 1 1 1 A N t + 1
278 164 277 absmuld φ t 0 1 A N 1 1 A N t + 1 = A N 1 1 A N t + 1
279 69 adantr φ t 0 1 A
280 279 recnd φ t 0 1 A
281 277 abscld φ t 0 1 1 1 A N t + 1
282 281 recnd φ t 0 1 1 1 A N t + 1
283 280 282 162 163 div23d φ t 0 1 A 1 1 A N t + 1 N = A N 1 1 A N t + 1
284 276 278 283 3eqtr4d φ t 0 1 A N 1 1 A N t + 1 = A 1 1 A N t + 1 N
285 263 269 284 3eqtrd φ t 0 1 t 0 1 A N 1 A N t + 1 A N t = A 1 1 A N t + 1 N
286 53 adantr φ t 0 1 R
287 240 adantr φ t 0 1 1 N R
288 241 adantr φ t 0 1 1 N
289 287 288 resubcld φ t 0 1 1 N R 1 N
290 271 289 remulcld φ t 0 1 N 1 N R 1 N
291 15 absge0d φ 0 A
292 291 adantr φ t 0 1 0 A
293 277 absge0d φ t 0 1 0 1 1 A N t + 1
294 79 adantr φ t 0 1 A R
295 239 adantr φ t 0 1 N R +
296 231 adantr φ t 0 1 R +
297 295 296 rpdivcld φ t 0 1 N R R +
298 14 dmgmn0 φ A 0
299 298 adantr φ t 0 1 A 0
300 161 162 299 163 divne0d φ t 0 1 A N 0
301 eliooord t 0 1 0 < t t < 1
302 301 adantl φ t 0 1 0 < t t < 1
303 302 simpld φ t 0 1 0 < t
304 303 gt0ne0d φ t 0 1 t 0
305 164 167 300 304 mulne0d φ t 0 1 A N t 0
306 168 305 reccld φ t 0 1 1 A N t
307 189 306 addcld φ t 0 1 1 + 1 A N t
308 168 189 168 305 divdird φ t 0 1 A N t + 1 A N t = A N t A N t + 1 A N t
309 168 305 dividd φ t 0 1 A N t A N t = 1
310 309 oveq1d φ t 0 1 A N t A N t + 1 A N t = 1 + 1 A N t
311 308 310 eqtrd φ t 0 1 A N t + 1 A N t = 1 + 1 A N t
312 190 168 191 305 divne0d φ t 0 1 A N t + 1 A N t 0
313 311 312 eqnetrrd φ t 0 1 1 + 1 A N t 0
314 307 313 absrpcld φ t 0 1 1 + 1 A N t +
315 1red φ t 0 1 1
316 0le1 0 1
317 316 a1i φ t 0 1 0 1
318 297 rpred φ t 0 1 N R R
319 306 negcld φ t 0 1 1 A N t
320 319 abscld φ t 0 1 1 A N t
321 320 315 resubcld φ t 0 1 1 A N t 1
322 307 abscld φ t 0 1 1 + 1 A N t
323 233 adantr φ t 0 1 R
324 296 rpne0d φ t 0 1 R 0
325 162 323 323 324 divsubdird φ t 0 1 N R R = N R R R
326 323 324 dividd φ t 0 1 R R = 1
327 326 oveq2d φ t 0 1 N R R R = N R 1
328 325 327 eqtrd φ t 0 1 N R R = N R 1
329 271 296 rerpdivcld φ t 0 1 N R
330 323 162 324 163 recdivd φ t 0 1 1 R N = N R
331 166 92 sylan2 φ t 0 1 A N t R N
332 168 305 absrpcld φ t 0 1 A N t +
333 64 adantr φ t 0 1 N +
334 296 333 rpdivcld φ t 0 1 R N +
335 332 334 lerecd φ t 0 1 A N t R N 1 R N 1 A N t
336 331 335 mpbid φ t 0 1 1 R N 1 A N t
337 330 336 eqbrtrrd φ t 0 1 N R 1 A N t
338 306 absnegd φ t 0 1 1 A N t = 1 A N t
339 189 168 305 absdivd φ t 0 1 1 A N t = 1 A N t
340 abs1 1 = 1
341 340 oveq1i 1 A N t = 1 A N t
342 339 341 syl6eq φ t 0 1 1 A N t = 1 A N t
343 338 342 eqtrd φ t 0 1 1 A N t = 1 A N t
344 337 343 breqtrrd φ t 0 1 N R 1 A N t
345 329 320 315 344 lesub1dd φ t 0 1 N R 1 1 A N t 1
346 328 345 eqbrtrd φ t 0 1 N R R 1 A N t 1
347 340 oveq2i 1 A N t 1 = 1 A N t 1
348 319 189 abs2difd φ t 0 1 1 A N t 1 - 1 A N t - 1
349 347 348 eqbrtrrid φ t 0 1 1 A N t 1 - 1 A N t - 1
350 189 306 addcomd φ t 0 1 1 + 1 A N t = 1 A N t + 1
351 350 negeqd φ t 0 1 1 + 1 A N t = 1 A N t + 1
352 306 189 negdi2d φ t 0 1 1 A N t + 1 = - 1 A N t - 1
353 351 352 eqtrd φ t 0 1 1 + 1 A N t = - 1 A N t - 1
354 353 fveq2d φ t 0 1 1 + 1 A N t = - 1 A N t - 1
355 307 absnegd φ t 0 1 1 + 1 A N t = 1 + 1 A N t
356 354 355 eqtr3d φ t 0 1 - 1 A N t - 1 = 1 + 1 A N t
357 349 356 breqtrd φ t 0 1 1 A N t 1 1 + 1 A N t
358 318 321 322 346 357 letrd φ t 0 1 N R R 1 + 1 A N t
359 297 314 315 317 358 lediv2ad φ t 0 1 1 1 + 1 A N t 1 N R R
360 17 233 subcld φ N R
361 360 adantr φ t 0 1 N R
362 53 236 gtned φ N R
363 17 233 362 subne0d φ N R 0
364 363 adantr φ t 0 1 N R 0
365 361 323 364 324 recdivd φ t 0 1 1 N R R = R N R
366 162 323 nncand φ t 0 1 N N R = R
367 366 oveq1d φ t 0 1 N N R N R = R N R
368 162 361 361 364 divsubdird φ t 0 1 N N R N R = N N R N R N R
369 367 368 eqtr3d φ t 0 1 R N R = N N R N R N R
370 361 364 dividd φ t 0 1 N R N R = 1
371 370 oveq2d φ t 0 1 N N R N R N R = N N R 1
372 365 369 371 3eqtrd φ t 0 1 1 N R R = N N R 1
373 359 372 breqtrd φ t 0 1 1 1 + 1 A N t N N R 1
374 190 189 190 191 divsubdird φ t 0 1 A N t + 1 - 1 A N t + 1 = A N t + 1 A N t + 1 1 A N t + 1
375 168 189 pncand φ t 0 1 A N t + 1 - 1 = A N t
376 375 oveq1d φ t 0 1 A N t + 1 - 1 A N t + 1 = A N t A N t + 1
377 190 191 dividd φ t 0 1 A N t + 1 A N t + 1 = 1
378 377 oveq1d φ t 0 1 A N t + 1 A N t + 1 1 A N t + 1 = 1 1 A N t + 1
379 374 376 378 3eqtr3rd φ t 0 1 1 1 A N t + 1 = A N t A N t + 1
380 190 168 191 305 recdivd φ t 0 1 1 A N t + 1 A N t = A N t A N t + 1
381 311 oveq2d φ t 0 1 1 A N t + 1 A N t = 1 1 + 1 A N t
382 379 380 381 3eqtr2d φ t 0 1 1 1 A N t + 1 = 1 1 + 1 A N t
383 382 fveq2d φ t 0 1 1 1 A N t + 1 = 1 1 + 1 A N t
384 189 307 313 absdivd φ t 0 1 1 1 + 1 A N t = 1 1 + 1 A N t
385 340 oveq1i 1 1 + 1 A N t = 1 1 + 1 A N t
386 384 385 syl6eq φ t 0 1 1 1 + 1 A N t = 1 1 + 1 A N t
387 383 386 eqtrd φ t 0 1 1 1 A N t + 1 = 1 1 + 1 A N t
388 360 363 reccld φ 1 N R
389 388 adantr φ t 0 1 1 N R
390 241 recnd φ 1 N
391 390 adantr φ t 0 1 1 N
392 162 389 391 subdid φ t 0 1 N 1 N R 1 N = N 1 N R N 1 N
393 162 361 364 divrecd φ t 0 1 N N R = N 1 N R
394 393 eqcomd φ t 0 1 N 1 N R = N N R
395 162 163 recidd φ t 0 1 N 1 N = 1
396 394 395 oveq12d φ t 0 1 N 1 N R N 1 N = N N R 1
397 392 396 eqtrd φ t 0 1 N 1 N R 1 N = N N R 1
398 373 387 397 3brtr4d φ t 0 1 1 1 A N t + 1 N 1 N R 1 N
399 279 286 281 290 292 293 294 398 lemul12ad φ t 0 1 A 1 1 A N t + 1 R N 1 N R 1 N
400 242 recnd φ 1 N R 1 N
401 400 adantr φ t 0 1 1 N R 1 N
402 323 162 401 mul12d φ t 0 1 R N 1 N R 1 N = N R 1 N R 1 N
403 399 402 breqtrd φ t 0 1 A 1 1 A N t + 1 N R 1 N R 1 N
404 279 281 remulcld φ t 0 1 A 1 1 A N t + 1
405 243 adantr φ t 0 1 R 1 N R 1 N
406 404 405 333 ledivmuld φ t 0 1 A 1 1 A N t + 1 N R 1 N R 1 N A 1 1 A N t + 1 N R 1 N R 1 N
407 403 406 mpbird φ t 0 1 A 1 1 A N t + 1 N R 1 N R 1 N
408 285 407 eqbrtrd φ t 0 1 t 0 1 A N 1 A N t + 1 A N t R 1 N R 1 N
409 254 259 408 chvarfv φ y 0 1 t 0 1 A N 1 A N t + 1 A N y R 1 N R 1 N
410 246 409 eqbrtrd φ y 0 1 dt 0 1 A N t log A N t + 1 d t y R 1 N R 1 N
411 8 9 147 227 243 410 dvlip φ 1 0 1 0 0 1 t 0 1 A N t log A N t + 1 1 t 0 1 A N t log A N t + 1 0 R 1 N R 1 N 1 0
412 6 7 411 mpanr12 φ t 0 1 A N t log A N t + 1 1 t 0 1 A N t log A N t + 1 0 R 1 N R 1 N 1 0
413 eqidd φ t 0 1 A N t log A N t + 1 = t 0 1 A N t log A N t + 1
414 oveq2 t = 1 A N t = A N 1
415 414 178 sylan9eqr φ t = 1 A N t = A N
416 415 fvoveq1d φ t = 1 log A N t + 1 = log A N + 1
417 415 416 oveq12d φ t = 1 A N t log A N t + 1 = A N log A N + 1
418 6 a1i φ 1 0 1
419 ovexd φ A N log A N + 1 V
420 413 417 418 419 fvmptd φ t 0 1 A N t log A N t + 1 1 = A N log A N + 1
421 oveq2 t = 0 A N t = A N 0
422 19 mul01d φ A N 0 = 0
423 421 422 sylan9eqr φ t = 0 A N t = 0
424 423 oveq1d φ t = 0 A N t + 1 = 0 + 1
425 0p1e1 0 + 1 = 1
426 424 425 syl6eq φ t = 0 A N t + 1 = 1
427 426 fveq2d φ t = 0 log A N t + 1 = log 1
428 log1 log 1 = 0
429 427 428 syl6eq φ t = 0 log A N t + 1 = 0
430 423 429 oveq12d φ t = 0 A N t log A N t + 1 = 0 0
431 0m0e0 0 0 = 0
432 430 431 syl6eq φ t = 0 A N t log A N t + 1 = 0
433 7 a1i φ 0 0 1
434 413 432 433 433 fvmptd φ t 0 1 A N t log A N t + 1 0 = 0
435 420 434 oveq12d φ t 0 1 A N t log A N t + 1 1 t 0 1 A N t log A N t + 1 0 = A N - log A N + 1 - 0
436 19 138 addcld φ A N + 1
437 14 3 dmgmdivn0 φ A N + 1 0
438 436 437 logcld φ log A N + 1
439 19 438 subcld φ A N log A N + 1
440 439 subid1d φ A N - log A N + 1 - 0 = A N log A N + 1
441 435 440 eqtr2d φ A N log A N + 1 = t 0 1 A N t log A N t + 1 1 t 0 1 A N t log A N t + 1 0
442 441 fveq2d φ A N log A N + 1 = t 0 1 A N t log A N t + 1 1 t 0 1 A N t log A N t + 1 0
443 1m0e1 1 0 = 1
444 443 fveq2i 1 0 = 1
445 444 340 eqtri 1 0 = 1
446 445 oveq2i R 1 N R 1 N 1 0 = R 1 N R 1 N 1
447 233 400 mulcld φ R 1 N R 1 N
448 447 mulid1d φ R 1 N R 1 N 1 = R 1 N R 1 N
449 446 448 syl5req φ R 1 N R 1 N = R 1 N R 1 N 1 0
450 412 442 449 3brtr4d φ A N log A N + 1 R 1 N R 1 N