Metamath Proof Explorer


Theorem lgamgulmlem2

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.n φN
lgamgulm.a φAU
lgamgulm.l φ2RN
Assertion lgamgulmlem2 φANlogAN+1R1NR1N

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.n φN
4 lgamgulm.a φAU
5 lgamgulm.l φ2RN
6 1elunit 101
7 0elunit 001
8 0red φ0
9 1red φ1
10 eqid TopOpenfld=TopOpenfld
11 10 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
12 11 a1i φTopOpenfld×tTopOpenfldCnTopOpenfld
13 1 2 lgamgulmlem1 φU
14 13 4 sseldd φA
15 14 eldifad φA
16 3 nnred φN
17 16 recnd φN
18 3 nnne0d φN0
19 15 17 18 divcld φAN
20 unitssre 01
21 ax-resscn
22 20 21 sstri 01
23 22 a1i φ01
24 ssidd φ
25 cncfmptc AN01t01AN:01cn
26 19 23 24 25 syl3anc φt01AN:01cn
27 cncfmptid 01t01t:01cn
28 22 24 27 sylancr φt01t:01cn
29 26 28 mulcncf φt01ANt:01cn
30 eqid −∞0=−∞0
31 30 logcn log−∞0:−∞0cn
32 31 a1i φlog−∞0:−∞0cn
33 cncff log−∞0:−∞0cnlog−∞0:−∞0
34 32 33 syl φlog−∞0:−∞0
35 19 adantr φt01AN
36 simpr φt01t01
37 20 36 sselid φt01t
38 37 recnd φt01t
39 35 38 mulcld φt01ANt
40 1cnd φt011
41 39 40 addcld φt01ANt+1
42 rere ANt+1ANt+1=ANt+1
43 42 adantl φt01ANt+1ANt+1=ANt+1
44 41 recld φt01ANt+1
45 39 recld φt01ANt
46 45 recnd φt01ANt
47 46 abscld φt01ANt
48 39 abscld φt01ANt
49 1red φt011
50 absrele ANtANtANt
51 39 50 syl φt01ANtANt
52 49 rehalfcld φt0112
53 1 nnred φR
54 53 adantr φt01R
55 3 adantr φt01N
56 54 55 nndivred φt01RN
57 19 abscld φAN
58 57 adantr φt01AN
59 35 absge0d φt010AN
60 elicc01 t01t0tt1
61 60 simp2bi t010t
62 61 adantl φt010t
63 15 17 18 absdivd φAN=AN
64 3 nnrpd φN+
65 64 rpge0d φ0N
66 16 65 absidd φN=N
67 66 oveq2d φAN=AN
68 63 67 eqtr2d φAN=AN
69 15 abscld φA
70 fveq2 x=Ax=A
71 70 breq1d x=AxRAR
72 fvoveq1 x=Ax+k=A+k
73 72 breq2d x=A1Rx+k1RA+k
74 73 ralbidv x=Ak01Rx+kk01RA+k
75 71 74 anbi12d x=AxRk01Rx+kARk01RA+k
76 75 2 elrab2 AUAARk01RA+k
77 76 simprbi AUARk01RA+k
78 4 77 syl φARk01RA+k
79 78 simpld φAR
80 69 53 64 79 lediv1dd φANRN
81 68 80 eqbrtrrd φANRN
82 81 adantr φt01ANRN
83 60 simp3bi t01t1
84 83 adantl φt01t1
85 58 56 37 49 59 62 82 84 lemul12ad φt01ANtRN1
86 35 38 absmuld φt01ANt=ANt
87 37 62 absidd φt01t=t
88 87 oveq2d φt01ANt=ANt
89 86 88 eqtr2d φt01ANt=ANt
90 56 recnd φt01RN
91 90 mulridd φt01RN1=RN
92 85 89 91 3brtr3d φt01ANtRN
93 2rp 2+
94 93 a1i φ2+
95 53 16 94 lemuldiv2d φ2RNRN2
96 5 95 mpbid φRN2
97 2cnd φ2
98 2ne0 20
99 98 a1i φ20
100 17 97 99 divrecd φN2=N12
101 96 100 breqtrd φRN12
102 9 rehalfcld φ12
103 53 102 64 ledivmuld φRN12RN12
104 101 103 mpbird φRN12
105 104 adantr φt01RN12
106 48 56 52 92 105 letrd φt01ANt12
107 halflt1 12<1
108 107 a1i φt0112<1
109 48 52 49 106 108 lelttrd φt01ANt<1
110 47 48 49 51 109 lelttrd φt01ANt<1
111 45 49 absltd φt01ANt<11<ANtANt<1
112 110 111 mpbid φt011<ANtANt<1
113 112 simpld φt011<ANt
114 49 renegcld φt011
115 114 45 posdifd φt011<ANt0<ANt-1
116 113 115 mpbid φt010<ANt-1
117 46 40 subnegd φt01ANt-1=ANt+1
118 116 117 breqtrd φt010<ANt+1
119 39 40 readdd φt01ANt+1=ANt+1
120 re1 1=1
121 120 oveq2i ANt+1=ANt+1
122 119 121 eqtrdi φt01ANt+1=ANt+1
123 118 122 breqtrrd φt010<ANt+1
124 44 123 elrpd φt01ANt+1+
125 124 adantr φt01ANt+1ANt+1+
126 43 125 eqeltrrd φt01ANt+1ANt+1+
127 126 ex φt01ANt+1ANt+1+
128 30 ellogdm ANt+1−∞0ANt+1ANt+1ANt+1+
129 41 127 128 sylanbrc φt01ANt+1−∞0
130 34 129 cofmpt φlog−∞0t01ANt+1=t01log−∞0ANt+1
131 129 fvresd φt01log−∞0ANt+1=logANt+1
132 131 mpteq2dva φt01log−∞0ANt+1=t01logANt+1
133 130 132 eqtrd φlog−∞0t01ANt+1=t01logANt+1
134 129 fmpttd φt01ANt+1:01−∞0
135 difss −∞0
136 10 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
137 136 a1i φ+TopOpenfld×tTopOpenfldCnTopOpenfld
138 1cnd φ1
139 cncfmptc 101t011:01cn
140 138 23 24 139 syl3anc φt011:01cn
141 10 137 29 140 cncfmpt2f φt01ANt+1:01cn
142 cncfcdm −∞0t01ANt+1:01cnt01ANt+1:01cn−∞0t01ANt+1:01−∞0
143 135 141 142 sylancr φt01ANt+1:01cn−∞0t01ANt+1:01−∞0
144 134 143 mpbird φt01ANt+1:01cn−∞0
145 144 32 cncfco φlog−∞0t01ANt+1:01cn
146 133 145 eqeltrrd φt01logANt+1:01cn
147 10 12 29 146 cncfmpt2f φt01ANtlogANt+1:01cn
148 21 a1i φ
149 20 a1i φ01
150 30 logdmn0 ANt+1−∞0ANt+10
151 129 150 syl φt01ANt+10
152 41 151 logcld φt01logANt+1
153 39 152 subcld φt01ANtlogANt+1
154 10 tgioo2 topGenran.=TopOpenfld𝑡
155 0re 0
156 iccntr 01inttopGenran.01=01
157 155 9 156 sylancr φinttopGenran.01=01
158 148 149 153 154 10 157 dvmptntr φdt01ANtlogANt+1dt=dt01ANtlogANt+1dt
159 reelprrecn
160 159 a1i φ
161 15 adantr φt01A
162 17 adantr φt01N
163 18 adantr φt01N0
164 161 162 163 divcld φt01AN
165 ioossicc 0101
166 165 sseli t01t01
167 166 38 sylan2 φt01t
168 164 167 mulcld φt01ANt
169 15 adantr φtA
170 17 adantr φtN
171 18 adantr φtN0
172 169 170 171 divcld φtAN
173 148 sselda φtt
174 172 173 mulcld φtANt
175 1cnd φt1
176 160 dvmptid φdttdt=t1
177 160 173 175 176 19 dvmptcmul φdtANtdt=tAN1
178 19 mulridd φAN1=AN
179 178 mpteq2dv φtAN1=tAN
180 177 179 eqtrd φdtANtdt=tAN
181 165 149 sstrid φ01
182 retop topGenran.Top
183 iooretop 01topGenran.
184 isopn3i topGenran.Top01topGenran.inttopGenran.01=01
185 182 183 184 mp2an inttopGenran.01=01
186 185 a1i φinttopGenran.01=01
187 160 174 172 180 181 154 10 186 dvmptres2 φdt01ANtdt=t01AN
188 166 152 sylan2 φt01logANt+1
189 1cnd φt011
190 168 189 addcld φt01ANt+1
191 166 151 sylan2 φt01ANt+10
192 190 191 reccld φt011ANt+1
193 192 164 mulcld φt011ANt+1AN
194 cnelprrecn
195 194 a1i φ
196 166 129 sylan2 φt01ANt+1−∞0
197 eldifi y−∞0y
198 197 adantl φy−∞0y
199 30 logdmn0 y−∞0y0
200 199 adantl φy−∞0y0
201 198 200 logcld φy−∞0logy
202 198 200 reccld φy−∞01y
203 174 175 addcld φtANt+1
204 0cnd φt0
205 160 138 dvmptc φdt1dt=t0
206 160 174 172 180 175 204 205 dvmptadd φdtANt+1dt=tAN+0
207 19 addridd φAN+0=AN
208 207 mpteq2dv φtAN+0=tAN
209 206 208 eqtrd φdtANt+1dt=tAN
210 160 203 172 209 181 154 10 186 dvmptres2 φdt01ANt+1dt=t01AN
211 34 feqmptd φlog−∞0=y−∞0log−∞0y
212 fvres y−∞0log−∞0y=logy
213 212 mpteq2ia y−∞0log−∞0y=y−∞0logy
214 211 213 eqtr2di φy−∞0logy=log−∞0
215 214 oveq2d φdy−∞0logydy=Dlog−∞0
216 30 dvlog Dlog−∞0=y−∞01y
217 215 216 eqtrdi φdy−∞0logydy=y−∞01y
218 fveq2 y=ANt+1logy=logANt+1
219 oveq2 y=ANt+11y=1ANt+1
220 160 195 196 164 201 202 210 217 218 219 dvmptco φdt01logANt+1dt=t011ANt+1AN
221 160 168 164 187 188 193 220 dvmptsub φdt01ANtlogANt+1dt=t01AN1ANt+1AN
222 158 221 eqtrd φdt01ANtlogANt+1dt=t01AN1ANt+1AN
223 222 dmeqd φdomdt01ANtlogANt+1dt=domt01AN1ANt+1AN
224 ovex AN1ANt+1ANV
225 eqid t01AN1ANt+1AN=t01AN1ANt+1AN
226 224 225 dmmpti domt01AN1ANt+1AN=01
227 223 226 eqtrdi φdomdt01ANtlogANt+1dt=01
228 2re 2
229 228 a1i φ2
230 229 53 remulcld φ2R
231 1 nnrpd φR+
232 53 231 ltaddrpd φR<R+R
233 53 recnd φR
234 233 2timesd φ2R=R+R
235 232 234 breqtrrd φR<2R
236 53 230 16 235 5 ltletrd φR<N
237 difrp RNR<NNR+
238 53 16 237 syl2anc φR<NNR+
239 236 238 mpbid φNR+
240 239 rprecred φ1NR
241 3 nnrecred φ1N
242 240 241 resubcld φ1NR1N
243 53 242 remulcld φR1NR1N
244 222 fveq1d φdt01ANtlogANt+1dty=t01AN1ANt+1ANy
245 244 fveq2d φdt01ANtlogANt+1dty=t01AN1ANt+1ANy
246 245 adantr φy01dt01ANtlogANt+1dty=t01AN1ANt+1ANy
247 nfv tφy01
248 nfcv _tabs
249 nffvmpt1 _tt01AN1ANt+1ANy
250 248 249 nffv _tt01AN1ANt+1ANy
251 nfcv _t
252 nfcv _tR1NR1N
253 250 251 252 nfbr tt01AN1ANt+1ANyR1NR1N
254 247 253 nfim tφy01t01AN1ANt+1ANyR1NR1N
255 eleq1w t=yt01y01
256 255 anbi2d t=yφt01φy01
257 2fveq3 t=yt01AN1ANt+1ANt=t01AN1ANt+1ANy
258 257 breq1d t=yt01AN1ANt+1ANtR1NR1Nt01AN1ANt+1ANyR1NR1N
259 256 258 imbi12d t=yφt01t01AN1ANt+1ANtR1NR1Nφy01t01AN1ANt+1ANyR1NR1N
260 simpr φt01t01
261 225 fvmpt2 t01AN1ANt+1ANVt01AN1ANt+1ANt=AN1ANt+1AN
262 260 224 261 sylancl φt01t01AN1ANt+1ANt=AN1ANt+1AN
263 262 fveq2d φt01t01AN1ANt+1ANt=AN1ANt+1AN
264 164 189 192 subdid φt01AN11ANt+1=AN1AN1ANt+1
265 164 mulridd φt01AN1=AN
266 164 192 mulcomd φt01AN1ANt+1=1ANt+1AN
267 265 266 oveq12d φt01AN1AN1ANt+1=AN1ANt+1AN
268 264 267 eqtr2d φt01AN1ANt+1AN=AN11ANt+1
269 268 fveq2d φt01AN1ANt+1AN=AN11ANt+1
270 161 162 163 absdivd φt01AN=AN
271 16 adantr φt01N
272 65 adantr φt010N
273 271 272 absidd φt01N=N
274 273 oveq2d φt01AN=AN
275 270 274 eqtrd φt01AN=AN
276 275 oveq1d φt01AN11ANt+1=AN11ANt+1
277 189 192 subcld φt0111ANt+1
278 164 277 absmuld φt01AN11ANt+1=AN11ANt+1
279 69 adantr φt01A
280 279 recnd φt01A
281 277 abscld φt0111ANt+1
282 281 recnd φt0111ANt+1
283 280 282 162 163 div23d φt01A11ANt+1N=AN11ANt+1
284 276 278 283 3eqtr4d φt01AN11ANt+1=A11ANt+1N
285 263 269 284 3eqtrd φt01t01AN1ANt+1ANt=A11ANt+1N
286 53 adantr φt01R
287 240 adantr φt011NR
288 241 adantr φt011N
289 287 288 resubcld φt011NR1N
290 271 289 remulcld φt01N1NR1N
291 15 absge0d φ0A
292 291 adantr φt010A
293 277 absge0d φt01011ANt+1
294 79 adantr φt01AR
295 239 adantr φt01NR+
296 231 adantr φt01R+
297 295 296 rpdivcld φt01NRR+
298 14 dmgmn0 φA0
299 298 adantr φt01A0
300 161 162 299 163 divne0d φt01AN0
301 eliooord t010<tt<1
302 301 adantl φt010<tt<1
303 302 simpld φt010<t
304 303 gt0ne0d φt01t0
305 164 167 300 304 mulne0d φt01ANt0
306 168 305 reccld φt011ANt
307 189 306 addcld φt011+1ANt
308 168 189 168 305 divdird φt01ANt+1ANt=ANtANt+1ANt
309 168 305 dividd φt01ANtANt=1
310 309 oveq1d φt01ANtANt+1ANt=1+1ANt
311 308 310 eqtrd φt01ANt+1ANt=1+1ANt
312 190 168 191 305 divne0d φt01ANt+1ANt0
313 311 312 eqnetrrd φt011+1ANt0
314 307 313 absrpcld φt011+1ANt+
315 1red φt011
316 0le1 01
317 316 a1i φt0101
318 297 rpred φt01NRR
319 306 negcld φt011ANt
320 319 abscld φt011ANt
321 320 315 resubcld φt011ANt1
322 307 abscld φt011+1ANt
323 233 adantr φt01R
324 296 rpne0d φt01R0
325 162 323 323 324 divsubdird φt01NRR=NRRR
326 323 324 dividd φt01RR=1
327 326 oveq2d φt01NRRR=NR1
328 325 327 eqtrd φt01NRR=NR1
329 271 296 rerpdivcld φt01NR
330 323 162 324 163 recdivd φt011RN=NR
331 166 92 sylan2 φt01ANtRN
332 168 305 absrpcld φt01ANt+
333 64 adantr φt01N+
334 296 333 rpdivcld φt01RN+
335 332 334 lerecd φt01ANtRN1RN1ANt
336 331 335 mpbid φt011RN1ANt
337 330 336 eqbrtrrd φt01NR1ANt
338 306 absnegd φt011ANt=1ANt
339 189 168 305 absdivd φt011ANt=1ANt
340 abs1 1=1
341 340 oveq1i 1ANt=1ANt
342 339 341 eqtrdi φt011ANt=1ANt
343 338 342 eqtrd φt011ANt=1ANt
344 337 343 breqtrrd φt01NR1ANt
345 329 320 315 344 lesub1dd φt01NR11ANt1
346 328 345 eqbrtrd φt01NRR1ANt1
347 340 oveq2i 1ANt1=1ANt1
348 319 189 abs2difd φt011ANt1-1ANt-1
349 347 348 eqbrtrrid φt011ANt1-1ANt-1
350 189 306 addcomd φt011+1ANt=1ANt+1
351 350 negeqd φt011+1ANt=1ANt+1
352 306 189 negdi2d φt011ANt+1=-1ANt-1
353 351 352 eqtrd φt011+1ANt=-1ANt-1
354 353 fveq2d φt011+1ANt=-1ANt-1
355 307 absnegd φt011+1ANt=1+1ANt
356 354 355 eqtr3d φt01-1ANt-1=1+1ANt
357 349 356 breqtrd φt011ANt11+1ANt
358 318 321 322 346 357 letrd φt01NRR1+1ANt
359 297 314 315 317 358 lediv2ad φt0111+1ANt1NRR
360 17 233 subcld φNR
361 360 adantr φt01NR
362 53 236 gtned φNR
363 17 233 362 subne0d φNR0
364 363 adantr φt01NR0
365 361 323 364 324 recdivd φt011NRR=RNR
366 162 323 nncand φt01NNR=R
367 366 oveq1d φt01NNRNR=RNR
368 162 361 361 364 divsubdird φt01NNRNR=NNRNRNR
369 367 368 eqtr3d φt01RNR=NNRNRNR
370 361 364 dividd φt01NRNR=1
371 370 oveq2d φt01NNRNRNR=NNR1
372 365 369 371 3eqtrd φt011NRR=NNR1
373 359 372 breqtrd φt0111+1ANtNNR1
374 190 189 190 191 divsubdird φt01ANt+1-1ANt+1=ANt+1ANt+11ANt+1
375 168 189 pncand φt01ANt+1-1=ANt
376 375 oveq1d φt01ANt+1-1ANt+1=ANtANt+1
377 190 191 dividd φt01ANt+1ANt+1=1
378 377 oveq1d φt01ANt+1ANt+11ANt+1=11ANt+1
379 374 376 378 3eqtr3rd φt0111ANt+1=ANtANt+1
380 190 168 191 305 recdivd φt011ANt+1ANt=ANtANt+1
381 311 oveq2d φt011ANt+1ANt=11+1ANt
382 379 380 381 3eqtr2d φt0111ANt+1=11+1ANt
383 382 fveq2d φt0111ANt+1=11+1ANt
384 189 307 313 absdivd φt0111+1ANt=11+1ANt
385 340 oveq1i 11+1ANt=11+1ANt
386 384 385 eqtrdi φt0111+1ANt=11+1ANt
387 383 386 eqtrd φt0111ANt+1=11+1ANt
388 360 363 reccld φ1NR
389 388 adantr φt011NR
390 241 recnd φ1N
391 390 adantr φt011N
392 162 389 391 subdid φt01N1NR1N=N1NRN1N
393 162 361 364 divrecd φt01NNR=N1NR
394 393 eqcomd φt01N1NR=NNR
395 162 163 recidd φt01N1N=1
396 394 395 oveq12d φt01N1NRN1N=NNR1
397 392 396 eqtrd φt01N1NR1N=NNR1
398 373 387 397 3brtr4d φt0111ANt+1N1NR1N
399 279 286 281 290 292 293 294 398 lemul12ad φt01A11ANt+1RN1NR1N
400 242 recnd φ1NR1N
401 400 adantr φt011NR1N
402 323 162 401 mul12d φt01RN1NR1N=NR1NR1N
403 399 402 breqtrd φt01A11ANt+1NR1NR1N
404 279 281 remulcld φt01A11ANt+1
405 243 adantr φt01R1NR1N
406 404 405 333 ledivmuld φt01A11ANt+1NR1NR1NA11ANt+1NR1NR1N
407 403 406 mpbird φt01A11ANt+1NR1NR1N
408 285 407 eqbrtrd φt01t01AN1ANt+1ANtR1NR1N
409 254 259 408 chvarfv φy01t01AN1ANt+1ANyR1NR1N
410 246 409 eqbrtrd φy01dt01ANtlogANt+1dtyR1NR1N
411 8 9 147 227 243 410 dvlip φ101001t01ANtlogANt+11t01ANtlogANt+10R1NR1N10
412 6 7 411 mpanr12 φt01ANtlogANt+11t01ANtlogANt+10R1NR1N10
413 eqidd φt01ANtlogANt+1=t01ANtlogANt+1
414 oveq2 t=1ANt=AN1
415 414 178 sylan9eqr φt=1ANt=AN
416 415 fvoveq1d φt=1logANt+1=logAN+1
417 415 416 oveq12d φt=1ANtlogANt+1=ANlogAN+1
418 6 a1i φ101
419 ovexd φANlogAN+1V
420 413 417 418 419 fvmptd φt01ANtlogANt+11=ANlogAN+1
421 oveq2 t=0ANt=AN0
422 19 mul01d φAN0=0
423 421 422 sylan9eqr φt=0ANt=0
424 423 oveq1d φt=0ANt+1=0+1
425 0p1e1 0+1=1
426 424 425 eqtrdi φt=0ANt+1=1
427 426 fveq2d φt=0logANt+1=log1
428 log1 log1=0
429 427 428 eqtrdi φt=0logANt+1=0
430 423 429 oveq12d φt=0ANtlogANt+1=00
431 0m0e0 00=0
432 430 431 eqtrdi φt=0ANtlogANt+1=0
433 7 a1i φ001
434 413 432 433 433 fvmptd φt01ANtlogANt+10=0
435 420 434 oveq12d φt01ANtlogANt+11t01ANtlogANt+10=AN-logAN+1-0
436 19 138 addcld φAN+1
437 14 3 dmgmdivn0 φAN+10
438 436 437 logcld φlogAN+1
439 19 438 subcld φANlogAN+1
440 439 subid1d φAN-logAN+1-0=ANlogAN+1
441 435 440 eqtr2d φANlogAN+1=t01ANtlogANt+11t01ANtlogANt+10
442 441 fveq2d φANlogAN+1=t01ANtlogANt+11t01ANtlogANt+10
443 1m0e1 10=1
444 443 fveq2i 10=1
445 444 340 eqtri 10=1
446 445 oveq2i R1NR1N10=R1NR1N1
447 233 400 mulcld φR1NR1N
448 447 mulridd φR1NR1N1=R1NR1N
449 446 448 eqtr2id φR1NR1N=R1NR1N10
450 412 442 449 3brtr4d φANlogAN+1R1NR1N