Metamath Proof Explorer


Theorem hoidmvlelem3

Description: This is the contradiction proven in step (d) in the proof of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvlelem3.l L=xFinax,bxifx=0kxvolakbk
hoidmvlelem3.x φXFin
hoidmvlelem3.y φYX
hoidmvlelem3.z φZXY
hoidmvlelem3.w W=YZ
hoidmvlelem3.a φA:W
hoidmvlelem3.b φB:W
hoidmvlelem3.lt φkWAk<Bk
hoidmvlelem3.f F=yY0
hoidmvlelem3.c φC:W
hoidmvlelem3.j J=jifSCjZDjZCjYF
hoidmvlelem3.d φD:W
hoidmvlelem3.k K=jifSCjZDjZDjYF
hoidmvlelem3.r φsum^jCjLWDj
hoidmvlelem3.h H=xcWjWifjYcjifcjxcjx
hoidmvlelem3.g G=AYLYBY
hoidmvlelem3.e φE+
hoidmvlelem3.u U=zAZBZ|GzAZ1+Esum^jCjLWHzDj
hoidmvlelem3.s φSU
hoidmvlelem3.sb φS<BZ
hoidmvlelem3.p P=jJjLYKj
hoidmvlelem3.i φeYfYgYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhj
hoidmvlelem3.i2 φkWAkBkjkWCjkDjk
hoidmvlelem3.o O=xkYAkBkkWifkYxkS
Assertion hoidmvlelem3 φuUS<u

Proof

Step Hyp Ref Expression
1 hoidmvlelem3.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvlelem3.x φXFin
3 hoidmvlelem3.y φYX
4 hoidmvlelem3.z φZXY
5 hoidmvlelem3.w W=YZ
6 hoidmvlelem3.a φA:W
7 hoidmvlelem3.b φB:W
8 hoidmvlelem3.lt φkWAk<Bk
9 hoidmvlelem3.f F=yY0
10 hoidmvlelem3.c φC:W
11 hoidmvlelem3.j J=jifSCjZDjZCjYF
12 hoidmvlelem3.d φD:W
13 hoidmvlelem3.k K=jifSCjZDjZDjYF
14 hoidmvlelem3.r φsum^jCjLWDj
15 hoidmvlelem3.h H=xcWjWifjYcjifcjxcjx
16 hoidmvlelem3.g G=AYLYBY
17 hoidmvlelem3.e φE+
18 hoidmvlelem3.u U=zAZBZ|GzAZ1+Esum^jCjLWHzDj
19 hoidmvlelem3.s φSU
20 hoidmvlelem3.sb φS<BZ
21 hoidmvlelem3.p P=jJjLYKj
22 hoidmvlelem3.i φeYfYgYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhj
23 hoidmvlelem3.i2 φkWAkBkjkWCjkDjk
24 hoidmvlelem3.o O=xkYAkBkkWifkYxkS
25 1nn 1
26 25 a1i φY=1
27 0le0 00
28 27 a1i φY=00
29 16 a1i φY=G=AYLYBY
30 fveq2 Y=LY=L
31 reseq2 Y=AY=A
32 res0 A=
33 32 a1i Y=A=
34 31 33 eqtrd Y=AY=
35 reseq2 Y=BY=B
36 res0 B=
37 36 a1i Y=B=
38 35 37 eqtrd Y=BY=
39 30 34 38 oveq123d Y=AYLYBY=L
40 39 adantl φY=AYLYBY=L
41 f0 :
42 41 a1i φY=:
43 1 42 42 hoidmv0val φY=L=0
44 29 40 43 3eqtrd φY=G=0
45 nfcvd φ_jP1
46 nfv jφ
47 simpr φj=1j=1
48 47 fveq2d φj=1Pj=P1
49 1red φ1
50 rge0ssre 0+∞
51 id φφ
52 25 a1i φ1
53 25 elexi 1V
54 eleq1 j=1j1
55 54 anbi2d j=1φjφ1
56 fveq2 j=1Pj=P1
57 56 eleq1d j=1Pj0+∞P10+∞
58 55 57 imbi12d j=1φjPj0+∞φ1P10+∞
59 id jj
60 ovexd jJjLYKjV
61 21 fvmpt2 jJjLYKjVPj=JjLYKj
62 59 60 61 syl2anc jPj=JjLYKj
63 62 adantl φjPj=JjLYKj
64 5 a1i φW=YZ
65 4 eldifad φZX
66 snssi ZXZX
67 65 66 syl φZX
68 3 67 unssd φYZX
69 64 68 eqsstrd φWX
70 2 69 ssfid φWFin
71 ssun1 YYZ
72 5 eqcomi YZ=W
73 71 72 sseqtri YW
74 73 a1i φYW
75 70 74 ssfid φYFin
76 75 adantr φjYFin
77 iftrue SCjZDjZifSCjZDjZCjYF=CjY
78 77 adantl φjSCjZDjZifSCjZDjZCjYF=CjY
79 10 ffvelcdmda φjCjW
80 elmapi CjWCj:W
81 79 80 syl φjCj:W
82 71 5 sseqtrri YW
83 82 a1i φjYW
84 81 83 fssresd φjCjY:Y
85 reex V
86 85 a1i φjV
87 70 74 ssexd φYV
88 87 adantr φjYV
89 86 88 elmapd φjCjYYCjY:Y
90 84 89 mpbird φjCjYY
91 90 adantr φjSCjZDjZCjYY
92 78 91 eqeltrd φjSCjZDjZifSCjZDjZCjYFY
93 iffalse ¬SCjZDjZifSCjZDjZCjYF=F
94 93 adantl φj¬SCjZDjZifSCjZDjZCjYF=F
95 0red φyY0
96 95 9 fmptd φF:Y
97 85 a1i φV
98 97 75 elmapd φFYF:Y
99 96 98 mpbird φFY
100 99 ad2antrr φj¬SCjZDjZFY
101 94 100 eqeltrd φj¬SCjZDjZifSCjZDjZCjYFY
102 92 101 pm2.61dan φjifSCjZDjZCjYFY
103 102 11 fmptd φJ:Y
104 103 ffvelcdmda φjJjY
105 elmapi JjYJj:Y
106 104 105 syl φjJj:Y
107 iftrue SCjZDjZifSCjZDjZDjYF=DjY
108 107 adantl φjSCjZDjZifSCjZDjZDjYF=DjY
109 12 ffvelcdmda φjDjW
110 elmapi DjWDj:W
111 109 110 syl φjDj:W
112 111 83 fssresd φjDjY:Y
113 86 88 elmapd φjDjYYDjY:Y
114 112 113 mpbird φjDjYY
115 114 adantr φjSCjZDjZDjYY
116 108 115 eqeltrd φjSCjZDjZifSCjZDjZDjYFY
117 iffalse ¬SCjZDjZifSCjZDjZDjYF=F
118 117 adantl φj¬SCjZDjZifSCjZDjZDjYF=F
119 118 100 eqeltrd φj¬SCjZDjZifSCjZDjZDjYFY
120 116 119 pm2.61dan φjifSCjZDjZDjYFY
121 120 13 fmptd φK:Y
122 121 ffvelcdmda φjKjY
123 elmapi KjYKj:Y
124 122 123 syl φjKj:Y
125 1 76 106 124 hoidmvcl φjJjLYKj0+∞
126 63 125 eqeltrd φjPj0+∞
127 53 58 126 vtocl φ1P10+∞
128 51 52 127 syl2anc φP10+∞
129 50 128 sselid φP1
130 129 recnd φP1
131 45 46 48 49 130 sumsnd φj1Pj=P1
132 131 adantr φY=j1Pj=P1
133 fveq2 j=1Jj=J1
134 fveq2 j=1Kj=K1
135 133 134 oveq12d j=1JjLYKj=J1LYK1
136 ovex J1LYK1V
137 135 21 136 fvmpt 1P1=J1LYK1
138 25 137 ax-mp P1=J1LYK1
139 138 a1i φY=P1=J1LYK1
140 30 oveqd Y=J1LYK1=J1LK1
141 140 adantl φY=J1LYK1=J1LK1
142 133 feq1d j=1Jj:YJ1:Y
143 55 142 imbi12d j=1φjJj:Yφ1J1:Y
144 84 adantr φjSCjZDjZCjY:Y
145 78 feq1d φjSCjZDjZifSCjZDjZCjYF:YCjY:Y
146 144 145 mpbird φjSCjZDjZifSCjZDjZCjYF:Y
147 96 ad2antrr φj¬SCjZDjZF:Y
148 94 feq1d φj¬SCjZDjZifSCjZDjZCjYF:YF:Y
149 147 148 mpbird φj¬SCjZDjZifSCjZDjZCjYF:Y
150 146 149 pm2.61dan φjifSCjZDjZCjYF:Y
151 simpr φjj
152 fvex CjV
153 152 resex CjYV
154 78 153 eqeltrdi φjSCjZDjZifSCjZDjZCjYFV
155 99 elexd φFV
156 155 adantr φjFV
157 156 adantr φj¬SCjZDjZFV
158 94 157 eqeltrd φj¬SCjZDjZifSCjZDjZCjYFV
159 154 158 pm2.61dan φjifSCjZDjZCjYFV
160 11 fvmpt2 jifSCjZDjZCjYFVJj=ifSCjZDjZCjYF
161 151 159 160 syl2anc φjJj=ifSCjZDjZCjYF
162 161 feq1d φjJj:YifSCjZDjZCjYF:Y
163 150 162 mpbird φjJj:Y
164 53 143 163 vtocl φ1J1:Y
165 51 52 164 syl2anc φJ1:Y
166 165 adantr φY=J1:Y
167 id Y=Y=
168 167 eqcomd Y==Y
169 168 feq2d Y=J1:J1:Y
170 169 adantl φY=J1:J1:Y
171 166 170 mpbird φY=J1:
172 134 feq1d j=1Kj:YK1:Y
173 55 172 imbi12d j=1φjKj:Yφ1K1:Y
174 53 173 124 vtocl φ1K1:Y
175 51 52 174 syl2anc φK1:Y
176 175 adantr φY=K1:Y
177 168 feq2d Y=K1:K1:Y
178 177 adantl φY=K1:K1:Y
179 176 178 mpbird φY=K1:
180 1 171 179 hoidmv0val φY=J1LK1=0
181 141 180 eqtrd φY=J1LYK1=0
182 132 139 181 3eqtrd φY=j1Pj=0
183 182 oveq2d φY=1+Ej1Pj=1+E0
184 17 rpred φE
185 49 184 readdcld φ1+E
186 185 recnd φ1+E
187 186 mul01d φ1+E0=0
188 187 adantr φY=1+E0=0
189 eqidd φY=0=0
190 183 188 189 3eqtrd φY=1+Ej1Pj=0
191 44 190 breq12d φY=G1+Ej1Pj00
192 28 191 mpbird φY=G1+Ej1Pj
193 oveq2 m=11m=11
194 25 nnzi 1
195 fzsn 111=1
196 194 195 ax-mp 11=1
197 196 a1i m=111=1
198 193 197 eqtrd m=11m=1
199 198 sumeq1d m=1j=1mPj=j1Pj
200 199 oveq2d m=11+Ej=1mPj=1+Ej1Pj
201 200 breq2d m=1G1+Ej=1mPjG1+Ej1Pj
202 201 rspcev 1G1+Ej1PjmG1+Ej=1mPj
203 26 192 202 syl2anc φY=mG1+Ej=1mPj
204 simpl φ¬Y=φ
205 neqne ¬Y=Y
206 205 adantl φ¬Y=Y
207 nfv jφY
208 194 a1i φY1
209 nnuz =1
210 126 adantlr φYjPj0+∞
211 82 a1i φYW
212 6 211 fssresd φAY:Y
213 7 211 fssresd φBY:Y
214 1 75 212 213 hoidmvcl φAYLYBY0+∞
215 50 214 sselid φAYLYBY
216 16 215 eqeltrid φG
217 0red φ0
218 1rp 1+
219 218 a1i φ1+
220 219 17 jca φ1+E+
221 rpaddcl 1+E+1+E+
222 220 221 syl φ1+E+
223 rpgt0 1+E+0<1+E
224 222 223 syl φ0<1+E
225 217 224 gtned φ1+E0
226 216 185 225 redivcld φG1+E
227 226 adantr φYG1+E
228 226 ltpnfd φG1+E<+∞
229 228 adantr φsum^jPj=+∞G1+E<+∞
230 id sum^jPj=+∞sum^jPj=+∞
231 230 eqcomd sum^jPj=+∞+∞=sum^jPj
232 231 adantl φsum^jPj=+∞+∞=sum^jPj
233 229 232 breqtrd φsum^jPj=+∞G1+E<sum^jPj
234 233 adantlr φYsum^jPj=+∞G1+E<sum^jPj
235 simpl φY¬sum^jPj=+∞φY
236 simpr φ¬sum^jPj=+∞¬sum^jPj=+∞
237 nnex V
238 237 a1i φ¬sum^jPj=+∞V
239 icossicc 0+∞0+∞
240 239 126 sselid φjPj0+∞
241 eqid jPj=jPj
242 240 241 fmptd φjPj:0+∞
243 242 adantr φ¬sum^jPj=+∞jPj:0+∞
244 238 243 sge0repnf φ¬sum^jPj=+∞sum^jPj¬sum^jPj=+∞
245 236 244 mpbird φ¬sum^jPj=+∞sum^jPj
246 245 adantlr φY¬sum^jPj=+∞sum^jPj
247 227 adantr φYsum^jPjG1+E
248 216 adantr φsum^jPjG
249 248 adantlr φYsum^jPjG
250 simpr φYsum^jPjsum^jPj
251 49 17 ltaddrpd φ1<1+E
252 251 adantr φY1<1+E
253 75 adantr φYYFin
254 simpr φYY
255 212 adantr φYAY:Y
256 213 adantr φYBY:Y
257 1 253 254 255 256 hoidmvn0val φYAYLYBY=kYvolAYkBYk
258 16 a1i φYG=AYLYBY
259 fvres kYAYk=Ak
260 fvres kYBYk=Bk
261 259 260 oveq12d kYAYkBYk=AkBk
262 261 fveq2d kYvolAYkBYk=volAkBk
263 262 adantl φkYvolAYkBYk=volAkBk
264 6 adantr φkYA:W
265 elun1 kYkYZ
266 265 5 eleqtrrdi kYkW
267 266 adantl φkYkW
268 264 267 ffvelcdmd φkYAk
269 7 adantr φkYB:W
270 269 267 ffvelcdmd φkYBk
271 volico AkBkvolAkBk=ifAk<BkBkAk0
272 268 270 271 syl2anc φkYvolAkBk=ifAk<BkBkAk0
273 267 8 syldan φkYAk<Bk
274 273 iftrued φkYifAk<BkBkAk0=BkAk
275 263 272 274 3eqtrd φkYvolAYkBYk=BkAk
276 275 prodeq2dv φkYvolAYkBYk=kYBkAk
277 276 eqcomd φkYBkAk=kYvolAYkBYk
278 277 adantr φYkYBkAk=kYvolAYkBYk
279 257 258 278 3eqtr4d φYG=kYBkAk
280 difrp AkBkAk<BkBkAk+
281 268 270 280 syl2anc φkYAk<BkBkAk+
282 273 281 mpbid φkYBkAk+
283 75 282 fprodrpcl φkYBkAk+
284 283 adantr φYkYBkAk+
285 279 284 eqeltrd φYG+
286 222 adantr φY1+E+
287 285 286 ltdivgt1 φY1<1+EG1+E<G
288 252 287 mpbid φYG1+E<G
289 288 adantr φYsum^jPjG1+E<G
290 23 adantr φxkYAkBkkWAkBkjkWCjkDjk
291 fvexd φxkV
292 19 elexd φSV
293 291 292 ifcld φifkYxkSV
294 293 ralrimivw φkWifkYxkSV
295 294 adantr φxkYAkBkkWifkYxkSV
296 eqid kWifkYxkS=kWifkYxkS
297 296 fnmpt kWifkYxkSVkWifkYxkSFnW
298 295 297 syl φxkYAkBkkWifkYxkSFnW
299 simpr φxkYAkBkxkYAkBk
300 mptexg WFinkWifkYxkSV
301 70 300 syl φkWifkYxkSV
302 301 adantr φxkYAkBkkWifkYxkSV
303 24 fvmpt2 xkYAkBkkWifkYxkSVOx=kWifkYxkS
304 299 302 303 syl2anc φxkYAkBkOx=kWifkYxkS
305 304 fneq1d φxkYAkBkOxFnWkWifkYxkSFnW
306 298 305 mpbird φxkYAkBkOxFnW
307 nfv kφ
308 nfcv _kx
309 nfixp1 _kkYAkBk
310 308 309 nfel kxkYAkBk
311 307 310 nfan kφxkYAkBk
312 304 fveq1d φxkYAkBkOxk=kWifkYxkSk
313 312 adantr φxkYAkBkkWOxk=kWifkYxkSk
314 simpr φkWkW
315 293 adantr φkWifkYxkSV
316 296 fvmpt2 kWifkYxkSVkWifkYxkSk=ifkYxkS
317 314 315 316 syl2anc φkWkWifkYxkSk=ifkYxkS
318 317 adantlr φxkYAkBkkWkWifkYxkSk=ifkYxkS
319 313 318 eqtrd φxkYAkBkkWOxk=ifkYxkS
320 iftrue kYifkYxkS=xk
321 320 adantl φxkYAkBkkWkYifkYxkS=xk
322 vex xV
323 322 elixp xkYAkBkxFnYkYxkAkBk
324 323 simprbi xkYAkBkkYxkAkBk
325 324 adantr xkYAkBkkYkYxkAkBk
326 simpr xkYAkBkkYkY
327 rspa kYxkAkBkkYxkAkBk
328 325 326 327 syl2anc xkYAkBkkYxkAkBk
329 328 ad4ant24 φxkYAkBkkWkYxkAkBk
330 321 329 eqeltrd φxkYAkBkkWkYifkYxkSAkBk
331 snidg ZXYZZ
332 4 331 syl φZZ
333 elun2 ZZZYZ
334 332 333 syl φZYZ
335 72 a1i φYZ=W
336 334 335 eleqtrd φZW
337 6 336 ffvelcdmd φAZ
338 337 rexrd φAZ*
339 7 336 ffvelcdmd φBZ
340 339 rexrd φBZ*
341 iccssxr AZBZ*
342 ssrab2 zAZBZ|GzAZ1+Esum^jCjLWHzDjAZBZ
343 18 342 eqsstri UAZBZ
344 343 19 sselid φSAZBZ
345 341 344 sselid φS*
346 iccgelb AZ*BZ*SAZBZAZS
347 338 340 344 346 syl3anc φAZS
348 338 340 345 347 20 elicod φSAZBZ
349 348 ad2antrr φkW¬kYSAZBZ
350 iffalse ¬kYifkYxkS=S
351 350 adantl φkW¬kYifkYxkS=S
352 5 eleq2i kWkYZ
353 352 biimpi kWkYZ
354 353 adantr kW¬kYkYZ
355 simpr kW¬kY¬kY
356 elunnel1 kYZ¬kYkZ
357 354 355 356 syl2anc kW¬kYkZ
358 elsni kZk=Z
359 357 358 syl kW¬kYk=Z
360 fveq2 k=ZAk=AZ
361 fveq2 k=ZBk=BZ
362 360 361 oveq12d k=ZAkBk=AZBZ
363 359 362 syl kW¬kYAkBk=AZBZ
364 363 adantll φkW¬kYAkBk=AZBZ
365 351 364 eleq12d φkW¬kYifkYxkSAkBkSAZBZ
366 349 365 mpbird φkW¬kYifkYxkSAkBk
367 366 adantllr φxkYAkBkkW¬kYifkYxkSAkBk
368 330 367 pm2.61dan φxkYAkBkkWifkYxkSAkBk
369 319 368 eqeltrd φxkYAkBkkWOxkAkBk
370 369 ex φxkYAkBkkWOxkAkBk
371 311 370 ralrimi φxkYAkBkkWOxkAkBk
372 306 371 jca φxkYAkBkOxFnWkWOxkAkBk
373 fvex OxV
374 373 elixp OxkWAkBkOxFnWkWOxkAkBk
375 372 374 sylibr φxkYAkBkOxkWAkBk
376 290 375 sseldd φxkYAkBkOxjkWCjkDjk
377 eliun OxjkWCjkDjkjOxkWCjkDjk
378 376 377 sylib φxkYAkBkjOxkWCjkDjk
379 ixpfn xkYAkBkxFnY
380 379 adantl φxkYAkBkxFnY
381 380 ad2antrr φxkYAkBkjOxkWCjkDjkxFnY
382 nfv kj
383 311 382 nfan kφxkYAkBkj
384 nfcv _kOx
385 nfixp1 _kkWCjkDjk
386 384 385 nfel kOxkWCjkDjk
387 383 386 nfan kφxkYAkBkjOxkWCjkDjk
388 312 3adant3 φxkYAkBkkYOxk=kWifkYxkSk
389 293 adantr φkYifkYxkSV
390 267 389 316 syl2anc φkYkWifkYxkSk=ifkYxkS
391 390 3adant2 φxkYAkBkkYkWifkYxkSk=ifkYxkS
392 320 3ad2ant3 φxkYAkBkkYifkYxkS=xk
393 388 391 392 3eqtrrd φxkYAkBkkYxk=Oxk
394 393 ad5ant125 φxkYAkBkjOxkWCjkDjkkYxk=Oxk
395 simpl OxkWCjkDjkkYOxkWCjkDjk
396 373 elixp OxkWCjkDjkOxFnWkWOxkCjkDjk
397 395 396 sylib OxkWCjkDjkkYOxFnWkWOxkCjkDjk
398 397 simprd OxkWCjkDjkkYkWOxkCjkDjk
399 266 adantl OxkWCjkDjkkYkW
400 rspa kWOxkCjkDjkkWOxkCjkDjk
401 398 399 400 syl2anc OxkWCjkDjkkYOxkCjkDjk
402 401 adantll φxkYAkBkjOxkWCjkDjkkYOxkCjkDjk
403 394 402 eqeltrd φxkYAkBkjOxkWCjkDjkkYxkCjkDjk
404 51 ad3antrrr φxkYAkBkjOxkWCjkDjkφ
405 59 ad2antlr φxkYAkBkjOxkWCjkDjkj
406 304 fveq1d φxkYAkBkOxZ=kWifkYxkSZ
407 eqidd φkWifkYxkS=kWifkYxkS
408 eleq1 k=ZkYZY
409 fveq2 k=Zxk=xZ
410 408 409 ifbieq1d k=ZifkYxkS=ifZYxZS
411 410 adantl φk=ZifkYxkS=ifZYxZS
412 fvexd φxZV
413 412 292 ifcld φifZYxZSV
414 407 411 336 413 fvmptd φkWifkYxkSZ=ifZYxZS
415 414 adantr φxkYAkBkkWifkYxkSZ=ifZYxZS
416 4 eldifbd φ¬ZY
417 416 iffalsed φifZYxZS=S
418 417 adantr φxkYAkBkifZYxZS=S
419 406 415 418 3eqtrrd φxkYAkBkS=OxZ
420 419 ad2antrr φxkYAkBkjOxkWCjkDjkS=OxZ
421 404 336 syl φxkYAkBkjOxkWCjkDjkZW
422 396 simprbi OxkWCjkDjkkWOxkCjkDjk
423 422 adantl φxkYAkBkjOxkWCjkDjkkWOxkCjkDjk
424 fveq2 k=ZOxk=OxZ
425 fveq2 k=ZCjk=CjZ
426 fveq2 k=ZDjk=DjZ
427 425 426 oveq12d k=ZCjkDjk=CjZDjZ
428 424 427 eleq12d k=ZOxkCjkDjkOxZCjZDjZ
429 428 rspcva ZWkWOxkCjkDjkOxZCjZDjZ
430 421 423 429 syl2anc φxkYAkBkjOxkWCjkDjkOxZCjZDjZ
431 420 430 eqeltrd φxkYAkBkjOxkWCjkDjkSCjZDjZ
432 161 3adant3 φjSCjZDjZJj=ifSCjZDjZCjYF
433 77 3ad2ant3 φjSCjZDjZifSCjZDjZCjYF=CjY
434 432 433 eqtrd φjSCjZDjZJj=CjY
435 434 fveq1d φjSCjZDjZJjk=CjYk
436 404 405 431 435 syl3anc φxkYAkBkjOxkWCjkDjkJjk=CjYk
437 436 adantr φxkYAkBkjOxkWCjkDjkkYJjk=CjYk
438 fvres kYCjYk=Cjk
439 438 adantl φxkYAkBkjOxkWCjkDjkkYCjYk=Cjk
440 437 439 eqtrd φxkYAkBkjOxkWCjkDjkkYJjk=Cjk
441 120 elexd φjifSCjZDjZDjYFV
442 13 fvmpt2 jifSCjZDjZDjYFVKj=ifSCjZDjZDjYF
443 151 441 442 syl2anc φjKj=ifSCjZDjZDjYF
444 443 3adant3 φjSCjZDjZKj=ifSCjZDjZDjYF
445 107 3ad2ant3 φjSCjZDjZifSCjZDjZDjYF=DjY
446 444 445 eqtrd φjSCjZDjZKj=DjY
447 446 fveq1d φjSCjZDjZKjk=DjYk
448 404 405 431 447 syl3anc φxkYAkBkjOxkWCjkDjkKjk=DjYk
449 448 adantr φxkYAkBkjOxkWCjkDjkkYKjk=DjYk
450 fvres kYDjYk=Djk
451 450 adantl φxkYAkBkjOxkWCjkDjkkYDjYk=Djk
452 449 451 eqtrd φxkYAkBkjOxkWCjkDjkkYKjk=Djk
453 440 452 oveq12d φxkYAkBkjOxkWCjkDjkkYJjkKjk=CjkDjk
454 453 eqcomd φxkYAkBkjOxkWCjkDjkkYCjkDjk=JjkKjk
455 403 454 eleqtrd φxkYAkBkjOxkWCjkDjkkYxkJjkKjk
456 455 ex φxkYAkBkjOxkWCjkDjkkYxkJjkKjk
457 387 456 ralrimi φxkYAkBkjOxkWCjkDjkkYxkJjkKjk
458 381 457 jca φxkYAkBkjOxkWCjkDjkxFnYkYxkJjkKjk
459 322 elixp xkYJjkKjkxFnYkYxkJjkKjk
460 458 459 sylibr φxkYAkBkjOxkWCjkDjkxkYJjkKjk
461 460 ex φxkYAkBkjOxkWCjkDjkxkYJjkKjk
462 461 reximdva φxkYAkBkjOxkWCjkDjkjxkYJjkKjk
463 378 462 mpd φxkYAkBkjxkYJjkKjk
464 eliun xjkYJjkKjkjxkYJjkKjk
465 463 464 sylibr φxkYAkBkxjkYJjkKjk
466 465 ralrimiva φxkYAkBkxjkYJjkKjk
467 dfss3 kYAkBkjkYJjkKjkxkYAkBkxjkYJjkKjk
468 466 467 sylibr φkYAkBkjkYJjkKjk
469 ovexd φYV
470 237 a1i φV
471 469 470 elmapd φKYK:Y
472 121 471 mpbird φKY
473 469 470 elmapd φJYJ:Y
474 103 473 mpbird φJY
475 97 87 elmapd φBYYBY:Y
476 213 475 mpbird φBYY
477 97 87 elmapd φAYYAY:Y
478 212 477 mpbird φAYY
479 fveq1 e=AYek=AYk
480 479 adantr e=AYkYek=AYk
481 259 adantl e=AYkYAYk=Ak
482 480 481 eqtrd e=AYkYek=Ak
483 482 oveq1d e=AYkYekfk=Akfk
484 483 ixpeq2dva e=AYkYekfk=kYAkfk
485 484 sseq1d e=AYkYekfkjkYgjkhjkkYAkfkjkYgjkhjk
486 oveq1 e=AYeLYf=AYLYf
487 486 breq1d e=AYeLYfsum^jgjLYhjAYLYfsum^jgjLYhj
488 485 487 imbi12d e=AYkYekfkjkYgjkhjkeLYfsum^jgjLYhjkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
489 488 ralbidv e=AYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhjhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
490 489 ralbidv e=AYgYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhjgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
491 490 ralbidv e=AYfYgYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhjfYgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
492 491 rspcva AYYeYfYgYhYkYekfkjkYgjkhjkeLYfsum^jgjLYhjfYgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
493 478 22 492 syl2anc φfYgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhj
494 fveq1 f=BYfk=BYk
495 494 adantr f=BYkYfk=BYk
496 260 adantl f=BYkYBYk=Bk
497 495 496 eqtrd f=BYkYfk=Bk
498 497 oveq2d f=BYkYAkfk=AkBk
499 498 ixpeq2dva f=BYkYAkfk=kYAkBk
500 499 sseq1d f=BYkYAkfkjkYgjkhjkkYAkBkjkYgjkhjk
501 oveq2 f=BYAYLYf=AYLYBY
502 501 breq1d f=BYAYLYfsum^jgjLYhjAYLYBYsum^jgjLYhj
503 500 502 imbi12d f=BYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhjkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhj
504 503 ralbidv f=BYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhjhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhj
505 504 ralbidv f=BYgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhjgYhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhj
506 505 rspcva BYYfYgYhYkYAkfkjkYgjkhjkAYLYfsum^jgjLYhjgYhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhj
507 476 493 506 syl2anc φgYhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhj
508 fveq1 g=Jgj=Jj
509 508 fveq1d g=Jgjk=Jjk
510 509 oveq1d g=Jgjkhjk=Jjkhjk
511 510 ixpeq2dv g=JkYgjkhjk=kYJjkhjk
512 511 iuneq2d g=JjkYgjkhjk=jkYJjkhjk
513 512 sseq2d g=JkYAkBkjkYgjkhjkkYAkBkjkYJjkhjk
514 508 oveq1d g=JgjLYhj=JjLYhj
515 514 mpteq2dv g=JjgjLYhj=jJjLYhj
516 515 fveq2d g=Jsum^jgjLYhj=sum^jJjLYhj
517 516 breq2d g=JAYLYBYsum^jgjLYhjAYLYBYsum^jJjLYhj
518 513 517 imbi12d g=JkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhjkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhj
519 518 ralbidv g=JhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhjhYkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhj
520 519 rspcva JYgYhYkYAkBkjkYgjkhjkAYLYBYsum^jgjLYhjhYkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhj
521 474 507 520 syl2anc φhYkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhj
522 fveq1 h=Khj=Kj
523 522 fveq1d h=Khjk=Kjk
524 523 oveq2d h=KJjkhjk=JjkKjk
525 524 ixpeq2dv h=KkYJjkhjk=kYJjkKjk
526 525 iuneq2d h=KjkYJjkhjk=jkYJjkKjk
527 526 sseq2d h=KkYAkBkjkYJjkhjkkYAkBkjkYJjkKjk
528 522 oveq2d h=KJjLYhj=JjLYKj
529 528 mpteq2dv h=KjJjLYhj=jJjLYKj
530 529 fveq2d h=Ksum^jJjLYhj=sum^jJjLYKj
531 530 breq2d h=KAYLYBYsum^jJjLYhjAYLYBYsum^jJjLYKj
532 527 531 imbi12d h=KkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhjkYAkBkjkYJjkKjkAYLYBYsum^jJjLYKj
533 532 rspcva KYhYkYAkBkjkYJjkhjkAYLYBYsum^jJjLYhjkYAkBkjkYJjkKjkAYLYBYsum^jJjLYKj
534 472 521 533 syl2anc φkYAkBkjkYJjkKjkAYLYBYsum^jJjLYKj
535 468 534 mpd φAYLYBYsum^jJjLYKj
536 idd φAYLYBYsum^jJjLYKjAYLYBYsum^jJjLYKj
537 535 536 mpd φAYLYBYsum^jJjLYKj
538 537 adantr φYAYLYBYsum^jJjLYKj
539 62 adantl φYjPj=JjLYKj
540 539 mpteq2dva φYjPj=jJjLYKj
541 540 fveq2d φYsum^jPj=sum^jJjLYKj
542 258 541 breq12d φYGsum^jPjAYLYBYsum^jJjLYKj
543 538 542 mpbird φYGsum^jPj
544 543 adantr φYsum^jPjGsum^jPj
545 247 249 250 289 544 ltletrd φYsum^jPjG1+E<sum^jPj
546 235 246 545 syl2anc φY¬sum^jPj=+∞G1+E<sum^jPj
547 234 546 pm2.61dan φYG1+E<sum^jPj
548 207 208 209 210 227 547 sge0uzfsumgt φYmG1+E<j=1mPj
549 226 adantr φG1+E<j=1mPjG1+E
550 fzfid φ1mFin
551 simpl φj1mφ
552 elfznn j1mj
553 552 adantl φj1mj
554 50 126 sselid φjPj
555 551 553 554 syl2anc φj1mPj
556 550 555 fsumrecl φj=1mPj
557 556 adantr φG1+E<j=1mPjj=1mPj
558 simpr φG1+E<j=1mPjG1+E<j=1mPj
559 549 557 558 ltled φG1+E<j=1mPjG1+Ej=1mPj
560 216 adantr φG1+E<j=1mPjG
561 222 adantr φG1+E<j=1mPj1+E+
562 560 557 561 ledivmuld φG1+E<j=1mPjG1+Ej=1mPjG1+Ej=1mPj
563 559 562 mpbid φG1+E<j=1mPjG1+Ej=1mPj
564 563 ex φG1+E<j=1mPjG1+Ej=1mPj
565 564 adantr φmG1+E<j=1mPjG1+Ej=1mPj
566 565 adantlr φYmG1+E<j=1mPjG1+Ej=1mPj
567 566 reximdva φYmG1+E<j=1mPjmG1+Ej=1mPj
568 548 567 mpd φYmG1+Ej=1mPj
569 204 206 568 syl2anc φ¬Y=mG1+Ej=1mPj
570 203 569 pm2.61dan φmG1+Ej=1mPj
571 2 3ad2ant1 φmG1+Ej=1mPjXFin
572 3 3ad2ant1 φmG1+Ej=1mPjYX
573 4 3ad2ant1 φmG1+Ej=1mPjZXY
574 6 3ad2ant1 φmG1+Ej=1mPjA:W
575 7 3ad2ant1 φmG1+Ej=1mPjB:W
576 10 3ad2ant1 φmG1+Ej=1mPjC:W
577 eqid yY0=yY0
578 eqid iifSCiZDiZCiYyY0=iifSCiZDiZCiYyY0
579 12 3ad2ant1 φmG1+Ej=1mPjD:W
580 eqid iifSCiZDiZDiYyY0=iifSCiZDiZDiYyY0
581 fveq2 i=jCi=Cj
582 fveq2 i=jDi=Dj
583 581 582 oveq12d i=jCiLWDi=CjLWDj
584 583 cbvmptv iCiLWDi=jCjLWDj
585 584 fveq2i sum^iCiLWDi=sum^jCjLWDj
586 585 14 eqeltrid φsum^iCiLWDi
587 586 3ad2ant1 φmG1+Ej=1mPjsum^iCiLWDi
588 eleq1w j=ijYiY
589 fveq2 j=icj=ci
590 589 breq1d j=icjxcix
591 590 589 ifbieq1d j=iifcjxcjx=ifcixcix
592 588 589 591 ifbieq12d j=iifjYcjifcjxcjx=ifiYciifcixcix
593 592 cbvmptv jWifjYcjifcjxcjx=iWifiYciifcixcix
594 593 mpteq2i cWjWifjYcjifcjxcjx=cWiWifiYciifcixcix
595 594 mpteq2i xcWjWifjYcjifcjxcjx=xcWiWifiYciifcixcix
596 15 595 eqtri H=xcWiWifiYciifcixcix
597 17 3ad2ant1 φmG1+Ej=1mPjE+
598 fveq2 j=iCj=Ci
599 fveq2 j=iDj=Di
600 599 fveq2d j=iHzDj=HzDi
601 598 600 oveq12d j=iCjLWHzDj=CiLWHzDi
602 601 cbvmptv jCjLWHzDj=iCiLWHzDi
603 602 fveq2i sum^jCjLWHzDj=sum^iCiLWHzDi
604 603 oveq2i 1+Esum^jCjLWHzDj=1+Esum^iCiLWHzDi
605 604 breq2i GzAZ1+Esum^jCjLWHzDjGzAZ1+Esum^iCiLWHzDi
606 605 rabbii zAZBZ|GzAZ1+Esum^jCjLWHzDj=zAZBZ|GzAZ1+Esum^iCiLWHzDi
607 18 606 eqtri U=zAZBZ|GzAZ1+Esum^iCiLWHzDi
608 19 3ad2ant1 φmG1+Ej=1mPjSU
609 20 3ad2ant1 φmG1+Ej=1mPjS<BZ
610 eqid iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0i=iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0i
611 simp2 φmG1+Ej=1mPjm
612 id G1+Ej=1mPjG1+Ej=1mPj
613 fveq2 j=iPj=Pi
614 613 cbvsumv j=1mPj=i=1mPi
615 614 oveq2i 1+Ej=1mPj=1+Ei=1mPi
616 615 a1i G1+Ej=1mPj1+Ej=1mPj=1+Ei=1mPi
617 612 616 breqtrd G1+Ej=1mPjG1+Ei=1mPi
618 617 3ad2ant3 φmG1+Ej=1mPjG1+Ei=1mPi
619 simpl φi1mφ
620 elfznn i1mi
621 620 adantl φi1mi
622 eleq1w j=iji
623 fveq2 j=iJj=Ji
624 fveq2 j=iKj=Ki
625 623 624 oveq12d j=iJjLYKj=JiLYKi
626 613 625 eqeq12d j=iPj=JjLYKjPi=JiLYKi
627 622 626 imbi12d j=ijPj=JjLYKjiPi=JiLYKi
628 627 62 chvarvv iPi=JiLYKi
629 628 adantl φiPi=JiLYKi
630 622 anbi2d j=iφjφi
631 598 fveq1d j=iCjZ=CiZ
632 599 fveq1d j=iDjZ=DiZ
633 631 632 oveq12d j=iCjZDjZ=CiZDiZ
634 633 eleq2d j=iSCjZDjZSCiZDiZ
635 598 reseq1d j=iCjY=CiY
636 634 635 ifbieq1d j=iifSCjZDjZCjYF=ifSCiZDiZCiYF
637 623 636 eqeq12d j=iJj=ifSCjZDjZCjYFJi=ifSCiZDiZCiYF
638 630 637 imbi12d j=iφjJj=ifSCjZDjZCjYFφiJi=ifSCiZDiZCiYF
639 638 161 chvarvv φiJi=ifSCiZDiZCiYF
640 599 reseq1d j=iDjY=DiY
641 634 640 ifbieq1d j=iifSCjZDjZDjYF=ifSCiZDiZDiYF
642 624 641 eqeq12d j=iKj=ifSCjZDjZDjYFKi=ifSCiZDiZDiYF
643 630 642 imbi12d j=iφjKj=ifSCjZDjZDjYFφiKi=ifSCiZDiZDiYF
644 643 443 chvarvv φiKi=ifSCiZDiZDiYF
645 639 644 oveq12d φiJiLYKi=ifSCiZDiZCiYFLYifSCiZDiZDiYF
646 629 645 eqtrd φiPi=ifSCiZDiZCiYFLYifSCiZDiZDiYF
647 simpr φii
648 ovexd φiiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0iV
649 610 fvmpt2 iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0iViiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii=iifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0i
650 647 648 649 syl2anc φiiiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii=iifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0i
651 fvex CiV
652 651 resex CiYV
653 652 a1i φCiYV
654 9 155 eqeltrrid φyY0V
655 653 654 ifcld φifSCiZDiZCiYyY0V
656 655 adantr φiifSCiZDiZCiYyY0V
657 578 fvmpt2 iifSCiZDiZCiYyY0ViifSCiZDiZCiYyY0i=ifSCiZDiZCiYyY0
658 647 656 657 syl2anc φiiifSCiZDiZCiYyY0i=ifSCiZDiZCiYyY0
659 9 eqcomi yY0=F
660 ifeq2 yY0=FifSCiZDiZCiYyY0=ifSCiZDiZCiYF
661 659 660 ax-mp ifSCiZDiZCiYyY0=ifSCiZDiZCiYF
662 661 a1i φiifSCiZDiZCiYyY0=ifSCiZDiZCiYF
663 658 662 eqtrd φiiifSCiZDiZCiYyY0i=ifSCiZDiZCiYF
664 fvex DiV
665 664 resex DiYV
666 665 a1i φDiYV
667 666 654 ifcld φifSCiZDiZDiYyY0V
668 667 adantr φiifSCiZDiZDiYyY0V
669 580 fvmpt2 iifSCiZDiZDiYyY0ViifSCiZDiZDiYyY0i=ifSCiZDiZDiYyY0
670 647 668 669 syl2anc φiiifSCiZDiZDiYyY0i=ifSCiZDiZDiYyY0
671 biid SCiZDiZSCiZDiZ
672 671 659 ifbieq2i ifSCiZDiZDiYyY0=ifSCiZDiZDiYF
673 672 a1i φiifSCiZDiZDiYyY0=ifSCiZDiZDiYF
674 670 673 eqtrd φiiifSCiZDiZDiYyY0i=ifSCiZDiZDiYF
675 663 674 oveq12d φiiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0i=ifSCiZDiZCiYFLYifSCiZDiZDiYF
676 650 675 eqtrd φiiiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii=ifSCiZDiZCiYFLYifSCiZDiZDiYF
677 646 676 eqtr4d φiPi=iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
678 619 621 677 syl2anc φi1mPi=iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
679 678 3ad2antl1 φmG1+Ej=1mPji1mPi=iiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
680 679 sumeq2dv φmG1+Ej=1mPji=1mPi=i=1miiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
681 680 oveq2d φmG1+Ej=1mPj1+Ei=1mPi=1+Ei=1miiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
682 618 681 breqtrd φmG1+Ej=1mPjG1+Ei=1miiifSCiZDiZCiYyY0iLYiifSCiZDiZDiYyY0ii
683 fveq2 j=hDj=Dh
684 683 fveq1d j=hDjZ=DhZ
685 684 cbvmptv ji1m|SCiZDiZDjZ=hi1m|SCiZDiZDhZ
686 685 rneqi ranji1m|SCiZDiZDjZ=ranhi1m|SCiZDiZDhZ
687 fveq2 h=iCh=Ci
688 687 fveq1d h=iChZ=CiZ
689 fveq2 h=iDh=Di
690 689 fveq1d h=iDhZ=DiZ
691 688 690 oveq12d h=iChZDhZ=CiZDiZ
692 691 eleq2d h=iSChZDhZSCiZDiZ
693 692 cbvrabv h1m|SChZDhZ=i1m|SCiZDiZ
694 693 mpteq1i jh1m|SChZDhZDjZ=ji1m|SCiZDiZDjZ
695 694 rneqi ranjh1m|SChZDhZDjZ=ranji1m|SCiZDiZDjZ
696 695 uneq2i BZranjh1m|SChZDhZDjZ=BZranji1m|SCiZDiZDjZ
697 eqid supBZranjh1m|SChZDhZDjZ<=supBZranjh1m|SChZDhZDjZ<
698 1 571 572 573 5 574 575 576 577 578 579 580 587 596 16 597 607 608 609 610 611 682 686 696 697 hoidmvlelem2 φmG1+Ej=1mPjuUS<u
699 698 3exp φmG1+Ej=1mPjuUS<u
700 699 rexlimdv φmG1+Ej=1mPjuUS<u
701 570 700 mpd φuUS<u